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Abstract

The growing demand in sustainable investment has fostered numerous changes
in the financial industry. Divestment in carbon intensive industries and preference
for Green assets should impact classical Asset Pricing models while the contagion
effects from Brown to Green assets need to be carefully monitored. In this paper, we
leverage Dynamic Factor Models to better quantify Climate-related Risk premium
and develop a novel two-step procedure to estimate volatility spillovers between
long-only portfolios. This new procedure allows to uncover the high persistence of
Brown volatility innovations on Green volatility.
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1 Introduction

The fast development of Green Investing has spurred academic interest in the impact of
climate-related risks on financial returns. However, findings are often contradictory. On
the one hand, Pástor et al. [2020] and De Angelis et al. [2020] argue that exposure to
climate-related risks should be rewarded by a risk premium while the utility gained by
sustainable investors for holding Green stocks compensates the expected lower returns.
In addition, Bolton and Kacperczyk [2020] show empirically that firms’ carbon intensity
is linked to higher returns. On the other hand, in recent years, sustainable assets have
outperformed assets with high carbon exposures. Pastor et al. [2021] argue that this
outperformance is due to unexpected higher environmental concerns among investors.
Therefore, the aggregated effect of climate-related risks over the cross-section of returns
is yet unclear. Part of this issue lies in the fact that sustainable preferences are evolving
among investors. Awareness about climate change and its consequences is growing along
with new scientific findings and political will. Krueger et al. [2020] outline that institu-
tional investors consider climate change as a growing risk in the market. Such transition
needs to be taken into account when running econometric analysis. Additionally, man-
aging the financial risks at stake is another issue for asset managers. Indeed, the effects
of climate change are widely but unequally spread across sectors and geographies as it
may impact firms through various channels (physical, regulatory, reputation). Hence,
climate-related risks are hardy diversifiable and might impact financial stability. To that
extend, Engle et al. [2020] developed dynamic hedging strategies against climate-related
risks. However, a vast majority of sustainable strategies invest in long-only portfolio,
prohibiting short selling. There is no evidence that the resulting strategies are hedged
against contagion effects from Brown stocks. Hence, besides challenging the existence
of a dynamic climate-related risk premium, it appears of primary importance to under-
stand spillover effects between Green and Brown companies, in order to assess the true
exposure to climate-related risks of long-only sustainable strategies.

This papers contributes to the literature in two main aspects. First, we investigate the
existence of a climate-related risk premium with robust dynamic modeling, allowing to
capture the increasing shift in investors preferences toward a more sustainable economy.
While most of the literature analysing this issue relies on panel analysis [Bolton and
Kacperczyk, 2020, Pastor et al., 2021, Sautner et al., 2021] or standard Fama-MacBeth
two steps regression [Görgen et al., 2019], we make use of state of the art conditional
beta modeling and follow Gagliardini et al. [2016] to compute a dynamic risk premium.
Secondly, we extend the spillover analysis to long only sustainable strategies while it
is narrowed to green energy index and sectors in the existing literature. We propose
a novel two-step procedure to evaluate accurate climate-related risks contagion effects
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between Brown and Green companies. We achieve this by relying on a Autoregressive
Conditional Beta model (ACB) introduced by Blasques et al. [2022]. It allows to directly
specify and estimate dynamic conditional factor loadings. This proves useful to extend
the standard 2-Pass Cross-Sectional Regression approach of Fama and MacBeth [1973]
and compute dynamic risk premia following Gagliardini et al. [2016]. Indeed, wrongfully
assuming the constancy of slope coefficients in linear regression may lead to erroneous
conclusions as underlined by Engle [2016] and numerous models have established the
need for time varying parameters in asset pricing models (see for example Gagliardini
et al. [2016] or Grassi and Violante [2021]). We find a positive significant risk premium
associated with the GMB factor. This results is in lines with empirical findings of Bolton
and Kacperczyk [2020] and Pastor et al. [2021]. However, recovering a significant risk
premium for the GMB factor is new in the literature as Görgen et al. [2019] did not find
significant results using the standard Fama-MacBeth two-steps approach. The value of
the GMB risk premium differs depending on the metrics used to build the GMB factor.
Tangible and transparent metrics appear to be key to be priced in the market. However,
favoring a complete analysis of firms’ total exposure to climate-related risks, for instance
combining carbon footprint with environmental high-stake sectors classification allows
to find higher risk premium than solely focusing on carbon intensity. In addition, we
rely on the the ACB model to dynamically hedge long-only portfolio returns of Green
and Brown companies against standard risk factors. Following Conrad and Karanasos
[2010], the resulting returns are then modelled through a bivariate unrestricted ECCC
(uECCC) GARCH to compute volatility spillovers and assess both their level and per-
sistence. Our methodology is able to capture spillovers from Brown to Green assets that
cannot be uncovered by simply looking at the unhedged portfolios.

