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Abstract

In this paper we analyze the statistical properties of realized variance esti-
mators under the assumption that financial logarithmic prices follow a time-
changed diffusion process. The time-change takes the form of a counting pro-
cess implying that the logarithmic price is a pure jump process with stochastic
and time-varying tick volatility. This framework is more appropriate to cap-
ture the dynamics of observed logarithmic price processes than the standard
diffusion model, and it is also more general than the compound Poisson pro-
cess with constant tick volatility. We show that our approach is particularly
suited to model the logarithmic transaction prices of stocks, as they exhibit
time-varying tick volatility. Our analysis deals with three types of sampling
schemes, namely clock-time sampling, business time sampling and transaction
time sampling. We theoretically show that, under no market microstructure
noise, realized variance is an unbiased estimator of integrated variance and
that business time sampling is optimal in terms of mean squared error. To deal
with market microstructure noise, we theoretically and empirically consider
various bias-corrected realized variance estimators. Our simulation results
show that transaction time sampling outperforms business time sampling for
high sampling frequencies and large levels of market microstructure noise.
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1 Introduction

The estimation and forecasting of variance in financial time series plays a major role
in risk management, portfolio management and asset pricing. But since the variance
is generally unobservable, its estimation is not straightforward. A popular approach
is given by the GARCH model introduced by Engle (1982) and Bollerslev (1986),
which makes the variance observable conditionally on past information. Other com-
monly used approaches include the class of stochastic volatility models. However,
these methods use (restrictive) parametric frameworks to estimate daily variances
based on data sampled once a day. More accurate estimates of daily variation are ob-
tained by using intraday information as in the realized variance estimator introduced
by Andersen et al. (2000a,b) and Andersen et al. (2001). They show that, under the
assumption that the logarithmic price process follows a standard continuous-time
diffusion model, realized variance is an unbiased estimator of integrated variance
as the latter coincides with quadratic variation when no jumps occur. Barndorff-
Nielsen and Shephard (2002a) and Bandi and Russell (2008) derive the asymptotic
normality of the realized variance estimator.
In this paper, differently from the standard diffusion approach, we assume that the
logarithmic price process follows a time-changed diffusion model as in Dahlhaus
and Tunyavetchakit (2016). The time-change or intrinsic time – a stochastic time
transformation of clock-time – takes the form of a counting process. The foundation
for this model goes back to Clark (1973), who is the first to use a diffusion approach
subordinated by a stochastic process to model prices in finance. More precisely, he
uses trading volume as a subordinator of a Brownian motion. On this basis, Jones,
Kaul and Lipson (1994) consider the trading volume and the number of trades as
subordinators and conclude that it is in fact the latter that generates volatility. Ané
and Geman (2000) propose a general time-transformation framework and find that
the time-change that leads to the recovery of normal returns is the one computed
from the number of transactions, which is in line with the findings of Jones, Kaul
and Lipson (1994).
In our framework, the spot volatility splits up into the product of tick volatility and
the intensity of the counting process.1 While Dahlhaus and Tunyavetchakit (2016)
use the volatility decomposition to obtain an improved estimate of spot-volatility, we
are interested in the analysis and performance of realized variance as an estimator
of integrated variance. In particularly, we use a doubly stochastic Poisson process
to describe the intrinsic time. For instance, the Poisson process may represent the
accumulated number of transactions, quotes, or a combination of the two during a
trading day. We call our underlying price model the tick-time stochastic volatility
(TTSV) model.2 The TTSV model is right-continuous, has finite variation and a
stochastic jump at each tick.
A concurrent approach to our model is the compound Poisson process as introduced
by Press (1967, 1968) combined with a noise term allowing for a moving average

1Tick volatility corresponds to the instantaneous volatility in the standard diffusion model.
2Here, the tick-times are not to be confused with the tick-time as e.g. in Griffin and Oomen

(2008) who define a tick as a price change event. In fact, the tick-times may represent any subset
thereof.
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structure as assumed by Oomen (2004, 2005, 2006). This type of process is a special
case of ours as it exhibits no stochastic tick volatility, but a constant one. In both,
the TTSV model and the model of Oomen (2005, 2006), the realized variance is an
inconsistent estimator since the number of ticks within a finite interval is bounded
by the definition of the Poisson process (Brémaud, 1981). Similarly to Oomen
(2005, 2006), we show that realized variance is an unbiased estimator of integrated
variance and we derive a closed-form solution of its MSE under various sampling
schemes and no market microstructure noise. The sampling schemes we consider
are based on clock-time, business time (driven by the intraday pattern of the spot
variance) and transaction time (driven by the number of trades). By employing
these sampling schemes to IBM and EUR USD exchange rate transaction data, we
demonstrate that our time-varying stochastic volatility is more realistic for stocks,
whereas a constant volatility seems plausible for foreign exchange markets. When
theoretically comparing the MSE’s of the three sampling schemes, we find that
business time sampling is the optimal choice if its specific approximation error for
the unobserved spot variance is ignored.
In practice, asset prices are contaminated with market microstructure noise. Sources
of the noise include price discreteness (Harris, 1990, 1991), bid-ask bounces and in-
frequent trading.3 Hansen and Lunde (2006) provide empirical evidence on the
structure of the noise. They find that market microstructure noise contains time-
dependencies, is correlated with the uncontaminated log-price process, and that its
properties vary over time. Bandi and Russell (2006, 2008) find significant negative
first order serial correlation in IBM quote data and in S&P500 stocks. Among oth-
ers, Zhang, Mykland and Aı̈t-Sahalia (2005) and Bandi and Russell (2008) consider
independent noise and, even though this assumption is not in line with recent em-
pirical evidence, it appears to be reasonable for low sampling frequencies (Hansen
and Lunde, 2006).
In order to deal with market microstructure noise, we add independent noise as well
as moving average noise to the observed price process and consider bias-corrected
versions of the realized variance estimator as proposed by Hansen and Lunde (2006).
For transaction time sampling, we derive the maximum number of sampled intra-day
returns for which the adjusted realized variance is unbiased.
In a Monte-Carlo experiment, we simulate the logarithmic price process according
to our assumption and investigate the performance of realized variance under the
three different sampling schemes and various forms of market microstructure noise.
We find that, in the absence of market microstructure noise, business time sampling
outperforms all other sampling schemes in terms of bias and MSE for reasonable
sampling frequencies. Under independent noise, a simple bias correction suffices
to ensure that the realized variance estimate under transaction time sampling re-
mains unbiased, which is not the case for the other sampling schemes. This pattern
extends to noises that take the form of moving average processes, as long as the
number of sampled returns does not exceed a certain maximum value. In general,
we observe that clock-time sampling performs worst and we strongly recommend
the use of business or transaction time sampling instead. We conduct robustness
checks regarding the parameter and data selection for the estimation of the intensity

3For extensive surveys on this topic see Madhavan (2000) and O’hara (1995).
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process. We find that our simulation is sufficiently insensitive to different variations,
strengthening the validity of our results.
The contribution of this paper is twofold. First, on the theoretical side, we inves-
tigate the statistical properties of realized variance both with and without market
microstructure noise in the general framework of a time-changed diffusion model,
which includes the model of Oomen (2004, 2005, 2006) as a special case. Second,
through our simulation study, we provide important insights into the optimal usage
of the sampling frequency and sampling scheme to obtain unbiased and efficient
realized variance estimators.
The remainder of the paper is structured as follows. In Section 2, we detail the
theoretical framework for our approach and provide results regarding the statistical
properties of realized variance estimators. In Section 3, we conduct a comprehensive
simulation study that analyzes the performance of the realized variance estimator
under different sampling schemes and for different types of market microstructure
noise. We conclude in Section 4. All proofs can be found in Appendix C.

2 The Theory

In this section, we provide the theoretical framework for the time-changed diffusion
model which we assume for the logarithmic price process of financial assets. To this
end, we first introduce some basic theoretical concepts followed by the presentation
of the price model we assume in our paper as well as the alternative models that
are currently used in the realized variance literature. Before presenting theoretical
results on the properties of the realized variance estimator, we present several sam-
pling schemes available under our theoretical setting as well as some standard ways
on how we deal with the concept of market microstructure noise.

2.1 Theoretical Concepts

In this section, we introduce some notation and give a model-free definition of spot
variance, integrated variance as well as realized variance.
Throughout this paper let (Ω,Ft,P) be a filtered probability space and (Ft)t≥0 a
filtration. For t ≥ 0 let P (t) denote the right-continuous logarithmic price process
of some asset. For 0 ≤ s < t, the logarithmic return process over the interval [s, t]
is defined by

r (s, t) := P (t)− P (s) .

For simplicity, we consider just one trading day throughout this paper.4 On the
considered trading day, the interval [0, T ] represents the trading hours on that day,
e.g., from 9:30am to 4:00pm on the New York Stock Exchange (NYSE). The daily
return is given by rdaily := r (0, T ) = P (T )− P (0).
Since P (t) is a right-continuous process, there are potentially arbitrarily many re-
turns within a trading day. In order to facilitate the use of intra-daily returns, we

4Often, a multi-day framework is considered, see e.g. Barndorff-Nielsen and Shephard (2002b).
However, all concepts are easily extendable to a framework that includes multiple trading days.
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first introduce a very general grid of [0, T ]. We define the general sampling (GS)
scheme or general grid

τ := (τ0, . . . , τM)

with 0 = τ0 < τ1 < . . . < τM = T and where M ∈ N denotes the number of subin-
tervals (τj−1, τj] for j = 1, . . . ,M . Note that the grid is not necessarily equidistantly
spaced in time, i.e., the length of the sub-intervals may vary.
Throughout this paper, we refer to M as the number of sampled observations.5

Then, given M + 1 price observations on the grid τ , the corresponding intra-daily
returns over a trading day are given by

rj := r (τj−1, τj) = P (τj)− P (τj−1) , j = 1, . . . ,M. (1)

In what follows we make a clear distinction between volatility and variance: i.e., the
volatility is the square root of variance.
The spot variance of the logarithmic price process {P (t)}t≥0 is given by:

σ2
spot (t) := lim

δ↘0

E
[
(P (t+ δ)− P (t))2

∣∣Ft]
δ

, (2)

where δ > 0.
The spot variance can be thought of as instantaneous variance at time t of a price
process P (t) (e.g. Engle and Russell, 1998; Dahlhaus and Tunyavetchakit, 2016).
Since in our paper, we are interested in a measure of variance within a specific period
[0, T ], e.g., daily variance, a natural choice is the integral of spot variance within
that period, usually referred to as integrated variance in the financial econometrics
literature (see e.g. Barndorff-Nielsen and Shephard, 2002a, Andersen et al., 2006).
Thus, the integrated variance (IV) associated with the logarithmic price process
P (t) over the interval [0, T ] is given by:

IV (0, T ) :=

∫ T

0

σ2
spot (r) dr. (3)

The last variance concept introduced here is the realized variance (RV), which is
defined based on M ∈ N returns in the interval [0, T ], T ≥ 0:

RVM(0, T ) :=
M∑
j=1

r2
j , (4)

where the returns rj are as defined in (1).
As the considered interval is one trading day, realized variance is an ex-post measure-
ment of return variation over that specific trading day. In this paper, we focus on
estimating RV by assuming that the price process follows a time-changed diffusion
model, as described in the next subsection.

5Sometimes, the step size T/M is called sampling frequency (e.g. Hansen and Lunde, 2006) which
is not to be mistaken for M .
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2.2 Tick-Time Stochastic Volatility Model

In this section, we introduce the model we assume for the logarithmic price pro-
cess {P (t)}t≥0, namely the tick-time stochastic volatility (TTSV) model which is a
time-changed Brownian motion combined with a stochastic volatility process. First,
we briefly elaborate on the properties of time-changed Brownian motions and there-
after, we define the TTSV model.

To create a time-changed diffusion subordinated to a Brownian motion via an in-
trinsic time scheme, we consider a stochastic transformation of clock time. Let
{N (t)}t≥0 be a point process:

N (t) :=

{
i if t ∈ [ti, ti+1), i ≥ 0

+∞ if t ≥ t∞,
(5)

where the random arrival times ti ∈ [0,∞) satisfy t0 = 0, t∞ = limi→∞ ti = ∞
and ti < ti+1. The point process {N (t)}t≥0 is a right-continuous step function with
jumps of magnitude one at each arrival time ti, i ≥ 0. In the context of financial
markets, the arrival times can e.g. be thought of as of quote or transaction times of
a certain financial asset.
Let {B (t)}t≥0 denote a standard Brownian motion. The time-changed Brownian
motion {B (N (t))}t≥0 is a right-continuous process with left limits. Since the time
transformation t 7→ N (t) is merely right-continuous and not strictly increasing,
B (N (t)) is not a Brownian motion with respect to physical time t as continuity
of the process and independence of the increments is not fulfilled. However, we
can deduce further properties of the time-changed Brownian motion based on the
following assumption.

Assumption 1. B (t) and N (t) are independent.

Under Assumption 1, for the time-changed Brownian motion {B (N (t))}t≥0, it holds
that:

E [B (N (t))−B (N (s))] = 0,

E
[
(B (N (t))−B (N (s)))2] = E [N (t)−N (s)]

for all 0 ≤ s < t. In particular, B (N (t)) |N (t) ∼ N (0, N (t)) which is immediate
from the characteristic function, conditioning and using the independence assump-
tion. Defining the difference sequence

Ui := U (ti−1, ti) := B (N (ti))−B (N (ti−1)) ,

by definition of the arrival times ti, E [Ui] = 0 and E [U2
i ] = E [N (ti)−N (ti−1)] = 1

P-a.s. which implies that
Ui ∼ N (0, 1) .

Thus, the time-changed Brownian motion exhibits jumps which are standard
normally distributed at the random arrival times ti. The natural filtration that
B (N (ti)) and Ui are adapted to is FBN

ti
where

FBN
t := σ

(
{N (s)}0≤s≤t , {B (N (s))}0≤s≤t

)
.

5



The above definitions imply that {Ui}i≥0 is a FBN
ti

-martingale difference sequence
and that

E [Ui|Fti−] = 0 and E
[
U2
i

∣∣Fti−] = 1 (6)

for all i = 1, . . . , N (T ), where FBN
ti− is the information set including everything until

ti, but excluding ti.
In order to illustrate that {B (N (t))}t≥0 is in fact a pure jump process, we consider
the formal differential dB (N (t)). By definition of the stochastic integral, it follows
that ∫ t

s

dB (N (r)) =
∑
s<ti≤t

Ui. (7)

Assuming the counting process {N (t)}t≥0 e.g. to be a Poisson process, B (N (t))
is a compound Poisson process with i.i.d. standard normal jumps, and therefore
it belongs to the class of semi-martingales with regard to the filtration defined by
FBN

t .
To specify the logarithmic price process {P (t)}t≥0 , we assume the existence of an

underlying filtered probability space given by
(
Ω,F , (F)t≥0 ,P

)
where F0 contains

all null sets and the filtration is right-continuous.
We define the logarithmic price process {P (t)}t≥0 by

dP (t) = ς (t) dB (N (t)) , t ∈ [0, T ], (8)

where the stochastic process ς (t) is called tick volatility. We henceforth refer to
the log-price model in (8) as the tick-time stochastic volatility (TTSV) model. The
TTSV model is also considered by Dahlhaus and Tunyavetchakit (2016), however,
with the purpose of finding an improved estimate of spot volatility. In addition to
Assumption 1, we make the following three assumptions:

Assumption 2. The point process N (t) is a doubly stochastic Poisson process, i.e.
Nt is adapted to Ft and has a non-negative, Ft-measurable, continuous stochastic
intensity λ (t) satisfying for all t ≥ 0 that

∫ t
0
λsds <∞ P-a.s.6

Allowing the point process to follow a Poisson process with a random time-dependent
intensity is a natural extension to account for different intensities of market activ-
ity throughout a trading period. The definition ensures that the point process is
adapted. Furthermore, the intensity is set to be non-negative and Ft-measurable.
The boundedness of λ (t) in L1 prevents explosive behaviour in market activity, such
that e.g. the accumulated number of transactions in a finite time interval cannot di-
verge to infinity.