Accordingly, these results argue in favour of an increasing shift of investors preferences
toward a more sustainable economy. However, a comprehensive analysis of firms’ expo-
sure to climate-related risks, with tangible and easy understandable metrics is required
to fully capture and manage financial risks related to climate change. Thus, it is of pri-
mary importance to develop standardised approaches and transparent metrics of firms’
exposure to climate-related risks.

The paper is structured as follows. Section 2, presents the data used to conduct our
analysis and details the construction of potential Green Minus Brown (GMB) factors.
Section 3 introduces the dynamic autoregressive conditional betas model (ACB) and
assesses the existence of a climate-related risk premium. Section 4 explains how climate-
related risk spillovers can be uncovered from ACB model and expose the results on
long-only portfolios. Finally Section 5 concludes. Technical details on the conditional
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volatility models and the estimators used in the paper are given in the appendix.

2 Data and Climate risk factor

2.1 Data

Estimating risk premium following the Fama and MacBeth [1973] two-step procedure
is commonly done on portfolios to reduce the error variances issue. Threfore we use
the Fama-French thirty-eight industries portfolios to regress against well known three
factors, Market (Mkt), Size (SMB) and Value (HML) obtained on Kenneth R. French ’s
Data Library [Fama and French, 1993]. We analyse a period of 21 years from 01/01/2000
until 31/12/2020.

Although monthly returns are regularly chosen when estimating risk premium, we use
weekly observations to increase the amount of observations as it is of critical importance
to accurately estimate dynamic conditional betas. This has been proven to allow for
proper estimations in similar asset pricing models [Ferson et al., 1987, Lo and Wang,
2006, Lewellen and Nagel, 2006]. In addition to the classical three factors we introduce
an additional climate-related risk factor (hereafter referred to as Green Minus Brown -
GMB). As climate-related risks are unobservable, we test multiple candidates to assess
the robustness of our results.

2.2 GMB candidates

We follow the mimicking portfolio approach of Fama and French [1993] also adopted by
Görgen et al. [2019], Bolton and Kacperczyk [2020], Pastor et al. [2021] to build GMB
candidates as zero-cost portfolios long on Green stocks and short on Brown ones.

Carbon emissions is a critical component of firms’ exposure to climate-related risks, be-
cause of the transitional channel. We collect carbon emissions with Scope 1 to 3 from
two different provider, TruCost and Carbone4. According to the GHG Protocol Cor-
porate Standard 1 "company’s GHG emissions [are divided] into three scopes. Scope 1
emissions are direct emissions from owned or controlled sources. Scope 2 emissions are
indirect emissions from the generation of purchased energy. Scope 3 emissions are all
indirect emissions (not included in scope 2) that occur in the value chain of the reporting
company, including both upstream and downstream emissions." However, it might not
be enough to capture companies’ full exposure to climate-related risks as it also de-
pends on firms’ overall transition strategic plan and physical exposure to either climate

1https://ghgprotocol.org/sites/default/files/standards_supporting/FAQ.pdf
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disaster or unexpected change in the process toward sustainable development. Hence,
we enhance the data with additional sources. First, "avoided emissions" computed by
Carbone4 within the Net Zero Initiative project. It assesses companies’ contributions
to decarbonisation by computing the difference between direct carbon emissions and
a reference scenario. Different from "Negative emissions", it encourages organisations
to reduce their direct emissions either as a result of the products and services sold or
through financing emission reduction projects outside of the value chain. In addition,
we collect environmental scores from ISS covering a wider range of environmental issues
than carbon emissions only. Following recommendations of TCFD [2017] we standardise
carbon emissions by year-end net revenues to build carbon intensity metrics that are
comparable between companies. To build mimicking portfolios in a consistent manner
with Kenneth R. French ’s Data Library we use the Center for Research in Security
Prices (CRSP) database to collect daily returns from US companies over the same 20
years period. We then restrain the analysis to companies that exist over the entire period
and for which carbon data is available. This results in a final sample of 1241 companies
out of 18800 in the original CRSP database from which 3328 are matching the car-
bon database, but not all surviving the entire period. It accounts for 57% of the total
market capitalisation on yearly average during the period, meaning that the remaining
companies are mostly large capitalisation compared to the full sample available in the
CRSP database. 70% of the S&P 500 constituents are present in the final sample with
a slight bias in proportion toward Industrials and Financials and less IoT, Health-Care
and Communication Services (see table 1). However, this is not a major issue for the
construction of GMB candidates since the former sectors are not high-stakes sectors in
terms of environmental transition 2.