Assumption 3. The tick volatility ς (t) is a non-negative, continuous and Ft-
predictable process.

This implies in particular that ς (t) is Ft−-measurable. Note that by assuming
ς to be continuous adaptedness and thus predictability with regard to Ft follow
immediately.

6See Brémaud (1981) for a formal definition of doubly stochastic Poisson processes.
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Assumption 4. It holds that E
[ ∫ t

0
ς2 (r)λ (r) dr

]
<∞ for all 0 ≤ t ≤ T.

The latter integrability condition ensures the quadratic variation to be P-a.s. finite
and allows for the stochastic integral with respect to the time-changed Brownian
motion to exist.

Assumption 5. It holds that ∀t ≥ 0,∃ε > 0 : E
[

supδ∈[0,ε]

∫ t+δ
t

ς2 (r)λ (r) dr|Ft
]
<

∞ for all P-a.s.

This uniform integrability assumption guarantees that the spot variance converges to
the product of intensity and squared tick volatility at time t such that the instanta-
neous volatility cannot explode. The filtration that naturally fulfills the assumptions
above is given by

Ft := σ
(
{N (s)}0≤s≤t , {λ (s)}0≤s≤t , {ς (s)}0≤s≤t , {B (N (s))}0≤s≤t

)
. (9)

Note that we do not use the entire path of B (·), but only B (i) for i ∈ N0. In
summary, the logarithmic price in the TTSV model is a càdlàg process with jumps
at the random arrival times ti, i ≥ 0 of the point process N (t) and of random size
ς (ti)Ui. Since the distribution of the tick volatility ς (t) remains unspecified, the
distribution of the return process is unknown. As we have seen that B (N (t)) is a
semi-martingale, by Assumption 4,

∫ t
0
ς (r) dB (N (r)) is also a semi-martingale or

a local martingale only?, i.e., the log-price process P (t) in Equation (8) belongs to
the class of semi-martingales.
Then, the TTSV process has the following representation:

P (t) = P (s) +
∑
s<ti≤t

ς (ti)Ui, (10)

i.e. it is a purely discontinuous semi-martingale. Figure 1 plots the log-prices of
IBM traded on the NYSE on the 2nd of July, 2015 between 10:00am and 10:10am.
The figure shows that the observed price is composed of jumps of random sizes at
each transaction time and no price changes in between. This graph supports the
TTSV model assumption we impose for the logarithmic prices in Equation (8).

10:00 10:02 10:04 10:06 10:08 10:10

5.092

5.093

5.094

5.095

5.096

Figure 1: IBM transaction log-price data on the 2nd of July, 2015 between 10:00am and 10:10am.

The price process defined in Equation (8) has finite variation, i.e., it has almost surely
bounded variation over every finite interval. Moreover, if {ς (t)}t≥0 and {λ (t)}t≥0

are continuous processes, it holds that

σ2
spot (t) = ς2 (t)λ (t) , (11)
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where
{
σ2
spot (t)

}
t≥0

is the spot variance process related to P (t).7 The variance

decomposition from Equation (11) allows us to specify the integrated variance of
the log-price following a TTSV model:

IV(0, T ) =

∫ T

0

σ2
spot (r) dr =

∫ T

0

ς2 (r)λ (r) dr. (12)

Unfortunately, we are unable to specify a characteristic function for the TTSV
model, even if we condition on the latent processes λ (t) and ς (t). Here, even if ς (t)
is assumed to be known, the arrival times ti remain unknown, which is why ς (ti) for
some ti < t is not F ςt -measurable where F ςt = σ({ς(s)}0≤s≤t). This difficulty can
largely be overcome by exploiting the martingale property of the process M (t) =
N (t)−

∫ t
0
λ (r) dr.8

For the theoretical results presented in Section 2.5, we define the information set
generated by the latent processes, i.e., the intensity process {λ (s)}0≤s≤t and the tick
volatility process {ς (s)}0≤s≤t as follows:

Fλ,ςt := σ
(
{λ (s)}0≤s≤t , {ς (s)}0≤s≤t

)
⊂ Ft. (13)

The variance decomposition in Equation (11) does not require a specification of the
dependence structure of the tick-volatility ς (t) and the processes N (t) and B (t).9

However, when conditioning on the latent processes, the following assumption is
necessary.

Assumption 6. The process ς (t) is independent of N (t) and B (t).

Representation (10) and Assumptions 1-6 imply that for the daily return,

E
[
r2

daily

∣∣∣Fλ,ςT

]
= E

( ∑
0<ti≤T

ς (ti)Ui

)2
∣∣∣∣∣∣Fλ,ςT

 = E
[∫ T

0

ς2 (r)λ (r) dr

∣∣∣∣Fλ,ςT

]
= IV (0, T ) .

by 2.1. Hence, under the TTSV model, the variance of the conditional daily return
equals the integrated variance.10

2.3 Alternative Models

In this section, we briefly describe two alternative models for the logarithmic price
process, which are currently used in the realized variance literature: the standard
diffusion model and the compound Poisson model.

7See Dahlhaus and Tunyavetchakit (2016) for a formal proof.
8See Appendix A for details.
9In fact, the tower property and the fact that ς (t) is Ft-predictable suffice to proof the vari-

ance decomposition. However, when we condition on Fλ,ςt , the tower property cannot be applied
anymore.

10In the realized variance literature, it is common to condition on the latent variable, see e.g.
Barndorff-Nielsen and Shephard (2002a); Oomen (2006); Andersen, Davis, Kreiß and Mikosch
(2006); Hansen and Lunde (2006) among many others.
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2.3.1 Standard Diffusion Model

It is commonly assumed that the logarithmic price P (t) follows a continuous time
diffusion model (e.g. Barndorff-Nielsen and Shephard, 2002a), i.e., P (t) solves the
stochastic differential equation:

dP (t) = µ (t) dt+ σ (t) dB (t) , t ∈ [0, T ], (14)

where {B (t)}t≥0 is the standard Brownian motion, µ (t) is called drift term, σ (t)
denotes the instantaneous volatility and σ (t) and B (t) are independent. It is further
assumed that µ (t) and σ (t) are Ft-predictable processes, µ (t) is of finite variation
and σ (t) satisfies E

[ ∫ t
0
σ2 (r) dr

]
<∞. For simplicity, we impose µ (t) = 0, which is

often done in the literature since its effect on the realized variance is of third order
(Barndorff-Nielsen and Shephard, 2002a). In the diffusion setting, it holds that

σ2
spot (t) = σ2 (t) ,

which implies that the integrated variance over a trading day is given by

IV (0, T ) =

∫ T

0

σ2 (r) dr.

Let now Fσt = σ ({σ (s) : 0 ≤ s ≤ t}) denote the information set containing the
sample path of the instantaneous volatility. It is readily established that:

rdaily |Fσt ∼ N (0, IV (0, T ))

and thus, in the diffusion model, the conditional daily return variance corresponds
to the integrated variance.11

A convenient feature of the standard diffusion framework is that the quadratic varia-
tion and the integrated variance of the price process P (t) coincide. As realized vari-
ance converges to quadratic variation in probability (see e.g. Protter, 1990, Chap-
ter II), it is a consistent estimator of integrated variance. Barndorff-Nielsen and
Shephard (2002a) and Bandi and Russell (2008) show that, asymptotically, realized
variance is normally distributed, which allows for statistical inference.12

2.3.2 Compound Poisson Process (CPP)

Alternatives to the diffusion-based price modeling are jump processes. See e.g. Cont
and Tankov (2004) for an overview of mixed diffusion and jump processes as well as
pure jump and subordinated processes. Press (1967, 1968) uses a compound Poisson
process mixed with a Wiener process to study security price fluctuations. Oomen
(2004, 2005, 2006) applies a compound Poisson process to model the logarithmic
price of an asset in the realized variance context, i.e., he assumes that:

P (t) = P (0) +

N(t)∑
i=1

εi, (15)

11For a formal proof and an extension to a multivariate framework, see Andersen, Bollerslev,
Diebold and Labys (2003).

12Among others, Barndorff-Nielsen and Shephard (2005) study the finite sample behaviour of the
asymptotic normality and find that it is poorly sized. Therefore, they find that the performance
can be improved drastically by a log-transformation.
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where εi ∼ i.i.d. N (0, σ2
ε) and N (t) is a doubly stochastic Poisson process with

instantaneous stochastic intensity λ (t), independent of the innovation process εi.
Clearly, the logarithmic price process is modelled by a right-continuous jump process
with sample paths of finite variation and therefore, it is a semi-martingale. Here,
the spot variance is specified by

σ2
spot (t) = σ2

ελ (t) , (16)

where
{
σ2
spot (t)

}
t≥0

is the spot variance process related to P (t) in Equation (15).

It follows that the integrated variance for the CPP log-price process is given by:

IV(0, T ) =

∫ T

0

σ2
spot (r) dr = σ2

ε

∫ T

0

λ (r) dr. (17)

In a pure jump setting with a non-explosive point process, the quadratic varia-
tion differs from the integrated variance. Moreover, it becomes clear that realized
variance is an inconsistent estimator of integrated variance, since increasing the
sampling frequency beyond a certain point does not generate any additional infor-
mation. However, Oomen (2006) shows that, conditionally on the intensity process,
RV under the CPP is still an unbiased estimator of integrated variance. By means
of the conditional characteristic function of the log-price increments, it can be easily
shown that

E
[
r2

daily

∣∣FλT ] = σ2
ε

∫ T

0

λ (r) dr = IV (0, T ) , (18)

where Fλt denotes the information set that contains the sample path of the latent
process until point t, which is the intensity λ (t) in the CPP model. Hence, as in the
continuous diffusion model and the TTSV model, the conditional variance of daily
returns coincides with integrated variance.

2.4 Sampling Schemes

In practice, prices are recorded whenever an event such as a transaction or a quote
takes place. Hence, the price process is observed at discrete points in time, which
are not necessarily equidistantly spaced. In order to obtain clock-time prices, the
observed price process has to be transformed. Possible transformation procedures
are the linear interpolation method, e.g. used in Andersen and Bollerslev (1997),
and the previous tick sampling method proposed by Wasserfallen and Zimmermann
(1985). It has been shown that for a fixed interval, realized variance converges to
zero in probability under the linear interpolation method (Hansen and Lunde, 2006).
The practical implication of this result is that using high-frequency data, increasing
the sampling frequency leads to a downward drift in RV, as e.g. observed by Hansen
and Lunde (2004). We therefore use the previous tick method for the construction
of the clock-time price process.
Let {ti}i=1...,N(T ) again denote the tick times in the interval [0, T ]. Then, according
to the TTSV model, the price at time t ∈ [ti, ti+1) is given by

P (t) = P (ti) .

10



For a sampling interval of e.g. one second, the latest tick price that occurred before
the particular second defines its price. In particular, if T is the number of seconds
within one trading day, the price process per second is obtained by

P (j) = P (t̄l) where t̄ = sup {ti : ti < j} .

for j = 1, . . . , T and i = 1, . . . , N (T ).
On the interval [0, T ], let again τ = (τ0, . . . , τM) be the general sampling (GS) grid.
As shown by Oomen (2005), the type of sampling scheme can have a large impact
on the quality of the realized variance estimator. Therefore, here we follow his lead
and use several specific sampling schemes:

(a) Clock-time sampling (CTS), for which the sampling intervals are equidistant in
calendar time, i.e., τCTS

j −τCTS
j−1 is constant for all j = 1, . . . ,M. The logarithmic

price process is sampled at the times

τCTS

j = j∆CTS, j = 1, . . . ,M,

where ∆CTS := T/M is assumed to be integer-valued.

Its simple implementation and intuition make it the most widespread sampling
scheme in the empirical finance literature so far. However, as it relies on an
artificial clock-time price process, it neglects information on intraday trading
as well as volatility patterns. Nevertheless, due to its wide application, we use
it as a benchmark sampling scheme.

(b) Business time sampling (BTS), where the points at time τBTS
j are chosen such

that the integrated variance is equal across all M subintervals, i.e., τBTS
j such

that

IV
(
τBTS

j−1 , τ
BTS

j

)
=

1

M
IV (0, T ) .

This means that the sampling intervals are ”equidistant” in terms of integrated
variance. Note that this definition of the sample grid is infeasible in practice
since the integrated variance is unobservable. However, it is commonly ap-
proximated by the sum of all available intra-daily squared returns, i.e., for
j = 1, . . . ,M, the τBTS

j are chosen such that

RVall

(
τBTS

j−1 , τ
BTS

j

)
≈ 1

M
RVall (0, T ) := ∆BTS,

where RVall denotes the realized variance using all available intra-daily returns
in the respective interval. We set τBTS

0 = 0 and

τBTS

j = sup
{
ti ∈

(
τBTS

j−1 , T
]

: RVall(0, ti) ≤ j∆BTS

}
, j = 1, . . . ,M,

where ti are again the tick-times.

(c) Transaction time sampling (TTS), for which the data is sampled ”equidis-
tantly” in terms of number of transactions. Let N (T ) ∈ N denote the cu-
mulated number of transactions in the interval [0, T ]. Then, under TTS, the
sampled points in time τTTS

j for j = 0, . . . ,M are chosen such that

N
(
τTTS

j

)
−N

(
τTTS

j−1

)
=
N (T )

M
=: ∆t

11



which for simplicity is assumed to be integer-valued. In terms of the transac-
tion times ti, i = 0, . . . , N (T ), we have that

τTTS

j = tj∆TTS
, j = 1, . . . ,M.

This sampling scheme is a natural one when the price process is observed at
each transaction and, differently from CTS, it takes the information about the
intraday trading activity into account.13

(d) Tick-time sampling (TiTS), for which the number of intervals is set to the
number of ticks, i.e., M = N (T ). Since ti denotes the time at which tick i
occurs, one gets that

τTiTS

j = tj, j = 1, . . . , N (T )

and, therefore, TiTS is a special case of TTS.