Carbon emissions are observed at a yearly frequency over the period. As table 1 shows,
according to TruCost’s data, there has been a continuous decrease in carbon intensity
between 2000 and 2020 for all sectors.
Some observations are missing, mostly before 2016 (between 50% and 60%) but it mainly
concerns low-stakes sectors in terms of environmental transition. In addition, the rank-
ing of companies is stable across time.

The two carbon datasets differ in absolute value. For instance, the high carbon intensity
of Utilities in the TruCost dataset differs from the estimation of Carbone4 due to some
companies exposed to Brown electricity production that have lower scope 3 carbon inten-
sity in the Carbone4 database. However, the two sources show similar ranking results.
Therefore it should lead to consistent findings. It differs much more when looking at

2Details about high and low-stakes sectors are provided in Hoepner et al. [2019]
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S&P500 (%) Sample (%) 2000-2007 2008-2012 2013-2016 2016-2020
Communication Services 10.8 1.13 83.76 86.55 86.21 87.78
Consumer Discretionary 12.8 16.12 253.22 222.17 202.15 220.20

Consumer Staples 5.6 5.32 683.75 570.03 517.52 536.94
Energy 2.9 3.95 815.91 749.78 780.92 734.20

Financials 11.4 18.94 49.93 46.44 54.10 45.10
Health Care 13 7.57 169.37 138.88 125.17 130.39
Industrials 8 17.16 395.58 365.24 348.21 345.80

Information Technology 27.9 13.54 181.83 172.20 157.22 150.81
Materials 2.5 6.04 1196.32 1170.31 977.69 996.82

Real Estate 2.6 5.96 169.75 140.64 137.07 129.64
Utilities 2.4 4.27 4344.39 3671.57 3434.72 2604.45

Table 1: Sector distribution & Average scope 3 carbon intensity

the environmental score. Indeed, the environmental score captures a broader picture of
the companies’ environmental footprint than carbon emissions only. Hence, companies
with the same carbon intensity may have different environmental scores (see Figure 1).
Berg et al. [2019] highlighted this issue about the divergence of ESG ratings between
providers even though descriptions look alike.

(a) Carbon intensity rankings: TruCost vs.
Carbon4

(b) Rankings: Carbon intensity vs Environ-
mental Scores

Figure 1: Carbon data coherence

Finally, we define a low/high-stakes variable for the industries based on carbon intensity.
High-Stakes industries are those in the fourth quartile of carbon emissions intensities.
This approaches leads to similar results than high-stakes sectors define in Hoepner et al.
[2019].

Unlike environmental scores, there is no linear link between carbon intensity (in both
sources) and firm valuation such as Price to Book ratio (P2B) and market capitalisation.
The higher the environmental score, the higher the valuation of the companies and the
faster this valuation grows over time.

6



(a) Deciles Carbon TruCost (b) Deciles Environmental Score ISS

Figure 2: Price to Book evolution by decile

Even though the average carbon intensity decreased during the last 10 years, the ranking
between companies remained mostly unchanged (see Table 2). Furthermore, since Scope
3 methodology has evolved through time and more and more companies are disclosing
their carbon footprint each year, we use only last available observations to distinguish
Green from Brown companies. This is especially convenient as it allows to have stable
groups of Green and Brown companies across time.