There exist numerous other sampling schemes that can be applied in a similar way.
For instance, Engle and Russell (1998) introduce a sampling based on the absolute
price change, Clark (1973) introduces sampling based on trading volume and Wu
(2012) based on the average number of transactions over past days.
Figure 2 shows a snippet of the grid of TTS, BTS, and CTS. The graph shows a sim-
ulated log-price process plotted against the number of transactions. The underlying
transaction-time process is taken from the IBM stock on the 2nd of July, 2015 during
the trading hours from 9:30am to 4:00pm. The plot depicts roughly the first half of
the trading day, since on that day, we have N (T ) = 3872 transactions. Naturally,
the TTS sampled points are equidistant in terms of the number of transactions. For
CTS, the sampled points are more widespread at the beginning and more frequent
for the second half of the plot. Since the trading activity is typically high at the
beginning of a trading day (see Figure 3), this implies that CTS misses important
intra-day trading activity. Similarly, BTS samples less often at the beginning and
more often towards the end of the snippet. Since the scale is equidistant in the num-
ber of transactions, it is, loosely speaking, equidistant in trading intensity. Hence,
changes in spot volatility explain the frequency of sampled points for BTS, which
implies that in this snippet, the spot volatility is lower for the first 1000 transactions
than afterwards.
Figure 4 shows the monthly average sampling frequency per minute for the EUR
USD exchange rate (upper panel) and IBM stock price (lower panel). In the case
of the EUR USD foreign exchange rate, trading takes place 24 hours on different
markets around the world. We observe that at the beginning of the trading day,
TTS and BTS sample less often than CTS while when the European and American
markets are open, TTS and BTS sample more often than CTS. Contrary, IBM is
traded on the NYSE which is only open from 9:30am to 04:00pm (GMT−5). In the
beginning of the trading day, BTS peaks and samples by far more than TTS and
CTS while at the end of the trading day, TTS shows a similar peak.
From Equation (11) we know that in the TTSV framework, the spot variance splits
up into the product of innovation variance ς2 (t) and the intensity λ(t) of the point

13Instead of transactions, one can also use quotes.
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Figure 2: Sampling grid comparison. We plot a snippet of the TTS, BTS, and CTS grid for a simulated
log-price process with transaction times taken from the IBM stock on the 2nd of July, 2015 during the
trading hours from 9:30am to 4:00pm. The data was simulated according to Simulation 1 (see Tables 1
and 2).
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Figure 3: Number of transactions as a function of time for IBM. The data is taken from the IBM stock
on the 2nd of July, 2015 during the trading hours from 9:30am to 4:00pm. The shaded and non-shaded
regions correspond to 500 transactions.

process. Since BTS samples based on σ2
spot(t) = ς2 (t)λ(t) and TTS based on the

frequency λ(t), Figure 4 indicates that a constant variance σ2
ε as in the CCP frame-

work is not a reasonable assumption for the IBM stock. In fact, the variance of
the return innovations seems to be time-varying, explaining the differences between
BTS and TTS. For the EUR USD exchange rate on the other hand, a constant
innovation variance seems plausible since TTS and BTS appear to sample similarly.
Oomen (2005) shows that in the CPP setting and in the absence of market mi-
crostructure noise, the MSE is smaller for TTS and BTS than for CTS. Moreover,
he finds that the efficiency gaps are positively related to the innovation variance
σ2
ε and the trading intensity. More precisely, the larger the trading intensity or the

innovation variance, the larger is the efficiency gain. In the next two sections, we
undergo a similar analysis on the properties of the RV estimator under the three
sampling schemes and the TTSV assumption.
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Figure 4: Monthly average sampling frequency per minute.. The underlying data are prices from the EUR
USD exchange rate in June, 2016 (upper panel) and the IBM stock in January, 2015 (lower panel) during
the respective trading hours (24 hours for EUR USD and 9:30am to 4:00pm for IBM).

2.5 Theoretical Results

I this section, we derive statistical properties of RV under the TTSV framework
specified in Equation (8).

Proposition 2.1. Assume that Assumptions 1-6 hold true. Then,

E
[
RVM(0, T )− IV (0, T )

∣∣∣Fλ,ςT

]
= 0,

i.e., RV conditional on the latent processes is an unbiased estimator of integrated
variance.

Similar to Oomen (2006), we derive below the MSE of RV as a function of integrated
variance and integrated quarticity. For simplicity, we make a slight abuse of notation
and define λ (s, t) :=

∫ t
s
λ (r) dr for 0 ≤ s < t. Moreover, regarding higher moments

we make the following two assumptions:

Assumption 7. The 4-th moment of the tick volatility ς (t) exists, i.e., for all
0 ≤ t ≤ T , E [ς4 (t)] <∞.

Assumption 8. It holds that E
[ ∫ t

0
ς4 (r)λ (r) dr

]
<∞ for all 0 ≤ t ≤ T.

Proposition 2.2. Let Assumptions 1-8 hold true. Then,

MSEM (GS) = E
[
(RVM(0, T )− IV(0, T ))2

∣∣∣Fλ,ςT

]
= 2

M∑
j=1

IV (τj−1, τj)
2 + 3 IQ (0, T ) ,

where IQ (s, t) :=
∫ t
s
ς4 (r)λ (r) dr defines the integrated quarticity.
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From Proposition 2.2, we obtain a first intuition on what drives the magnitude of the
MSE. In particular, we see that the MSE is bounded from below by the constant
factor 3 IQ (0, T ). Moreover, for different sampling schemes, the first and second
summand of the MSE may vary, i.e., the MSE across sampling schemes differs.
The results of this section reveal many of the similarities between the TTSV model
and the CPP log-price model. Both log-price processes are càdlàg, have finite vari-
ation and stochastic jumps at each tick. Additionally, in both models, realized vari-
ance can be seen as a inconsistent estimate of integrated variance since the number
of ticks within a finite interval is bounded by construction. The main difference is
that under the TTSV model, the tick volatility ς (t) is stochastic and time-varying
whereas it is constant under the CPP log-price model. In fact, the CPP model
is a special case of TTSV model. Therefore, under the CPP model, the result of
Proposition 2.2 is in fact the same.14

Similarly to Oomen (2005) we start by investigating the MSE for specific sampling
schemes. To be more precise, we compare the MSE of TTS, BTS, and CTS theo-
retically and empirically for both real and simulated data.
The expression given in Proposition 2.2 can be further simplified under the BTS
scheme. Following the definition of BTS, IV

(
τBTS
j−1 , τ

BTS
j

)
= IV(0,T )/M and therefore

MSEM (BTS) =
2

M
IV (0, T )2 + 3 IQ (0, T ) .

By the Cauchy-Schwarz inequality, it follows that

MSEM (GS)−MSEM (BTS) = 2
M∑
j=1

IV (τj−1, τj)
2 − 2

M
IV (0, T )2 ≥ 0,

implying that the MSE for BTS is lower than for any other sampling scheme. For
M →∞, the MSE under BTS is bounded from below by 3 IQ (0, T ). Note that after
M has been increased to a certain point, BTS will coincide with TiTS. Therefore,
for M →∞, we have MSEM (BTS)→ MSE (TiTS). However, due to the latency of
integrated variance and due to the discrete nature of the tick-times, RV under BTS
contains some approximation error. Therefore, the MSE for the specific sampling
schemes implemented here, including the BTS for which the IV measure is estimated,
is investigated empirically in Section 3.
Naturally, for TTS, the sampling frequency M cannot be increased beyond the total
number of ticks N (T ) and thus

MSEM (TTS) = 3 IQ (0, T ) + 2
M∑
j=1

IV
(
t(j−1)∆t , tj∆t

)2

≥ 3 IQ (0, T ) + 2

N(T )∑
i=1

IV (ti−1, ti)
2

= MSE (TiTS)

14However, note that under the CPP model, IV (s, t) := σ2
ε

∫ t
s
λ (r) dr and IQ (s, t) :=

σ4
ε

∫ t
s
λ (r) dr.
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with equality for M = N (T ) and where ti denote the tick-times with t0 = 0 by con-
vention. From a theoretical perspective and in the absence of market microstructure
noise, the optimal sampling frequency under TTS is M = N (T ).
The comparison of the MSE under TTS and BTS is different from that by Oomen
(2004, 2006) due to the time varying tick volatility ς (t). In his setting, BTS is based
on the expected number of ticks while TTS is based on the realized number of ticks.
This is not the case for the TTSV model, where BTS also accounts for intra-daily
fluctuations of the tick volatility.

2.6 Market Microstructure

So far we have ignored possible measurement errors that occur when observing the
price process. In practice however, we have to account for market microstructure
noise (MMN). MMN may arise for several reasons such as price discreteness (Harris,
1990, 1991), bid-ask bounces, or infrequent trading (e.g. Madhavan, 2000), among
others.
A popular way of visualizing the bias resulting from MMN is by means of volatility
signature plots (Andersen et al., 2000b). Let RVi

M (0, T ) be the RV estimate on the
i-th trading day using M observations. The volatility signature plot displays the
sample average of the RVi

M estimates over a sample of n ∈ N trading days as a
function of the sampled number of observations M , i.e.,

RV (M) =
1

n

n∑
i=1

RVi
M (0, T ) .

Figure 5 depicts the volatility signature plot and the variation of RVi
M using IBM

transaction data during the daily trading hours from 9:30am to 4:00pm from 2015
until 2017 under the three different sampling schemes. Without noise, we expect
the RV estimate to stabilize as the number of observations M increases. However,
we observe a rather sharp increase under CTS for M > 250 which approximately
corresponds to a clock-time sampling frequency of 90 seconds. The average RV
estimate under TTS and BTS increases only slightly, indicating that the two sam-
pling schemes are much less sensitive to market microstructure noise. Regarding the
sample variance of RV, under TTS and BTS, the variance appears to be the lowest
for low sampling frequencies and the highest for a frequency of M ≈ 120 observa-
tions. Under CTS, the variance increases with an increasing number of observations
M . Ideally, we want to find the number of sampled observations such that the RV
estimate remains stable and such that the variance of the RV estimate is the lowest.
In the following, we theoretically investigate the bias under market microstructure
noise assuming that the TTSV model is the underlying data generating process. We
now suppose that we observe the logarithmic price process P̃ (t) which follows the
decomposition

P̃ (t) = P (t) + vi for t ∈ [ti, ti+1)

where P (t) follows the TTSV model in (8), vi is a noise component yet to be
specified and ti denotes the time of the i-th tick. This implies a moving average
(MA) structure for the error term of the log-return process, i.e.,
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Figure 5: Volatility signature plot and variance of RV for IBM. We plot the mean RV and the variance of
RV as a function of the sampling frequency M using IBM transaction time data from 2015 to 2017. The
number of observations M is plotted on a log-scale.

r̃i := P̃ (ti)− P̃ (ti−1) = ri + vi − vi−1 = ri + ui,

where ui = vi− vi−1. Henceforth, with vi and ui we associate the log-price noise and
log-return noise corresponding to the i-th tick-time ti.
For illustration purposes, lets consider a grid τ other than the TTS grid: e.g.,
τ be the clock-time grid where τj now corresponds to the j-th minute within a
trading day. Using this grid, 390 log-returns are sampled and used to compute the
realized variance. If there were, say m− n ∈ N trades in the interval (τj−1, τj] with
corresponding tick-times tn+1, . . . , tm, the noisy log-price process is given by

P̃ (τj) = P̃ (tm) = P (tm) + vm = P (τj) + vm

and for the log-return process we have that

r̃j = P̃ (τj)− P̃ (τj−1) = P̃ (tm)− P̃ (tn)

= P (tm)− P (tn) + vm − vn = P (τj)− P (τj−1) + vm − vn
= rj + vm − vn. (19)

Hence, the bias of the realized variance will depend on the covariance structure of
the noise process. Generally speaking, if there is just one trade within a minute, the
covariance term of the noise is larger in absolute terms than if there were 100 trades
within that minute.
We now move from this simple example to a more formal approach. For the general
sampling grid τ = (τ0, . . . , τT ), the structure of the noise depends on how many
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trades happen within each interval. Let N (τj) now denote the number of trades
that occur until τj. Then, the noisy log-price process is given by

P̃ (τj) = P̃
(
tN(τj)

)
= P

(
tN(τj)

)
+ vN(τj)

and the corresponding noisy log-return by

r̃j = P̃ (τj)− P̃ (τj−1)

= P̃
(
tN(τj)

)
− P̃

(
tN(τj−1)

)
= P

(
tN(τj)

)
− P

(
tN(τj−1)

)
+ vN(τj) − vN(τj−1)

= P (τj)− P (τj−1) + vN(τj) − vN(τj−1)

= rj + vN(τj) − vN(τj−1).

If no trade has occured in the interval (τj−1, τj], then P̃ (τj) = P̃ (τj−1) and therefore
vN(τj) = vN(τj−1). It follows that

R̃VM(0, T ) =
M∑
j=1

r̃2
j =

M∑
j=1

(
rj + vN(τj) − vN(τj−1)

)2

= RVM(0, T ) + 2
M∑
j=1

rj
(
vN(τj) − vN(τj−1)

)
+

M∑
j=1

(
vN(τj) − vN(τj−1)

)2
.

From this expression it is clear that even in the simplest case when vi is a white noise
process, the realized variance is now a biased estimator of IV. If instead we were in
a diffusive price setting, the third summand would actually diverge. More precisely,
Bandi and Russell (2008) show that the RV estimate under additive log-price market
microstructure noise diverges P-a.s. as the sampling frequency M goes to infinity. A
distinct difference in the TTSV setting is that when increasing M , the accumulation
of noise is bounded since the overall number of ticks N (T ) is bounded.

Assumption 9. For the noise process {vj}j∈N we make the following assumptions:

(N-1) E [vj] = 0 for all j ∈ N.
(N-2) cov (vj, vj+l) = γv (l) <∞ for all j, l ∈ N.
(N-3) vj and P (t) and N (t) are independent for all j ∈ N and t ≥ 0.

Properties (N-1) and (N-2) of Assumption 9 imply that vj is a covariance stationary
process. Examples of covariance stationary processes are white noise processes, i.e.,
independent noise with γv (j) = 0 for all j 6= 0, and autoregressive moving average
processes with suitable parameter restrictions.

Lemma 2.3. Assume that P (t) satisfies Assumptions 1-8 and that the noise process
{vj}j∈N satisfies Assumption 9. Then,

E
[
R̃VM(0, T )− IV (0, T )

∣∣∣Fλ,ςT

]
= 2Mγv (0)− 2

M∑
j=1

E
[
vN(τj)vN(τj−1)

∣∣∣Fλ,ςT

]
,

i.e., realized variance is a biased estimator of IV.
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While the first bias term 2Mγv (0) is the same regardless of the sampling scheme,
the second may vary drastically. For TTS, N (τj)−N (τj−1) = j∆t− (j−1)∆t = ∆t

is constant and therefore the second bias term simplifies to a particular covariance
function of vi, i.e., −2ME[v∆tv0|Fλ,ςT ] which cannot be further specified since N (T )
and thus also ∆t remain random. For other sampling schemes, the bias term may
include covariance terms of vi of high and low lag order. In a sense, this can be seen
as a disadvantage of TTS, because e.g. for a decreasing autocovariance function,
covariance terms of low order are larger and, thus, can offset the common bias term
2Mγv (0).

Lemma 2.4. Assume that P (t) satisfies Assumptions 1-8 and that the noise process
{vj}j∈N satisfies Assumption 9. Then, under GS:

M̃SEM (GS) = E
[(

R̃VM(0, T )− IV (0, T )
)2
∣∣∣∣Fλ,ςT

]

= MSEM (GS) + E

( M∑
j=1

(
vN(τj) − vN(τj−1)

)2

)2
∣∣∣∣∣∣Fλ,ςT


+ 8

(
IV (0, T ) γv (0)−

M∑
j=1

E
[
r2
j

∣∣∣Fλ,ςT

]
E
[
vN(τj)vN(τj−1)

∣∣∣Fλ,ςT

])
,

where MSEM (GS) is given by Proposition 2.2.

Lemma 2.4 implies that the MSE under noise increases for every sampling scheme.
If vN(τj) and vN(τj−1) are independent, then BTS remains the sampling scheme with
the lowest MSE. Generally, we cannot rank the considered sampling schemes due to
the unkown error terms. We empirically investigate the bias and its corresponding
MSE under noise and for several sampling schemes in Section 3. In the following two
sections, we investigate the properties of two RV estimators that are biased-corrected
based on information on the autocorrelation (AC) of the noise.

2.6.1 AC (1) Bias-Correction

We next consider a bias-corrected realized variance estimator as introduced by Zhou
(1996), i.e.,

R̃V
AC(1)

M (0, T ) =
M∑
j=1

r̃2
j +

M∑
j=1

r̃j r̃j−1 +
M∑
j=1

r̃j r̃j+1. (20)

Note that the bias-corrected version involves two returns that do not lie within the
interval [0, T ]. Empirically, this problem can be circumvented by instead considering
the estimator

∑M
j=1 r̃

2
j +
∑M

j=2 r̃j r̃j−1 +
∑M−1

j=1 r̃j r̃j+1 (Hansen and Lunde, 2006) since
the additional bias decreases as the sampling frequency increases. For the following
results, we stick to the version in (20) for simplicity. The idea of the bias-correction
is to offset the constant bias term 2Mγv (0) and add covariance terms of lag order
greater than zero, which are potentially of smaller magnitude.
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Lemma 2.5. Assume that P (t) satisfies Assumptions 1-6 and that the noise process
{vj}j∈N satisfies Assumption 9. Then,

E
[
R̃V

AC(1)

M (0, T )− IV (0, T )
∣∣∣Fλ,ςT

]
=

M∑
j=1

E
[
−vN(τj)vN(τj−2) + vN(τj−1)vN(τj−2)

+ vN(τj)vN(τj+1) − vN(τj−1)vN(τj+1)

∣∣∣Fλ,ςT

]
,

where τ−1 is the last sampling point of the previous day and τM+1 is the first sampling
point of the following day.15

Again, we may simplify the bias of the bias-corrected realized variance estimator
under TTS to

biasM (TTS) = 2ME
[
v∆tv0 − v2∆tv0

∣∣∣Fλ,ςT

]
.

It is easy to see that its magnitude depends on the number of sampled points M
as well as on the dependence structure of vi. If, e.g., vi has an MA structure, the
autocovariance function decreases with increasing lag size. This implies that the
bias under TTS is positive and that if M is increased, the effect of the noise and,
thus, the bias is increased as well.
Figure 6 depicts the volatility signature plot of the same IBM transaction data as
above using the RV with the AC (1) bias-correction. We observe that the increase of
the average RV estimate under CTS is not as sharp as without bias-correction. Still,
for all sampling schemes, the mean RV increased with increased sampling frequency.

Example 2.6. We impose that vj is a white noise process, i.e., additionally to
Assumption 9, we assume γv (l) = 0 for all l ≥ 1. In fact, in this case the noise of
the log-return process r̃j is a MA(1) process

uj = vj + θ1vj−1, j ∈ N

with θ1 = −1. Given that in each sampling interval (τj, τj+1] there exists at least one

tick, R̃V
AC(1)

M (0, T ) is an unbiased estimator of integrated variance for every sampling
scheme. The necessary condition is always fulfilled under TTS since naturally, one
chooses M ≤ N (T ) .

Empirically, it has been observed that the noise process possesses negative first-order
autocorrelation. For instance, Bandi and Russell (2008) investigate IBM quotes
and find significant negative first order autocorrelation. Bandi and Russell (2006)
examine S&P500 stocks and find highly significant first order serial correlation and
some significant serial correlation up to lag four. We therefore consider a MA(1)
noise process in our next example.

Example 2.7. We assume vj follows a MA(1) process, i.e.,

vj = νj + θ1νj−1 j ∈ N
15Note that we do not rely on data outside the interval [0, T ] since P (τ−1) = P (0) and

P (τM+1) = P (T ).
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Figure 6: Volatility signature plot and variance of RV for IBM using bias correction. We plot the mean RV
and variance of RV as a function of the number of observations M using IBM transaction time data from
2015 to 2017. The RV is AC(1) bias-corrected. The number of observations M is plotted on a log-scale.

where νj is a white noise process with variance σ2
ν . Clearly, Assumption 9 is satisfied

and

γv (l) =


(1 + θ2

1)σ2
ν if l = 0,

θ1σ
2
ν if l = 1,

0 if l > 1.

For the AC (1) bias-corrected RV estimate under TTS, this implies that

biasM (TTS) = 0

as long as ∆t = N(T )/M ≥ 2. Hence, the number of sampled points M should not
exceed 1/2 of the total number of trades during a day. Figure 7 shows the bias and
MSE for the AC(1)-corrected RV estimate for TTS, BTS, and CTS. The number of
observations M is plotted on a log scale. The data is simulated using the procedure
described in Section 3.1 using the parameters from Table 1. The transaction times
are taken from the IBM stock on the 1st of May, 2015 during the trading hours from
9:30am to 4:00pm. On that day, the number of transactions amount to N (T ) =
2093. Hence, for sampling frequencies M > b2093/2c = 1046, the bias under TTS is
different from zero and negative. In Figure 7, the last seven points represent the
sampling frequenciesM = {1000, 1138, 1309, 1500, 1731, 1991, 2093}. The downward
slope of the bias and upward slope of the MSE start after M = 1000, which is
expected.
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The auto-covariance function of vi also implies that TiTS induces a bias since
M = N (T ) . Unfortunately, for the other sampling schemes, we cannot make sim-
ilar statements. If, e.g., the price process is sampled in clock-time and there is an
interval (τj, τj+1] in which only one trade happens, then,

E
[
vN(τj)vN(τj+1)

∣∣∣Fλ,ςT

]
> 0

and the AC (1)-corrected RV estimate remains biased.
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Figure 7: Example of Bias and MSE under MA(1) noise. We plot the bias and MSE of the AC(1)-
corrected RV estimate for different sampling schemes under market microstructure noise. The noise follows
an MA(1) process vi = νi + θ1νi−1 with θ1 = −0.9 and νi ∼ i.i.d. N

(
0, σ2

ν

)
with σ2

ν = 1e−6. The number
of observations M is plotted on a log scale. The data was simulated with the parameters in Table 1. The
transaction times were taken from the IBM stock on the 1st of May, 2015 during the trading hours from
9:30am to 4:00pm. The number of transactions on that day amounts to N (T ) = 2093.

2.6.2 AC (p) Bias-Correction

Hansen and Lunde (2006) examine signature plots for Alcoa (AA) and Microsoft
(MSFT) stock data from the years 2000 and 2004 using both CTS and TTS. They
find that the AC (1)-corrected RV estimator in (20) is still significantly biased under
CTS when the sampling frequency is large.16 This is due to the fact that the
same price is sampled multiple times which introduces artificial autocorrelation.
Moreover, the same phenomenon is observed for TTS for step sizes ∆t smaller than
4 ticks for AA and smaller than 14 ticks for MSFT with some variation across the
considered years. This indicates that the market microstructure noise has significant
autocorrelation beyond the first lag. We therefore generalize the bias-corrected RV
estimator in what follows.
Inspired by Newey and West (1987), Zhou (1996) introduces a bias-corrected realized
variance estimator based on the first p autocovariance terms of the form

R̃V
AC(p)

M (0, T ) =
M∑
j=1

r̃2
j +

p∑
k=1

M∑
j=k

r̃j r̃j−k +

p∑
k=1

M∑
j=1

r̃j r̃j+k. (21)

This bias-corrected version is also investigated by Oomen (2005) under CPP and by
Hansen and Lunde (2006) in a diffusion setting.

16Hansen and Lunde (2006) use confidence bounds constructed from the average of RV estimates
based on transaction prices, bid prices, and ask prices.
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As outlined above, we additionally include noise with higher order serial correlation.
Therefore, we now consider noise that follows an MA(q) process, i.e.,

vi = νi + θ1νi−1 + . . .+ θqνi−q, (22)

where νi is a white noise process with variance σ2
ν := E [ν2

i ] <∞.

Lemma 2.8. Assume that Assumptions 1-8 hold true and that {vj}j∈N is an MA(q)
process as specified in (22). Then, for the AC (p)-corrected RV from Equation (21)
it holds that

E
[
R̃V

AC(p)

M (0, T )− IV (0, T )
∣∣∣Fλ,ςT

]
=

M∑
j=1

E
[
vN(τj−1)vN(τj−1−p) + vN(τj)vN(τj+p)

+vN(τj)vN(τj−1−p) + vN(τj−1)vN(τj+p)

∣∣∣Fλ,ςT

]
.

The bias expression in Lemma 2.8 involves sampled points that potentially lie outside
the interval [0, T ], e.g., τ−p < τ0 = 0 or τM+p > τM = T. Since the total number
of ticks on a trading day N (T ) varies across days, the TTS step size ∆t = N(T )/M
varies as well. Therefore, when considering TTS, the simplification used above is no
longer valid in general, namely,

E
[
vN(τj)vN(τj−1)

∣∣∣Fλ,ςT

]
6= E

[
v∆tv0

∣∣∣Fλ,ςT

]
.

However, we can choose a sampling strategy where we keep the step size ∆t fixed
across trading days by adjusting the sampling frequency M . Alternatively, we may
adjust the bias-corrected estimator such that no returns outside the interval [0, T ]
are taken, i.e.,

R̃V
AC(p)

M (0, T ) =
M∑
j=1

r̃2
j +

M

M − k + 1

{
p∑

k=1

M∑
j=k+1

r̃j r̃j−k +

p∑
k=1

M−k+1∑
j=1

r̃j r̃j+k

}
. (23)

where we scale by M/M−k+1 to compensate for the missing terms.

Proposition 2.9. Assume that Assumptions 1-6 hold true and that {vj}j∈N follows
the MA(q) process in (22) for which Assumption 9 is satisfied. Then, the bias under
TTS of the AC(p)-corrected and interval-adjusted RV from (23) simplifies to

biasM (TTS) = 2ME
[
vp∆tv0 + v(p+1)∆tv0

∣∣∣Fλ,ςT

]
and if

M ≤
⌊

p

q + 1
N (T )

⌋
it holds that the bias is zero.

In summary, by adding more autocovariance terms to the bias-correction by increas-
ing p, we may increase the sampling frequency and remain bias-free. Furthermore,
the more ticks occur during a day, the more often we may sample without adding
bias. Lastly, the optimal magnitude of M is negatively related to the order q of the
MA noise process.
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3 Simulation Study

In order to evaluate the performance of the realized volatility estimator in the setting
of the TTSV model, we conduct several simulation studies. We investigate the
bias and MSE under different sampling schemes and for different levels of market
microstructure noise.

3.1 Simulation Setup

To simulate TTSV model and in order to resemble realistic tick times ti and thus a
realistic counting process, we take {ti}i=1,...,N(T ) and {N (t)}0≤t≤T from real transac-
tion based data. In particular, we choose IBM transaction arrival times on a specific
trading day and select multiple other days for robustness checks (see Appendix B.2).
We simulate the continuous stochastic volatility according to

ς (t) = sc (t) exp (β0 + β1ς
∗ (t)) ,

dς∗ (t) = ας∗ (t) dt+ dB2 (t) ,
(24)

where α, β0 < 0 and β1 > 0 are constants and B2 (t) is a Brownian motion indepen-
dent of the Brownian motion B(t) from Equation (8).17 The deterministic function
sc(t) produces a concave L-shaped form. The process ς∗ (t) belongs to the class of
Ornstein-Uhlenbeck processes, where −α characterizes the speed of mean reversion
towards zero. Due to stationarity, it holds that ς∗ (t) is normally distributed with
mean zero and variance −1/2α which we use to initialize the process.
We set T = 23400 such that the interval [0, T ] represents one trading day with 23400
seconds, i.e., 6.5 hours specific to the trading period on the NYSE. Let τ now be
the equidistant clock-time grid τ = (τ0, . . . , τT ) ∈ RT+1 with unit intervals ∆c = 1
representing one second, i.e., τj = j and τj+1 = τj+∆c for j = 0, . . . , T. We simulate
the TTSV model according to the following procedure:

(i) Tick-time grid: The transaction times ti are taken from real IBM stock data
on one trading day and are normalized such that ti ∈ [0, T ]. The tick-time
grid is then given by (t1, . . . , tN), where N = N (T ) denotes the total number
of transactions on that day. It differs substantially from the clock-time grid in
the sense that transaction times are not equidistant in time.

(ii) Counting process N (t): Given the tick-time grid (t1, . . . , tN), the counting
process is obtained through setting

N (t) =


0 if t ∈ [0, t1),

i if t ∈ [ti, ti+1), i = 1, . . . , N − 1,

N (T ) if t ∈ [tN , T ].

(iii) Intensity process λ (t): Since the transaction times are taken from real data,
we rely on the estimation of the intensity process {λ (t)}t∈[0,T ]. We follow

17This simulation approach has for instance been used by Huang and Tauchen (2005), Barndorff-
Nielsen et al. (2008) and Li, Nolte and Nolte (2018).
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Oomen (2006) and use a non-parametric kernel estimate proposed by Diggle
and Marron (1988) to estimate λ (t). The estimator includes an adjustment
for a possible bias at the edges of the interval [0, T ] and is given by

λ̂h (τj) =



1

h

N(T )∑
i=1

{
κ

(
ti − τj
h

)
+ κ

(
ti + τj
h

)}
if τj ∈ [0, h),

1

h

N(T )∑
i=1

κ

(
ti − τj
h

)
if τj ∈ [h, T − h],

1

h

N(T )∑
i=1

{
κ

(
ti − τj
h

)
+ κ

(
ti + τj − 2T

h

)}
if τj ∈ (T − h, T ],

for j = 0, . . . , T where h is the bandwidth and the kernel κ satisfies
∫
R κ(x)dx =

1 and κ (x) = 0 for |x| ≤ 1. Following Dahlhaus and Tunyavetchakit (2016),
we choose an Epanechnikov kernel function, i.e., κ (x) = 3/4 (1− x2)1{|x|≤1}.
The choice of bandwidth is discussed in Appendix B.1.

(iv) Stochastic volatility ς (t): The volatility process is simulated according to the
model in (24), i.e., ς (τj) = sc(t) exp (β0 + β1ς

∗ (τj)) , j = 1, . . . , T and the
process ς∗ (τj) is obtained using the Euler discretization scheme

ς∗ (τj+1) = ς∗ (τj) + α∆ς∗ (τj) +
√

∆ε2,j

= ς∗ (τj) (1 + α) + ε2,j,
j = 0, . . . , T − 1,

where ε2,j are i.i.d. standard normal random variables. We use ς∗ (t) ∼
N (0, −1/2α) to initialize the process. The concavity is added via the function

sc(t) :=
1

a1t+ a2

− log (a1/a2 + 1)

a1

+ 1

with a1, a2 > 0 and
∫ T

0
sc(r)dr = T (see e.g. Li et al., 2018).