2005 2010 2016
2005 1.00 0.91 0.89
2010 0.91 1.00 0.97
2016 0.89 0.97 1.00

Table 2: TruCost carbon rankings correlations

Following standard practices in sustainable investing [Statman, 2006, Kempf and Os-
thoff, 2007], two possible methods may be implemented to screen GMB portfolio candi-
dates: Best-in-Universe (BinU) & Best-in-Class (BinC). Best-in-Universe aims to select
companies with best/worst environmental metrics in the throughout the universe while
Best-in-Class screens companies with best/worst environmental metrics within each sec-
tor or industry. The first may lead to over-exposition of one class meanwhile the other
requires well distributed data among the classes. In order to recover robust results,
we apply both approaches on all environmental metrics available and compute multiple
GMB candidates. When considering carbon intensity only, the two screening methods
lead to diverse outcomes. On the one hand, BinU GMB portfolios have a Green leg
over-exposed to the finance sector and in smaller proportions to health-care and IoT.
Hence, a bias appears toward sectors either with inappropriate carbon emissions ac-
counting [CDP, 2020] or with little contribution to the environmental transition. It is
thus excluded from further analysis. On the other hand, BinC approaches and BinU
with an additional filter on high-stakes industries lead to well diversified portfolios with
Green and Brown companies in almost all sectors or sectors with high impact on fighting
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climate change. This is in line with the recommendations of the European Commission
Technical Expert Group (TEG) on Paris Aligned Benchmarks (PAB) [Hoepner et al.,
2019]. Adding avoided emissions to the screening improves the Best-in-universe ap-
proaches and is done via the average rank between induced emissions and saved ones. It
encompasses wider concerns about climate change and leads to well diversified portfolios
with natural exposure to high-stakes sectors such as industrials, materials and utilities.
Almost no Green companies are found in the energy sectors however since it has very
poor avoided emissions on average. Environmental scores also give satisfying portfolios
in terms of diversification and weighted-average carbon intensity between Green and
Brown companies.

In the upcoming work, we restraint the analysis to four representatives GMB candidates,
GMB1 denotes a factor based on TruCost scope 3 carbon intensity and is built following
the Best-in-Class approach; GMB2 is constructed with TruCost scope 3 carbon inten-
sity and screened throughout the Universe of High-Stake sectors; GMB3 corresponds a
portfolio based on ISS environmental scores with a Best-in-Universe screening; and fi-
nally, GMB4 which is built following a Best-in-Universe screening on a ratio of "avoided
emissions" over "induced emissions" computed by Carbone4. Those four factors share
common properties and rely on four dimensions of climate-related risks each one em-
bracing a different range of climate-related issues.

First of all, every Green leg has higher monthly average return and higher Sharpe ra-
tio than its Brown counterpart. The long-short performance of GMB varies between
each approach however but all of them show positive compound returns after 2010, with
different proportions. Only GMB4 built upon induced and saved emissions achieves a
straight out-performance over the period. This yield variation in Sharpe ratio, ranging
from -0.017 for GMB3 to 0.209 for GMB4. Hence, GMB1 to GMB3 have lower monthly
return on average than SMB or HML. Regarding financial ratios, Green companies are
more expensive and bigger than Brown ones. Indeed, the median price to book ratio
of Green companies is on average 1.30 times higher than Brown ones while the median
market share is on average 2 times higher over the period. Tables 3 and 4 in Appendix
A present all details about GMB candidates.

Figure 3 shows the compound returns of the four selected GMB factors as well as the
three Fama-French factors.
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Figure 3: Equity pricing factors of interest

3 Estimating the time-varying risk premium of the Green
Minus Brown factor

The pricing of climate-related risks in financial returns is of growing concern in the
academic literature. Bolton and Kacperczyk [2020] run large cross-section regressions
at the firm level and find a widespread carbon premium that is not well explained by
traditional equity pricing factors. Using another definition of climate change exposure
Sautner et al. [2021] confirm this findings when looking at proxies of expected returns
but not on realised returns. However, both of these studies rely on firms characteristics
to build cross-sectional regressions. They do not test for the existence of a risk factor
commonly associated with mimicking long-short portfolio returns. Görgen et al. [2019]
attempt to do so and find a non-significant risk premium but rely on rolling-window
estimators to capture the dynamics of factor loadings. Such estimation technique lies
however on erroneous assumptions which makes the test of the existence of a premium
hardly conclusive.

3.1 An asset pricing model with time-varying coefficients

Asset pricing models are built on linear regressions where the excess returns of a financial
asset are explained by a set of factors. Let us denote (ri,t) the excess returns time series
of a asset i = 1, . . . , N in a system of N assets and ft = (f1,t, . . . , fm,t)

′ a set of m
observable factors. Usual asset pricing models are thus of the form

ri,t = αi + βi
′ft + εi,t
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where the regression coefficients αi and βi = (βi,1, . . . , βi,m)′ are assumed to be constant.
However, there is no economic rationale for these parameters to be time invariant, and
numerous papers actually account for variations in the slope coefficients (see Engle [2016]
and references therein). We therefore favor a conditional regression model of the form

ri,t = αi,t + βi,t
′ft + εi,t. (1)

Practitioners usually obtain time-varying estimates of the regression parameters by com-
puting OLS estimators on rolling windows. However, this method lies on inconsistent
assumptions since the obtained estimator targets constant betas on the considered time
frame. Engle [2016] proposed to model conditional betas as a transformation of the
conditional covariance matrix of a multivariate GARCH model. Although this method
provides a direct estimation of the betas after estimating the model (usually using a
Dynamic Conditional Correlation GARCH), the variable of interest is not directly spec-
ified. Indeed, the conditional betas are obtained from a transformation of the conditional
covariance matrix, which makes hypothesis testing on the dynamic betas impractical.
In addition, the estimated time-varying coefficients are often highly volatile.