(v) Integrated variance IV (0, T ): We numerically approximate the integral via
the trapezoidal method, i.e.,

IV (0, T ) =

∫ T

0

ς(t)2λ(t)dt

≈ ∆

2

T−1∑
j=0

(
ς2(τj)λ̂(τj) + ς2(τj+1)λ̂(τj+1)

)
= ÎV (0, T )

where we replace the true intensity process λ (t) by its estimate λ̂h (t) from
step (iii).

(vi) Logarithmic price process P (t): Since the log-price process is equidistant in
terms of the number of transactions, the natural discretization grid is in fact
the transaction-time grid. The stochastic volatility process is simulated on the
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clock-time grid. This poses a problem, since we need the stochastic volatility at
the transaction times ti (see representation (10)). However, the tick-time grid
is not a subset of the clock-time grid because transaction times are recorded
with precision of up to a micro-second. Therefore, we use simple linear inter-
polation to construct ς̃ (ti+1) and obtain

P (ti+1) = P (ti) + ς̃ (ti+1) ε1,i,

ς̃ (ti) = (ti − btic) ς (dtie) + (dtie − ti) ς (btic) ,
i = 0, . . . , N (T ) ,

where ε1,i are i.i.d. standard normal random variables.

(vii) Market microstructure noise vi: We add different kinds of noise to the log-price
process, i.e.,

P̃ (ti) = P (ti) + vi, i = 0, . . . , N (T )

with vi specified below.

(viii) Price sampling: We use three sampling schemes, namely TTS, BTS and CTS.

Let K ∈ N be the number of repetitions of the simulation. For each repetition
k = 1, . . . , K we use bias and mean squared error (MSE) as performance measures.
For the true integrated variance IVk (0, T ) of the k-th simulation, we define

bias (k,M, h) := RVM,k(0, T )− ÎVk (0, T ) ,

MSE (k,M, h) :=
(

RVM,k(0, T )− ÎVk (0, T )
)2

,

where the subscript k in RVM,k(0, t) and ÎVk (0, t) relates to the k-th repetition.
Ultimately, we are interested in

bias (M,h) :=
1

K

K∑
k=1

bias (k,M, h) , MSE (M,h) :=
1

K

K∑
k=1

MSE (k,M, h) . (25)

For simplicity, if h is fixed we write bias (M) = bias (M,h) and MSE (M) =
MSE (M,h) and vice versa. We write bias and MSE without subscripts if the mean-
ing is clear from the context.

3.2 Parameter Setup

The simulation procedure described above requires several parameter choices. Re-
garding the estimation of the intensity function, we rely on the specification of the
bandwidth h. Ideally, h is chosen such that the variance of the estimator is small
and the accuracy of the estimator is large, which, as common for kernel estimators,
constitutes a trade-off. On the one hand, decreasing the bandwidth h reduces the
bias and on the other hand, increasing h extends the smoothing horizon and thus the
variance decreases (e.g. Oomen, 2006). More intuitively, a large bandwidth will lead
to an over-smoothed intensity that misses important intra-day trading information
whereas the estimator becomes more efficient. We choose a bandwidth of h = 500
as outlined in Appendix B.1.

26



The estimated intensity function alongside two additional bandwidths can be found
in Figure 8. The underlying counting process was taken from the IBM stock on the
2nd of January, 2015 during the trading hours from 9:30am to 4:00pm. The number
of transactions on that day amounts to N (T ) = 3872. The shape suggests that the
intensity varies during the day and that, common for financial markets, it slightly
peaks at the beginning and gets more pronounced at the end of the trading day,
which is often referred to as U-shaped form.

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

0

0.5

1

1.5

2

Figure 8: Estimated intensity function for IBM. We plot a bias-adjusted kernel estimate of the intensity
function λ (t) for different bandwidths. The transaction times were taken from the IBM stock on the 2nd

of January, 2015 during the trading hours from 9:30am to 4:00pm.

For each of the following simulations, we choose the parameters reported in Table
1. The parameters related to the volatility process ς (t) correspond to an annual
unconditional mean of the spot volatility process σspot (t) of approximately 26.8%.18

Parameter setup

a1 fix 10
a2 0.5
β0 −8.2
β1 1.0e−03
α −2.5e−05
h 500
K 10000
M {13, . . . , N(T )}
P (0) 5

Table 1: Experimental design: parameter setup. We report the chosen parameters for the stochastic
volatility simulation, a1, a2, β0, β1, α, the bandwidth h for the estimation of the intensity function, the
number of repetitions K, the number of observations M , and the initial log-price P (0).

An example of a simulated price path and an artificial price path in clock-time is
given in Figure 9. For an easy comparison, the shaded and non-shaded regions
correspond to 500 transactions. Again, we note that the difference between the

18Note that we made use of the volatility decomposition σ2
spot (t) = ς2 (t)λ (t) to approximate

σ2
spot (see Proposition C.2).
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two price processes is clearly visible. The trading frequency is the lowest at around
12:45pm and the largest in the morning when the market opens and in the afternoon
before the market closes. The corresponding simulated volatility process is presented
in Figure 10.

0 500 1000 1500 2000 2500 3000 3500
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Figure 9: Simulated price path. We plot a simulated price path as a function of the number of transactions
(top) and as a function of time (bottom). The underlying parameters can be found in Table 1. The
transaction times were taken from the IBM stock on the 2nd of January, 2015 during the trading hours
from 9:30am to 4:00pm. On that day there were N (T ) = 3872 transactions.
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Figure 10: Simulated volatility path. We plot a simulated volatility as a function of time. The underlying
parameters can be found in Table 1. The transaction times were taken from the IBM stock on the 2nd of
January, 2015 during the trading hours from 9:30am to 4:00pm.

We run four Monte-Carlo simulation studies, for which the market microstructure
noise processes and potential bias-corrections are specified in Table 2. The noise
specifications include independent, normal noise and an MA(1) process, both with
different levels of variance.

3.3 TTSV Model without Market Microstructure Noise

In this section, we evaluate the performance of the RV estimator for different sam-
pling schemes when there is no market microstructure noise (Simulation 1). A plot
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Noise setup

fix Bias correction fix Noise

Simulation 1
fix − fix vi = 0

Simulation 2
Simulation 3

fix −
AC(1)

fix vi ∼ i.i.d. N (0, σ2
v)

σ2
v ∈ {1e−8, 1e−7, 1e−6}

Simulation 4

fix

AC(1)

fix vi = νi + θ1νi−1

νi ∼ i.i.d. N (0, σ2
ν)

σ2
ν ∈ 5.525 · {1e−9, 1e−8, 1e−7}

Table 2: Experimental design: noise setup. We report the chosen parameters for the simulation of the
market microstructure noise.

of the bias (M) and MSE (M) defined in (25) under the considered sampling schemes
is presented in Figure DA.6. The number of observations M is plotted on a log scale.
The numerical results can be found in Table EA.1.
For all sampling schemes, the bias is fairly similar and the fluctuations appear to
diminish with an increased number of observations M . The MSE under all sampling
schemes appears to converge towards zero with seemingly equal speed. However,
under CTS, the MSE is clearly the largest regardless of M . Corresponding to the
results of the previous sections, BTS has a smaller MSE than TTS for all small
sampling frequencies except for very large M . This is due to the fact that the
larger M is, the more noise gets added to BTS by resampling the same point.
For all sampling frequencies, BTS and TTS outperform CTS in terms of MSE. As
expected, the optimal sampling frequency M under no microstructure noise is as
large as possible since the bias as well as MSE decrease with increasing M .

3.4 TTSV Model with Market Microstructure Noise

As detailed in Section 2.6, the absence of market microstructure noise is not a
reasonable assumption. Thus, in this section we want to investigate the performance
of realized volatility under different kinds of noise for the above mentioned sampling
schemes.
In a second simulation exercise (Simulation 2), we consider noise vj that is indepen-
dent and simulated according to N (0, σ2

ν) with different levels of variance σ2
ν . Figure

DA.8 depicts the bias (M) and MSE (M) of the realized variance estimates plotted
against the number of transactions M on a log-scale. The level of noise is given by
σ2
ν = 1e−8 (upper panel), σ2

ν = 1e−7 (middle panel), and σ2
ν = 1e−6 (lower panel).

The numerical results are presented in Table EA.2 in Appendix E.
We observe that bias and MSE increase with increased sampling frequency M and
with increased noise variability σ2

ν . This is in line with what is observed in real data,
namely, that the effect of market microstructure noise is more pronounced at high
sampling frequencies. Regarding the bias, all sampling schemes perform similar for
small frequencies, while CTS outperforms TTS and BTS for large frequencies. We
observe that for small sampling frequencies, the MSE under BTS is still the lowest
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while for large frequencies, CTS has the lowest MSE. These effects intensify with
increasing noise level. The poor performance of TTS is not unexpected considering
the results of Lemma 2.3: the negative bias term counteracting the constant bias is
the lowest under TTS. A possible additional explanation for the comparably good
performance of CTS is that the conversion of the price process from transaction-time
to clock-time also induces a bias which is possibly counteractive.
In a third simulation (Simulation 3), we induce the same noise as in the second

simulation but use the AC(1)-corrected realized variance estimator RV
AC(1)
M (0, T )

from (20). The results are depicted in Figure DA.9 as well as in Tablthe e EA.3 in
Appendix E.
For low levels of noise (upper two panels) and comparably low sampling frequencies,
BTS remains the preferred sampling scheme in terms of MSE. For a high level
of noise, the realized variance estimate under TTS performs best in terms of bias
and MSE, followed by CTS and BTS. According to Example 2.6, RV

AC(1)
M (0, T ) is

unbiased under TTS as long as M ≤ N (T ), i.e., as long as no price is sampled
twice. In our simulation we have N (T ) = 3872 and thus, for M ≤ 3872, the
necessary condition is satisfied. Hence, in this setting the optimal sampling scheme
is TTS.
In the last simulation (Simulation 4), we consider a noise process that follows an
MA (1) process with θ1 = −0.9 because there is strong empirical evidence that the
noise is serially correlated (e.g. Hansen and Lunde, 2006; Bandi and Russell, 2006,
2008).19 The noise of the innovations νi is chosen such that the variance of vi is
approximately the same as under the independence and normality assumptions of
Simulations 2 and 3. For example, (1 + θ2

1) · 5.525e−9 ≈ 1e−8, where the right side
is the lowest noise level from Simulations 2 and 3 (see Table 2 for the exact noise
setup). Since the RV estimate will be biased under MA (1) noise, we again consider

the AC(1)-corrected estimate RV
AC(1)
M (0, T ).

The results are presented in Figure DA.10 and Table EA.4 in Appendices D and E.
Similarly to the previous simulation, RV under TTS outperforms all other sampling
schemes in terms of bias and MSE for higher levels of noise. Interestingly, for
M = 2000 onward, the bias under TTS exhibits a drift. From Example 2.7 and
Proposition 2.9, we know that RV

AC(1)
M (0, T ) remains unbiased if M ≤ bN(T )/2c.

However, this bias is not surprising since N (T ) = 3872 < 2 · 2000 = 2M . Moreover,
for higher sampling frequencies, the bias under BTS and CTS shows an upward
drift. Again, TTS remains the preferred sampling scheme for high levels of noise.
Robustness checks presented in Appendix B.2 provide evidence that the results are
sufficiently insensitive to different choices of bandwidth h as well as transaction
times {ti}i=1,...,N(T ), in particular, for M large enough.

4 Conclusions

In this paper, we analyze the realized variance estimator under the assumption that
the logarithmic price process follows a time-changed diffusion model. The time

19This parameter choice induces negative first-order autocorrelation as observed by e.g. Hansen
and Lunde (2006) for real equity data.
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change is driven by the number of ticks, e.g. transaction times or quote times. We
assume that the accumulated number of ticks on a trading day follows a doubly
stochastic Poisson process. In this setting, we make use of the volatility decomposi-
tion of Dahlhaus and Tunyavetchakit (2016) to define the integrated variance. In the
absence of market microstructure noise, we show that the realized variance estimator
is unbiased. Additionally, we derive a closed-form solution of the MSE and deduce
that business time sampling performs best in terms of MSE if its approximation
error is ignored.
Since the jump volatility in our model is stochastic and time-varying, our logarithmic
price assumption is more general than that of Oomen (2005, 2006). Using IBM and
EUR USD transaction data, we demonstrate that our assumption is more realistic
for stocks whereas a constant volatility seems plausible for foreign exchange markets.
Similarly to Oomen (2005, 2006), we investigate the impact of several sampling
schemes on the quality of realized variance, namely: transaction time sampling,
business time sampling and clock-time sampling. On a theoretical side, we derive
explicit expressions of the MSE and show that business time sampling has the small-
est MSE compared to all other sampling schemes. In a Monte-Carlo experiment,
we show that, in the absence of market microstructure noise, transaction time sam-
pling outperforms business time sampling for large sampling frequencies due to the
approximation error resulting from the definition of business time sampling.
In our theoretical as well as empirical analysis we also include market microstructure
noise. For the case of independent noise, adding first-order autocovariance terms to
the realized variance estimator suffices to remain bias-free under transaction time
sampling. In simulations, this result is confirmed whereas we observe an increase
in bias and MSE for both other sampling schemes. When the noise has a moving
average structure of order one, the number of sampled prices under transaction time
sampling must remain below one half of the number of transactions on the particular
trading day. Similarly to the independent noise, simulations confirm our theoretical
findings, and they additionally reveal that transaction time sampling outperforms
business time sampling for high sampling frequencies and large levels of market
microstructure noise.
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A Mathematical Prerequisites

A.1 Point Processes

The following two lemmata are results from Brémaud (1981) that allow us to link
the point process N (t) as a stochastic integrand to its intensity function.

Lemma A.1. Let {N (t)}t≥0 be a doubly stochastic Poisson process adapted to

some filtration Ft with stochastic F t-intensity λ (t) such that E
[ ∫ t

0
λ (r) dr

]
< ∞

for all t ≥ 0. Then,

M (t) := N (t)−
∫ t

0

λ (r) dr

is a Ft-martingale.

Lemma A.2. Let {N (t)}t≥0 be a doubly stochastic Poisson process with stochastic

intensity λ (t) such that E
[ ∫ t

0
λ (r) dr

]
<∞ for all t ≥ 0. If H (t) is a Ft-predictable

process such that

E
[∫ t

0

|H (r)|λ (r) dr

]
<∞

for t ≥ 0, then
∫ t

0
H (r) dM (r) is a Ft-martingale.

By general martingale theory, Lemma A.2 yields that E
[ ∫ t

0
H (r) dM (r)

]
= 0 for

all t ≥ 0 which implies that

E
[∫ t

s

H (r) dN (r)

]
= E

[∫ t

s

H (r)λ (r) dr

]
(26)

for all non-negative Ft-predictable processes H (t).
An implication of (26) is that N (t) is P-nonexplosive, i.e., N (t) < ∞ P-a.s. for
all t ≥ 0 (Brémaud, 1981, Theorem T8 in Chapter II). We may therefore assume
that there exists a Ñ ∈ N such that for the interval [0, T ] the point process N (t)
is P-a.s. bounded by Ñ . When the ti denote tick-times, this makes intuitive sense,
since there will only be a finite number of trades or quotes within a fixed interval.

B Simulation

B.1 Bandwidth Selection

In order to select a suitable bandwidth, we consider IBM transaction data from
2015. For each of the Kd = 250 trading days during that year, we compute the
intensity function for different bandwidths h = 1, . . . , H. Then, for each bandwidth,
we approximate the bias by

biasλ (h) :=
1

T + 1

T∑
j=0

1

Kd

Kd∑
k=1

{
¯̂
λh,k (0, τj)−Nk (τj)

}

35



where Nk (τj) is the number of trades until the j-th second on the k-th day. Similar
to before,

¯̂
λh,k (0, τj) =

j∑
k=0

λ̂h,k (τk) ≈
∫ τj

0

λ̂h,k (t) dt,

where λ̂h,k (t) is the estimated intensity process on the k-th day. Moreover, we
compute

varλ (h) :=
1

T + 1

T∑
j=0

1

Kd

Kd∑
k=1

(
λ̂h,k (τj)−

Kd∑
k=1

λ̂h,k (τj)

)2

,

where τj = j for j = 1, . . . , T again represents the j-th second. Hence, for each

second τj we compute the sample variance of λ̂h,i (τj) across days and average across
all seconds during a trading day. The left and right panel in Figure BA.1 depict
biasλ (h) and varλ (h) for different sample sizes, respectively. As expected, with
increasing bandwidth, the approximate bias increases and the variance decreases.
We therefore choose a bandwidth of h = 500 as indicated by the grey vertical lines,
which appears as an acceptable trade-off.
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Figure BA.1: Approximate bias and sample variance of the estimated intensity. We plot the approximate
bias biasλ (h) (left panel) of the estimated intensity process λ (t) and its variance varλ (h) (right panel) as
a function of the bandwidth h. The grey vertical lines represent a bandwidth of h = 500. The transaction
times were taken from the IBM stock on the 2nd of January, 2015 during the trading hours from 9:30am
to 4:00pm.

B.2 Robustness

In the following, we conduct robustness checks regarding the chosen transaction
time process {ti}i=1,...,N(T ) and the bandwidth h for the estimation of the intensity
function.
In a first experiment we keep {ti}i=1,...,N(T ) fixed and conduct Simulation 1 from

Section 3.3 for various bandwidths h ∈ {100, 120, . . . , 980, 1000} ∈ NH with H = 37
(see Table 1 for the parameter setup of Simulation 1). The transaction times are
taken from the IBM stock on the 2nd of January, 2015. We then consider each sam-
pling scheme individually and investigate the bias of the RV estimate as a function
of the bandwidth. The bandwidth h does not have an impact on the RV estimate
itself, but is only reflected in the integrated variance ÎV (0, T ) =

∫ T
0
ς (t) λ̂h (t) dt.
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Hence, checking the robustness with regard to the bandwidth is only necessary when
the data is simulated, as otherwise ÎV (0, T ) is not observable. Still, as each sam-
pling scheme produces a different RV estimate, we want to investigate the impact
of a change in the bandwidth by considering the bias instead of just the integrated
variance. We compute bias (h) defined in (25) as a function of the bandwidth h
while keeping the number of observations M fixed. As the difference in bias across
bandwidths cannot be observed visually, we compute the standardized bias across
bandwidths, i.e.,

std. bias (h) =
bias (h)− bias (h)√

var (bias (h))

for each number of observations M . A plot of the standardized bias and the volatility
of the bias can be found in Figure BA.2. For each sampling scheme, the dotted
black line depicts std. bias (500) which represents the bandwidth used throughout all
simulation studies. The shaded grey area in the left panel depicts a 95% confidence
interval.20 We observe that there is no significant difference in bias for almost all
considered bandwidths. Moreover, std. bias (h) increases with increasing bandwidth
h regardless of the sampling scheme and regardless of the number of observations
M .
We next want to investigate the impact of the choice of the chosen trading day on
our results. Throughout the simulation experiments, we have taken the transaction
times {ti}i=1,...,N(T ) from the IBM stock on the 2nd of January, 2015. They have a di-
rect impact on the log-price process P (t) and the intensity process λ (t) and thereby
on the integrated variance. We visually compare the estimated intensity function
on different days and present a snippet of the comparison in Figure BA.3. The top
left panel depicts the estimated intensity on the 2nd of January, 2015 while the three
other panels depict the intensity on randomly chosen days from the years 2015 to
2017. We note that the general shape is similar across days. When the market
opens and closes, the intensity is larger leading to a U-shaped form. Furthermore,
all inspected days mark a drastic peak at the end of the trading day. In general, the
intensity function across days shares important and comparable characteristics.
In order to examine the impact of the transaction times beyond the intensity func-
tion, we repeat Simulation 1 from Section 3.3 for randomly chosen dates within the
period from January 2015 until December 2017. In particular, we select 100 unique
trading days and conduct Simulation 1 with K = 1000 repetitions. For each of the
100 trading days we obtain bias (M) and MSE (M) which we compare across days.
The results are presented in Figure BA.4. In the left panel, we plot the maximum,
mean, and minimum bias among all trading days and for each sampling scheme.
The right panel depicts the maximum, mean, and minimum MSE. We observe that
there is a visual difference in performance for all sampling schemes which decreases
with increasing sampling frequency M . Similarly, the MSE shows some variation
across days which appears to diminish when M is increased. In order to evaluate
whether the performance between the RV estimate across days is significantly differ-
ent, similar to the robustness check on the bandwidth, we compute the standardized

20We assume that the price process as well as the volatility process are independent across
repetitions and that the intensity can be treated as deterministic as it is taken from real data.
Hence, the central limit theorem can be applied to construct confidence intervals.
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Figure BA.2: Robustness among bandwidths. For each sampling scheme, the left panel depicts std. bias (h)
for different bandwidths h ∈ {100, 120, . . . , 980, 1000} and for different sampling frequencies M . The right
panel displays the volatility of bias (h) across bandwidths and for different sampling frequencies M . The
sampling frequency M is plotted on a log scale. The shaded area in the left panel depicts a 95% confidence
interval. The transaction times were taken from the IBM stock during the trading hours from 9:30am to
4:00pm on the 2nd of January, 2015.
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Figure BA.3: Comparison of estimated intensity functions of the IBM stock. We plot adjusted kernel
estimates with a bandwidth of h = 500 of the intensity function λ (t) on different trading days. The
transaction times were taken from the IBM stock during the trading hours from 9:30am to 4:00pm on the
2nd of January, 2015 (top left), and on three randomly chosen days, namely, the 23rd of April, 2015 (top
right), the 13th of August, 2015 (bottom left), and the 3rd of November, 2015 (bottom right).

bias across trading days while keeping M fixed. In Figure BA.5, we plot the per-
centage of days on which the standardized bias is significantly different from zero on
a 5% significance level which we denote by p ∈ [0, 1]. Starting from M > 120, there
seems to be no significant difference in the performance of RV among each sampling
scheme. As previously established, a large M may increase the effect of market
microstructure noise and choosing a sampling frequency that is too low causes bias
due to the lack of information between sampled points. Figure BA.5 is in line with
these findings and can be helpful in terms of selecting the sampling frequency M .
In general, the results appear sufficiently insensitive to different choices of bandwidth
h and transaction times {ti}i=1,...,N(T ), in particular, for M large enough.
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Figure BA.4: Robustness among transaction times {ti}i=1,...,N(T ). The left panels depict the maximum,

mean, and minimum bias (M) for TTS, BTS, and CTS (top to bottom). The right panels display the
corresponding maximum, mean, and minimum MSE (M). The number of observations M is plotted on a
log-scale. The underlying transaction times were taken from the IBM stock on 100 unique and randomly
chosen trading days from 2015 to 2017 during the trading hours from 9:30am to 4:00pm.
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Figure BA.5: Difference in performances across trading days. We plot the percentage of days p for which
bias (h) is significantly different from the mean bias across days for fixed M and fixed sampling scheme.
The number of observations M is plotted on a log-scale. The underlying transaction times were taken from
the IBM stock on 100 unique and randomly chosen trading days from 2015 to 2017 during the trading
hours from 9:30am to 4:00pm.
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C Proofs

In the diffusion setting, the price process allows for an application of the Ito-
Isometry. For the TTSV model, this is not the case. However, there exists an
adjusted isometry presented in the following lemma.

Lemma C.1 (TTSV Ito Isometry). Let {P (t)}t≥0 follow the TTSV model as de-
fined in (8). Further, let Assumptions 1-6 hold true. Then, it holds that

E

[(∫ t

s

ς (r) dB (N (r))

)2
]

= E
[∫ t

s

ς2 (r)λ (r) dr

]
,

E

[(∫ t

s

ς (r) dB (N (r))

)2
∣∣∣∣∣Fs
]

= E
[∫ t

s

ς2 (r)λ (r) dr

∣∣∣∣Fs] ,
which we refer to as TTSV Ito isometry.

The TTSV Ito-Isometry will be useful in the derivation of the spot variance and
thus integrated variance and the bias and MSE of the realized variance estimator.

Proof of Lemma C.1. We split the proof into three parts. 1. Without loss of gen-
erality, let {ti}mi=n with tn < . . . < tm, n,m ∈ N and n ≤ m denote the sequence of
arrival times in the interval (s, t]. Using representation (10), it holds that

E

[(∫ t

s

ς (r) dB (N (r))

)2
]

= E

( ∑
s<ti≤t

ς (ti)Ui

)2


= E

( ∑
tn≤ti≤tm

ς (ti)Ui

)2


= E

 ∑
tn≤ti≤tm−1

ς (ti)Ui + ς (tm)Um

2
= E

 ∑
tn≤ti≤tm−1

ς (ti)Ui

2

+ (ς (tm)Um)2

+2

 ∑
tn≤ti≤tm−1

ς (ti)Ui

 ς (tm)Um

 .
By (6), the tower property and the fact that ς (t) is Ft-predictable and therefore
Ft−-measurable by Assumption 3, it follows that

E [ς (tm)Um] = E [ς (tm)E [Um|Ftm−]] = 0

and thus the third summand is zero. Similarly,

E
[
(ς (tm)Um)2] = E

[
ς2 (tm)E

[
U2
m

∣∣Ftm−]] = E
[
ς2 (tm)

]
.
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2. Repeatedly splitting up the squared sum yields

E

[(∫ t

s

ς (r) dB (N (r))

)2
]

= E

[ ∑
tn≤ti≤tm

ς2 (ti)

]
= E

[ ∑
s<ti≤t

ς2 (ti)

]

= E
[∫ t

s

ς2 (r) dN (r)

]
.

Since ς (t) is a Ft-predictable and positive process, we obtain that

E
[∫ t

s

ς2 (r) dN (r)

]
= E

[∫ t

s

ς2 (r)λ (r) dr

]
by (26) in Appendix A.1 as implied by Lemma A.2.
3. Conditioning on Fs does not change the first part of the proof since the tower
property still holds for Fs ⊂ Fti−, i = n . . . ,m. Hence, we have that

E

[(∫ t

s

ς (r) dB (N (r))

)2
∣∣∣∣∣Fs
]

= E

[ ∑
s<ti≤t

ς2 (ti)

∣∣∣∣∣Fs
]

= E
[∫ t

s

ς2 (r) dN (r)

∣∣∣∣Fs] .
By Lemma A.2, we get that the process Y (t) =

∫ t
0
ς2 (r) dM (r) is a Ft-martingale

and thus,

E
[∫ t

s

ς2 (r) dN (r)

∣∣∣∣Fs] = E
[∫ t

s

ς2 (r) dM (r)

∣∣∣∣Fs]+ E
[∫ t

s

ς2 (r)λ (r) dr

∣∣∣∣Fs]
= E

[∫ t

s

ς2 (r)λ (r) dr

∣∣∣∣Fs]
which concludes the proof.

The following lemma is from Dahlhaus and Tunyavetchakit (2016).

Lemma C.2 (Spot variance decomposition). Let {P (t)}t≥0 follow the TTSV model
in (8) and let Assumptions 1-4 hold true. Then, if {ς (t)}t≥0 and {λ (t)}t≥0 are
continuous processes, it holds that

σ2
spot (t) = ς2 (t)λ (t) ,

where
{
σ2
spot (t)

}
t≥0

is the spot variance process related to P (t).

Proof of Lemma C.2. Throughout this proof, we follow Dahlhaus and Tunyavetchakit
(2016), though we have already shown parts of it in Lemma C.1. It holds that

E
[∫ t+δ

t

ς2 (r) dN (r)

∣∣∣∣Ft] = E
[∫ t+δ

t

ς2 (r)λ (r) dr

∣∣∣∣Ft]
by Lemma C.1, Due to the continuity of ς2 (t) and λ (t), it holds that

lim
δ↘0

∫ t+δ

t

ς2 (r)λ (r) dr = ς2 (t)λ (t)
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and
∣∣∣∫ t+δt

ς2 (r)λ (r) dr
∣∣∣ is P-a.s. bounded by some integrable function by Assump-

tion 4. Then, using dominated convergence, it follows that

σ2
spot(t) = lim

δ↘0
E
[
(P (t+ δ)− P (t))2

∣∣Ft] = lim
δ↘0

E
[∫ t+δ

t

ς2 (r)λ (r) dr

∣∣∣∣Ft]
= E

[
lim
δ↘0

∫ t+δ

t

ς2 (r)λ (r) dr

∣∣∣∣Ft] = ς2 (t)λ (t) .

Proof of Proposition 2.1. Using the definition of the TTSV price process in (10),
for j = 1, . . . ,M , it follows that

E
[
r2
j

∣∣∣Fλ,ςT

]
= E

(∫ τj

τj−1

ς (r) dB (N (r))

)2
∣∣∣∣∣∣Fλ,ςT


= E

 ∑
τj−1<ti≤τj

ς (ti)Ui

2∣∣∣∣∣∣Fλ,ςT


= E

 ∑
τj−1<ti≤τj

ς (ti)
2

∣∣∣∣∣∣Fλ,ςT


= E

[∫ τj

τj−1

ς2 (r) dN (r)

∣∣∣∣∣Fλ,ςT

]

using similar arguments as in the proof of the adjusted Ito isometry (see Lemma
C.1) and additionally using the independence of ς (t) and Ui by Assumption 6. Rela-
tionship (26) implied by Lemma A.2 yields that the process Y (t) =

∫ t
0
ς2 (r) dM (r)

is a martingale and thus E
[ ∫ t

0
ς2 (r) dM (r)

]
= 0. Conditioning on Fλ,ςT does not

alter the martingale property of Y (t) since we coincide with a setting in which the
intensity and volatility process are given. Hence, it follows that

E

[∫ τj

τj−1

ς2 (r) dN (r)

∣∣∣∣∣Fλ,ςT

]
= E

[∫ τj

τj−1

ς2 (r)λ (r) dr

∣∣∣∣∣Fλ,ςT

]
=

∫ τj

τj−1

ς2 (r)λ (r) dr.

Summing up, we get that

E
[
RVM(0, T )

∣∣∣Fλ,ςT

]
= E

[
M∑
j=1

r2
j

∣∣∣∣∣Fλ,ςT

]
=

M∑
k=1

∫ τj

τj−1

ς2 (r)λ (r) dr = IV (0, T )

which finishes the proof.

Proof of Proposition 2.2. We split the proof into several parts. 1. From Lemma
2.1 it follows that

E
[
(RVM(0, T )− IV (0, T ))2

∣∣∣Fλ,ςT

]
= E

[
(RVM(0, T ))2 − 2 RVM(0, T ) IV (0, T ) + IV (0, T )2

∣∣∣Fλ,ςT

]
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= E
[
(RVM(0, T ))2

∣∣∣Fλ,ςT

]
− IV (0, T )2 .

Moreover, we have that

E
[
(RVM(0, T ))2

∣∣∣Fλ,ςT

]
= E

( M∑
j=1

r2
j

)2
∣∣∣∣∣∣Fλ,ςT


= E

( M∑
j=2

r2
j

)2

+ 2
M∑
k=2

r2
kr

2
1 + r4

1

∣∣∣∣∣∣Fλ,ςT


= E

[
2
M−1∑
j=1

M∑
k=j+1

r2
j r

2
k +

M∑
j=1

r4
j

∣∣∣∣∣Fλ,ςT

]
. (27)

2. We simplify the left summand in (27). For the non-overlapping intervals (τk−1, τk], k =
j + 1, . . . ,M and (τj−1, τj] it holds that

E
[
r2
j r

2
k

∣∣∣Fλ,ςT

]
= E

 ∑
τj−1<ti≤τj

ς (ti)Ui

2 ∑
τk−1<ti≤τk

ς (ti)Ui

2∣∣∣∣∣∣Fλ,ςT


= E

 ∑
τj−1<ti≤τj

ς (ti)Ui

2 ∑
τk−1<ti≤τk

ς2 (ti)

∣∣∣∣∣∣Fλ,ςT


= E

 ∑
τj−1<ti≤τj

ς2 (ti)

 ∑
τk−1<ti≤τk

ς2 (ti)

∣∣∣∣∣∣Fλ,ςT


= E

[(∫ τj

τj−1

ς2 (r) dN (r)

)(∫ τk

τk−1

ς2 (r) dN (r)

)∣∣∣∣∣Fλ,ςT

]

due to the independence of ς (ti) and Ui. Since ς (t) is Fλ,ςT -measurable for all t ≤ T
and the arrival times ti of the point process are mutually independent, it follows
that

E
[
r2
j r

2
k

∣∣∣Fλ,ςT

]
= E

[∫ τj

τj−1

ς2 (r) dN (r)

∣∣∣∣∣Fλ,ςT

]
E

[∫ τk

τk−1j

ς2 (r) dN (r)

∣∣∣∣∣Fλ,ςT

]

= E

[∫ τj

τj−1

ς2 (r)λ (r) dr

∣∣∣∣∣Fλ,ςT

]
E

[∫ τk

τk−1j

ς2 (r)λ (r) dr

∣∣∣∣∣Fλ,ςT

]
= IV (τj−1, τj) IV (τk−1, τk) .

3. Next, we take on the right summand in (27). Without loss of generality, let
{ti}mi=n with tn < . . . < tm, n,m ∈ N and n ≤ m denote the series of arrival times in
the interval (τj−1, τj]. For j = 1, . . . ,M , we have that

E
[
r4
j

∣∣∣Fλ,ςT

]
= E

 ∑
τj−1<ti≤τj

ς (ti)Ui

4∣∣∣∣∣∣Fλ,ςT


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= E

 ∑
tn+1≤ti≤tm

ς (ti)Ui

4

+ ς4 (tn)U4
n

+4

 ∑
tn+1≤ti≤tm

ς (ti)Ui

3

ς (tn)Un

+6

 ∑
tn+1≤ti≤tm

ς (ti)Ui

2

ς2 (tn)U2
n

+4

 ∑
tn+1≤ti≤tm

ς (ti)Ui

 ς3 (tn)U3
n

∣∣∣∣∣∣Fλ,ςT


= E

3
∑

τj−1<ti≤τj

ς4 (ti) + 6
∑

τj−1<ti<τj

∑
ti+1≤th≤τj

ς2 (th) ς
2 (ti)

∣∣∣∣∣∣Fλ,ςT


= E

3

 ∑
τj−1<ti≤τj

ς2 (ti)

2∣∣∣∣∣∣Fλ,ςT

 ,
where we used Assumption 6, and the fact that Ui ∼ N (0, 1) . Moreover, it holds
that

E

 ∑
τj−1<ti≤τj

ς2 (ti)

2∣∣∣∣∣∣Fλ,ςT


= E

(∫ τj

τj−1

ς2 (r) dN (r)

)2
∣∣∣∣∣∣Fλ,ςT


= E

(∫ τj

τj−1

ς2 (r) dM (r) +

∫ τj

τj−1

ς2 (r)λ (r) dr

)2
∣∣∣∣∣∣Fλ,ςT


= E

(∫ τj

τj−1

ς2 (r) dM (r)

)2

+ 2

∫ τj

τj−1

ς2 (r) dM (r)

∫ τj

τj−1

ς2 (r)λ (r) dr

+

(∫ τj

τj−1

ς2 (r)λ (r) dr

)2
∣∣∣∣∣∣Fλ,ςT


= E

(∫ τj

τj−1

ς2 (r) dM (r)

)2
∣∣∣∣∣∣Fλ,ςT

+ 2E

[∫ τj

τj−1

ς2 (r) dM (r)

∣∣∣∣∣Fλ,ςT

]
IV (τj−1, τj)

+ IV (τj−1, τj)
2 .

The second summand is zero due to the martingale property of Y (t) =
∫ t

0
ς4 (r) dM (r)

from Lemma A.2. To further simplify the first summand, we need the quadratic
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variation [M ]t since by Ito’s isometry for martingales it holds that

E

(∫ τj

τj−1

ς2 (r) dM (r)

)2
∣∣∣∣∣∣Fλ,ςT

 = E

[∫ τj

τj−1

ς4 (r) d [M ]r

∣∣∣∣∣Fλ,ςT

]
.

Let 0 = s0 < s1 < . . . < sn = t,max1≤k≤n |sk − sk−1| → 0 as n → ∞. Then, using

that N (t) is a pure jump process and that t 7→
∫ t

0
λ (r) dr is continuous, we have

that

[M ]t = plimn→∞

n∑
k=1

(M (sk)−M (sk−1))2

= plimn→∞

n∑
k=1

(
N (sk)−N (sk−1) +

∫ sk

sk−1

λ (r) dr

)2

= plimn→∞

n∑
k=1

(N (sk)−N (sk−1))2 +

(∫ sk

sk−1

λ (r) dr

)2


= [N ]t +

[∫ ·
0

λ (r) dr

]
t

=
∑

0<s≤t

(N (s)−N (s−))2

=
∑

0<s≤t

(N (s)−N (s−))

= N (t) .

Hence, it follows that

E

(∫ τj

τj−1

ς2 (r) dM (r)

)2
∣∣∣∣∣∣Fλ,ςT

 = E

[∫ τj

τj−1

ς4 (r) dN (r)

∣∣∣∣∣Fλ,ςT

]

= E

[∫ τj

τj−1

ς4 (r) dM (r) +

∫ τj

τj−1

ς4 (r)λ (r) dr

∣∣∣∣∣Fλ,ςT

]

= E

[∫ τj

τj−1

ς4 (r)λ (r) dr

∣∣∣∣∣Fλ,ςT

]
= IQ (τj−1, τj) ,

where we again used the martingale property of Y (t) =
∫ t

0
ς4 (r) dM (r).

4. Summing up,

E
[
(RVM(0, T )− IV(0, T ))2

∣∣∣Fλ,ςT

]
= 2

M−1∑
j=1

M∑
k=j+1

IV (τj−1, τj) IV (τk−1, τk)− IV (0, T )2
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+ 3
M∑
j=1

{
IQ (τj−1, τj) + IV (τj−1, τj)

2}
= 2

M−1∑
j=1

M∑
k=j+1

IV (τj−1, τj) IV (τk−1, τk)

+ 3
M∑
j=1

IV (τj−1, τj)
2 + 3 IQ (0, T )− IV (0, T )2

= 3 IQ (0, T ) + 2
M∑
j=1

IV (τj−1, τj)
2 .

Proof of Lemma 2.3. On the general grid τ = (τ0, . . . , τM), equation (19) and the
independence of rj and vi for all j = 1, . . . ,M and i = 1, . . . , N (T ) yield

E
[
R̃VM(0, T )

∣∣∣Fλ,ςT

]
= E

[
M∑
j=1

r2
j

∣∣∣∣∣Fλ,ςT

]
+

M∑
j=1

E
[(
vN(τj) − vN(τj−1)

)2
∣∣∣Fλ,ςT

]
= E

[
RVM(0, T )

∣∣∣Fλ,ςT

]
+

M∑
j=1

E
[
v2
N(τj)

− 2vN(τj)vN(τj−1) + v2
N(τj−1)

∣∣∣Fλ,ςT

]
= IV (0, T ) + 2Mγv (0)− 2

M∑
j=1

E
[
vN(τj)vN(τj−1)

∣∣∣Fλ,ςT

]
.

The last equality holds due to the independence ofN (t) and vi for all i = 1, . . . , N (T ) .

Proof of Lemma 2.4. As for the bias we consider the general grid τ = (τ0, . . . , τM).

For simplicity we define ξj = vN(τj) − vN(τj−1) for which E
[
ξ2
∣∣∣Fλ,ςT

]
= 2γv(0) −

2E
[
vN(τj)vN(τj−1)

∣∣∣Fλ,ςT

]
. Equation (19) and the independence of rj and vi for all

j = 1, . . . ,M and i = 1, . . . , N (T ) yield

M̃SEM (GS) = E
[(

R̃VM(0, T )− IV (0, T )
)2
∣∣∣∣Fλ,ςT

]

= E

(RVM(0, T )− IV (0, T ))2 +

(
2

M∑
j=1

rjξj +
M∑
j=1

ξ2
j

)2

+ (RVM(0, T )− IV (0, T ))

(
2

M∑
j=1

rjξj +
M∑
j=1

ξ2
j

)∣∣∣∣∣Fλ,ςT

]

= MSEM (GS) + E

4

(
M∑
j=1

rjξj

)2

+ 2
M∑
j=1

rjξj

M∑
j=1

ξ2
j +

(
M∑
j=1

ξ2
j

)2
∣∣∣∣∣∣Fλ,ςT

 .
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The second term in the expectation is zero and moreover,

E

4

(
M∑
j=1

rjξj

)2
∣∣∣∣∣∣Fλ,ςT

 = 4
M∑
j=1

E
[
r2
j

∣∣∣Fλ,ςT

]
E
[
ξ2
j

∣∣∣Fλ,ςT

]

= 4
M∑
j=1

E
[
r2
j

∣∣∣Fλ,ςT

]
E
[
2γv(0)− 2vN(τj)vN(τj−1)

∣∣∣Fλ,ςT

]
.

Finally

M̃SEM (GS) = MSEM (GS) + 8

(
IV (0, T ) γv (0)−

M∑
j=1

E
[
r2
j

∣∣∣Fλ,ςT

]
E
[
vN(τj)vN(τj−1)

∣∣∣Fλ,ςT

])

+ E

( M∑
j=1

(
vN(τj) − vN(τj−1)

)2

)2
∣∣∣∣∣∣Fλ,ςT

 .
Proof of Lemma 2.5. On the general grid τ = (τ0, . . . , τM), where 0 = τ0 < . . . <
τM = T the intervals (τj−1, τj] , j = 1, . . . ,M are disjoint. Recall that

rj = r (τj−1, τj) =
∑

τj−1<ti≤τj

ς (ti)U (ti)

where the ti are the tick-times. Thus, due to the structure of the process U (ti)

(see Assumptions 1-6), it holds that E
[
rj

∣∣∣Fλ,ςT

]
= 0 and E

[
rjrk

∣∣∣Fλ,ςT

]
= 0 for

j 6= k. Furthermore, E [vi] = 0 and the processes rj and vi are independent for
all j = 1, . . . ,M and i = 1, . . . , N (T ). From equation (19), the definition of the
bias-corrected realized variance and Lemma 2.3, it follows that

E
[
R̃V

AC(1)

M (0, T )
∣∣∣Fλ,ςT

]
= E

[
M∑
j=1

r̃2
j +

M∑
j=1

r̃j r̃j−1 +
M∑
j=1

r̃j r̃j+1

∣∣∣∣∣Fλ,ςT

]
= E

[
R̃VM(0, T )

∣∣∣Fλ,ςT

]
+

M∑
j=1

E
[(
vN(τj) − vN(τj−1)

) (
vN(τj−1) − vN(τj−2)

)∣∣∣Fλ,ςT

]
+

M∑
j=1

E
[(
vN(τj) − vN(τj−1)

) (
vN(τj+1) − vN(τj)

)∣∣∣Fλ,ςT

]
= IV (0, T ) + 2Mγv (0)− 2

M∑
j=1

E
[
vN(τj)vN(τj−1)

∣∣∣Fλ,ςT

]
+

M∑
j=1

E
[
2vN(τj)vN(τj−1) − vN(τj)vN(τj−2) + vN(τj−1)vN(τj−2)

+ vN(τj)vN(τj+1) − vN(τj−1)vN(τj+1)

∣∣∣Fλ,ςT

]
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− 2Mγv (0)

= IV (0, T ) +
M∑
j=1

E
[
−vN(τj)vN(τj−2) + vN(τj−1)vN(τj−2)

+ vN(τj)vN(τj+1) − vN(τj−1)vN(τj+1)

∣∣∣Fλ,ςT

]
which shows the claim.

Proof of Lemma 2.8. Using similar arguments as in the proof of Lemma 2.5, straight-
forward computations yield

E

[
p∑

k=1

M∑
j=1

r̃j r̃j−k

∣∣∣∣∣Fλ,ςT

]

=

p∑
k=1

M∑
j=1

E
[(
vN(τj) − vN(τj−1)

) (
vN(τj−k) − vN(τj−k−1)

)∣∣∣Fλ,ςT

]
=

p∑
k=1

M∑
j=1

E
[
vN(τj)vN(τj−k) − vN(τj)vN(τj−k−1)

−vN(τj−1)vN(τj−k) + vN(τj−1)vN(τj−k−1)

∣∣∣Fλ,ςT

]
=

M∑
j=1

E
[
vN(τj)vN(τj−1) + vN(τj−1)vN(τj−1−p) − vN(τj)vN(τj−1−p) − v2

N(τj−1)

∣∣∣Fλ,ςT

]
and similarly

E

[
p∑

k=1

M∑
j=1

r̃j r̃j+k

∣∣∣∣∣Fλ,ςT

]

=

p∑
k=1

M∑
j=1

E
[(
vN(τj) − vN(τj−1)

) (
vN(τj+k) − vN(τj+k−1)

)∣∣∣Fλ,ςT

]
=

p∑
k=1

M∑
j=1

E
[
vN(τj)vN(τj+k) − vN(τj)vN(τj+k−1)

−vN(τj−1)vN(τj+k) + vN(τj−1)vN(τj+k−1)

∣∣∣Fλ,ςT

]
=

M∑
j=1

E
[
vN(τj)vN(τj+p) + vN(τj−1)vN(τj) − vN(τj−1)vN(τj+p) − v2

N(τj)

∣∣∣Fλ,ςT

]
.

From the proof of Lemma 2.3, we know that

E

[
M∑
j=1

r̃2
j

∣∣∣∣∣Fλ,ςT

]
= IV (0, T ) + 2Mγv (0)− 2ME

[
vN(τj)vN(τj−1)

∣∣∣Fλ,ςT

]
.

Combining the three summands, we obtain that

E
[
R̃V

AC(p)

M (0, T )− IV (0, T )
∣∣∣Fλ,ςT

]
=

M∑
j=1

E
[
vN(τj−1)vN(τj−1−p) + vN(τj)vN(τj+p)
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−vN(τj−1)vN(τj+p) − vN(τj)vN(τj−1−p)

∣∣∣Fλ,ςT

]
which concludes the proof.

Proof of Proposition 2.9 . Recall that N (τj) − N (τj−1) = jN(T )/M = j∆t for all
j = 1, . . . ,M. Then, using (23) we obtain that

E

[
p∑

k=1

M

M − k + 1

M∑
j=k+1

r̃j r̃j−k

∣∣∣∣∣Fλ,ςT

]

=

p∑
k=1

M

M − k + 1

M∑
j=k+1

E
[(
vN(τj) − vN(τj−1)

) (
vN(τj−k) − vN(τj−k−1)

)∣∣∣Fλ,ςT

]
=

p∑
k=1

M

M − k + 1

M∑
j=k+1

E
[
vN(τj)vN(τj−k) − vN(τj)vN(τj−k−1)

−vN(τj−1)vN(τj−k) + vN(τj−1)vN(τj−k−1)

∣∣∣Fλ,ςT

]
=

p∑
k=1

M

M − k + 1

M∑
j=k+1

E
[
vk∆tv0 − vk∆tv∆t − v(k+1)∆tv0 + vk∆tv0

∣∣∣Fλ,ςT

]
= M

p∑
k=1

E
[
2vk∆tv0 − vk∆tv∆t − v(k+1)∆tv0

∣∣∣Fλ,ςT

]
= M

p∑
k=1

E
[
2vk∆tv0

∣∣∣Fλ,ςT

]
−ME

[
v2

∆t

∣∣∣Fλ,ςT

]
−M

p−1∑
k=1

E
[
vk∆tv0

∣∣∣Fλ,ςT

]
−M

p+1∑
k=2

E
[
vk∆tv0

∣∣∣Fλ,ςT

]
= −Mγv (0) +ME

[
vp∆tv0

∣∣∣Fλ,ςT

]
+ME

[
v∆tv0

∣∣∣Fλ,ςT

]
−ME

[
v(p+1)∆tv0

∣∣∣Fλ,ςT

]
Similarly, we have that

E

[
p∑

k=1

M

M − k + 1

M−k+1∑
j=k

r̃j r̃j+k

∣∣∣∣∣Fλ,ςT

]

=

p∑
k=1

M

M − k + 1

M−k+1∑
j=1

E
[
vN(τj)vN(τj+k) − vN(τj−1)vN(τj+k)

−vN(τj)vN(τj+k−1) + vN(τj−1)vN(τj+k−1)

∣∣∣Fλ,ςT

]
=

p∑
k=1

M

M − k + 1

M−k+1∑
j=1

E
[
vk∆tv0 − v(k+1)∆tv0 − vk∆tv∆t + vk∆tv0

∣∣∣Fλ,ςT

]
= −Mγv (0) +ME

[
vp∆tv0

∣∣∣Fλ,ςT

]
+ME

[
v∆tv0

∣∣∣Fλ,ςT

]
−ME

[
v(p+1)∆tv0

∣∣∣Fλ,ςT

]
Using Lemma 2.5, we know that

E

[
M∑
j=1

r̃2
j

∣∣∣∣∣Fλ,ςT

]
= IV (0, T ) + 2Mγv (0)− 2ME

[
v∆tv0

∣∣∣Fλ,ςT

]
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and thus

bias (TTS) = E
[
R̃V

AC(p)

M (0, T )− IV (0, T )
∣∣∣Fλ,ςT

]
= 2ME

[
vp∆tv0 − v(p+1)∆tv0

∣∣∣Fλ,ςT

]
.

Since vi is an MA (q) process, the largest bias term E
[
vp∆tv0

∣∣∣Fλ,ςT

]
is zero if p∆t ≥

q + 1 or equivalently if

M ≤ p

q + 1
N (T )

is satisfied. Further, if E
[
vp∆tv0

∣∣∣Fλ,ςT

]
= 0, then E

[
v(p+1)∆tv0

∣∣∣Fλ,ςT

]
= 0.
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Figure DA.6: Bias and MSE for Simulation 1. We plot the bias and MSE for different sampling schemes
under no market microstructure noise. The number of observations M and the MSE are plotted on a log
scale. The data was simulated with the parameters in Table 1. The transaction times were taken from the
IBM stock on the 2nd of January, 2015 during the trading hours from 9:30am to 4:00pm.
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Figure DA.7: Bias and MSE for Simulation 1 for the EUR USD rate. We plot the bias and MSE for different
sampling schemes under no market microstructure noise. The number of observations M and the MSE
are plotted on a log scale. The data was simulated with the parameters in Table 1 and ς (t) = 6.8605e−5.
The transaction times were taken from the EUR USD exchange rate on the 1st of June, 2016.
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Figure DA.8: Bias and MSE for Simulation 2. We plot the bias and MSE for different sampling schemes
under i.i.d. noise distributed according to N

(
0, σ2

v

)
with σ2

v = 1e−8 (upper panel), σ2
v = 1e−7 (middle

panel) and σ2
v = 1e−6 (lower panel). The number of observations M and the MSE are plotted on a log

scale. The data was simulated with the parameters in Table 1. The transaction times were taken from the
IBM stock on the 2nd of January, 2015 during the trading hours from 9:30am to 4:00pm.
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Figure DA.9: Bias and MSE for Simulation 3. We plot the AC(1)-corrected bias and MSE for different
sampling schemes under i.i.d. noise distributed according to N

(
0, σ2

v

)
with σ2

v = 1e−8 (upper panel),

σ2
v = 1e−7 (middle panel) and σ2

v = 1e−6 (lower panel). The number of observations M and the MSE are
plotted on a log scale. The data was simulated with the parameters in Table 1. The transaction times were
taken from the IBM stock on the 2nd of January, 2015 during the trading hours from 9:30am to 4:00pm.
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Figure DA.10: Bias and MSE for Simulation 4. We plot the AC(1)-corrected bias and MSE for different
sampling schemes under MA(1) noise with θ1 = −0.9 and with σ2

v ≈ 1e−8 (upper panel), σ2
v ≈ 1e−7

(middle panel) and σ2
v ≈ 1e−6 (lower panel). The number of observations M and the MSE are plotted on

a log scale. The data was simulated with the parameters in Table 1. The transaction times were taken
from the IBM stock on the 2nd of January, 2015 during the trading hours from 9:30am to 4:00pm.

E Tables

fix TTS BTS CTS fix TTS BTS CTS

M bias ·106 MSE ·108

13 3.4747 2.2392 3.1296 4.6987 2.6693 8.5418
26 0.6216 0.6774 2.8455 2.3378 1.3058 4.9474
78 −0.2010 0.4210 0.5080 0.7777 0.4072 1.6588

390 0.1261 −0.1345 −0.7545 0.1596 0.0763 0.4043
1000 −0.1424 −0.1253 −0.4866 0.0630 0.0333 0.1977
1500 −0.0072 −0.1677 −0.2774 0.0427 0.0255 0.1452
3872 −0.0772 −0.0851 −0.1444 0.0161 0.0184 0.0830

Table EA.1: Bias and MSE for Simulation 1. We report the bias and MSE for different sampling schemes
under no market microstructure noise. The data was simulated with the parameters in Table 1. The
transaction times were taken from the IBM stock on the 2nd of January, 2015 during the trading hours
from 9:30am to 4:00pm.
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fix TTS BTS CTS fix TTS BTS CTS

σ2
ν M bias ·105 MSE ·108

1.0e−08

13 0.4210 0.2306 0.4489 4.6934 2.6527 8.7405
26 0.1043 0.2272 0.2985 2.3369 1.3422 4.9822
78 0.1454 0.4520 0.1268 0.7778 0.4379 1.7113

390 0.8279 2.0111 0.7657 0.1678 0.1250 0.4128
1000 1.9599 4.0044 1.7374 0.1037 0.1980 0.2320
1500 3.0155 4.9669 2.2537 0.1365 0.2753 0.1982
3872 7.7376 6.7064 3.5573 0.6184 0.4711 0.2116

σ2
ν M bias ·104 MSE ·107

1.0e−07

13 0.0666 0.0764 0.0669 0.4740 0.3336 0.8761
26 0.0585 0.1307 0.0764 0.2368 0.1743 0.5012
78 0.1540 0.3679 0.1494 0.0834 0.0775 0.1764

390 0.7863 1.8185 0.7704 0.0812 0.3491 0.1035
1000 1.9945 4.0553 1.7255 0.4084 1.6560 0.3218
1500 2.9964 5.1473 2.2645 0.9071 2.6594 0.5322
3872 7.7425 6.8866 3.5786 6.0044 4.7516 1.2942

σ2
ν M bias ·103 MSE ·105

1.0e−06

13 0.0302 0.0555 0.0307 0.0051 0.0053 0.0092
26 0.0514 0.1069 0.0544 0.0029 0.0041 0.0057
78 0.1551 0.3174 0.1557 0.0036 0.0118 0.0046

390 0.7802 1.6222 0.7705 0.0618 0.2654 0.0606
1000 2.0001 3.9090 1.7229 0.4016 1.5313 0.2984
1500 3.0014 5.0638 2.2620 0.9029 2.5678 0.5135
3872 7.7426 6.8886 3.5794 5.9999 4.7496 1.2837

Table EA.2: Bias and MSE for Simulation 2. We report the bias and MSE for different sampling schemes
under i.i.d. noise distributed according to N

(
0, σ2

v

)
with σ2

v = 1e−8 (upper panel), σ2
v = 1e−7 (middle

panel) and σ2
v = 1e−6 (lower panel). The number of observations M is plotted on a log scale. The data

was simulated with the parameters in Table 1. The transaction times were taken from the IBM stock on
the 2nd of January, 2015 during the trading hours from 9:30am to 4:00pm.

56



fix TTS BTS CTS fix TTS BTS CTS

σ2
ν M bias ·105 MSE ·107

1.0e−08

13 −0.3864 −0.3538 −0.5252 1.1692 0.8465 1.5294
26 0.0879 −0.3208 −0.2171 0.6398 0.4102 0.9993
78 −0.0906 −0.1895 −0.0672 0.2271 0.1319 0.4371

390 −0.0047 0.2017 −0.0265 0.0465 0.0250 0.0986
1000 0.0390 0.9556 0.1381 0.0184 0.0105 0.0443
1500 0.0030 1.6719 0.4539 0.0123 0.0092 0.0318
3872 −0.0072 4.4061 1.6592 0.0050 0.0225 0.0193

σ2
ν M bias ·104 MSE ·107

1.0e−07

13 −0.0361 −0.0160 −0.0532 1.1723 0.9962 1.5297
26 0.0094 −0.0285 −0.0198 0.6417 0.4936 1.0026
78 −0.0106 −0.0051 −0.0048 0.2292 0.1699 0.4413

390 −0.0015 0.0136 0.0063 0.0506 0.0424 0.1019
1000 0.0024 0.5364 0.2067 0.0221 0.0516 0.0515
1500 0.0034 1.3979 0.4921 0.0163 0.2129 0.0599
3872 0.0003 4.6151 1.6923 0.0113 2.1397 0.3075

σ2
ν M bias ·103 MSE ·106

1.0e−06

13 −0.0049 −0.0046 −0.0051 0.1207 0.1218 0.1565
26 0.0010 −0.0018 −0.0013 0.0673 0.0707 0.1035
78 −0.0009 −0.0016 −0.0002 0.0270 0.0311 0.0479

390 −0.0006 −0.0245 0.0108 0.0111 0.0257 0.0164
1000 0.0001 0.2709 0.2125 0.0135 0.1134 0.0595
1500 −0.0000 1.1109 0.4956 0.0161 1.2736 0.2608
3872 0.0005 4.5110 1.6901 0.0349 20.3830 2.8754

Table EA.3: Bias and MSE for Simulation 3. We report the AC(1)-corrected bias and MSE for different
sampling schemes under i.i.d. noise distributed according to N

(
0, σ2

v

)
with σ2

v = 1e−8 (upper panel),

σ2
v = 1e−7 (middle panel) and σ2

v = 1e−6 (lower panel). The number of observations M is plotted on a
log scale. The data was simulated with the parameters in Table 1. The transaction times were taken from
the IBM stock on the 2nd of January, 2015 during the trading hours from 9:30am to 4:00pm.
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fix TTS BTS CTS fix TTS BTS CTS

σ2
ν M bias ·105 MSE ·107

1.0e−08

13 −0.4215 −0.2844 −0.5880 1.1701 0.8632 1.5267
26 0.0370 −0.2568 −0.2739 0.6403 0.4184 1.0000
78 −0.1005 −0.1518 −0.1025 0.2272 0.1341 0.4374

390 −0.0076 0.1717 −0.0270 0.0465 0.0263 0.0989
1000 0.0410 1.1141 0.0353 0.0184 0.0113 0.0443
1500 0.0161 2.0533 0.3031 0.0122 0.0110 0.0318
3872 −3.8492 6.0449 1.6938 0.0199 0.0398 0.0194

σ2
ν M bias ·104 MSE ·107

1.0e−07

13 −0.0412 −0.0427 −0.0610 1.1722 1.0505 1.5285
26 0.0050 −0.0203 −0.0266 0.6433 0.5247 1.0039
78 −0.0115 −0.0113 −0.0091 0.2304 0.1825 0.4414

390 −0.0037 −0.0389 −0.0085 0.0501 0.0484 0.1016
1000 0.0015 0.4070 0.1024 0.0220 0.0458 0.0487
1500 0.0004 1.5356 0.3443 0.0165 0.2597 0.0476
3872 −3.8495 6.1873 1.7237 1.4982 3.8432 0.3191

σ2
ν M bias ·103 MSE ·105

1.0e−06

13 −0.0050 −0.0079 −0.0062 0.0121 0.0125 0.0156
26 0.0006 −0.0044 −0.0026 0.0067 0.0072 0.0103
78 −0.0016 −0.0050 0.0000 0.0027 0.0034 0.0048

390 0.0001 −0.0856 −0.0047 0.0011 0.0043 0.0016
1000 −0.0014 0.1672 0.1121 0.0013 0.0098 0.0028
1500 −0.0018 1.2501 0.3495 0.0017 0.1637 0.0140
3872 −3.8512 5.9215 1.7204 1.4917 3.5131 0.2987

Table EA.4: Bias and MSE for Simulation 4. We report the AC(1)-corrected bias and MSE for different
sampling schemes under MA(1) noise with θ1 = −0.9 and with σ2

v ≈ 1e−8 (upper panel), σ2
v ≈ 1e−7

(middle panel) and σ2
v ≈ 1e−6 (lower panel). The number of observations M is plotted on a log scale.

The data was simulated with the parameters in Table 1. The transaction times were taken from the IBM
stock on the 2nd of January, 2015 during the trading hours from 9:30am to 4:00pm.
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