Directly modeling betas dynamics provides numerous advantages as it allows to gain
economic and financial interpretability on the time-varying dependency between assets
or factors and allows for testing procedures. Gagliardini et al. [2016] proposed to intro-
duce dynamics into the regression coefficient through instrumental variables, following
ideas from Ferson and Harvey [1991] among others. The obtained factor loadings are
however highly sensitive to the choice of instrumental variables as noted by Ghysels
[1998]. Darolles et al. [2018] proposed a new multivariate GARCH model where the
conditional betas can be obtained from a Cholesky decomposition of the conditional
covariance matrix. However, it requires estimating the full multivariate system even if
only one equation is of interest. For example, Equation (1) would require the estimation
of m intermediate models, which makes it impractical for an asset pricing exercise where
estimation of the equation has to be repeated N times.

To remedy these issues, Blasques et al. [2022] recently proposed a novel model to obtain
dynamic betas in the form of Autoregressive Conditional Betas (ACB). This model
builds upon the score-driven models literature introduced by Creal et al. [2013] to allow
for both time-varying regression coefficients and conditional heteroscedasticity of the
factors which is highly relevant in financial applications. In particular, assume that each
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factor fj dynamic is given by a GARCH(1,1) with constant conditional mean

fj,t = µj + σj,tηj,t

σ2j,t = ωj + aj(fj,t−1 − µi)
2 + bjσ

2
j,t−1

(2)

where ηj,t is an iid centered random variable with unit variance. Similarly, assume
that the residuals of the conditional regression follows a GARCH(1,1) with conditional
variance

g2i,t = ωεi + aεi(ri,t−1 − αi,t−1 − βi,t−1
′ft−1)

2 + bεigi,t−1. (3)

Additionally, assume that the conditional regression parameters follow the autoregressive
updating equations

αi,t+1 = ωαi + ξαiεi,t + cαiαi,t

βi,j,t+1 = ωi,j + ξi,j
fj,t εi,t
µ2j + σ2j,t

+ ci,jβi,j,t
(4)

for i = 1, . . . , N and j = 1, . . . ,m.

These dynamics are obtained from a Gaussian score-driven updating equation as pre-
sented in Appendix C. Note that, although derived from technical assumptions, the
updating term fj,tεi,t/(µ

2
j + σ2j,t) is very intuitive. Indeed, if ξi,j and ci,j are positive,

the term fj,tεi,t implies that the update attempts to obtain beta values for which the
residuals εi,t are not only unconditionally orthogonal to the factor fj as usual in lin-
ear regressions, but also conditionally orthogonal. Additionally, as the updating term
is inversely proportional to the conditional volatility σ2j,t, the updating step size is less
important in period of high volatility, ensuring less noisy conditional betas. The updat-
ing equation of the intercept αi,t is similar to the betas equation, except that since the
related factor is constantly equal to one, its variance is null, thus the denominator of the
updating term is equal to one. All parameters can easily be inferred by Quasi Maximum
Likelihood (QML) and asymptotic results are presented in Appendix D.

To conclude the definition of our dynamic asset pricing model, we follow Gagliardini et al.
[2016]. Under standard assumptions linked to the absence of arbitrage opportunities,
asset pricing models with time-varying factor loadings verify that, for any t, there exists
a unique random vector vt = (v1,t, . . . , vm,t)

′ such that for almost all i,

αi,t = βi,t
′ vt almost surely. (5)
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The dynamic asset pricing model (1) combined with (5) yields that for almost all i,

E[ri,t|Ft−1] = βi,t
′ λt almost surely, (6)

where λt, the vector of time-varying risk premia, is given by λt = vt + µ with µ =

E[ft] = (µ1, . . . , µm). For example, in the CAPM, we have vt = 0.

The estimation of time invariant risk premia is usually conducted using Fama and Mac-
Beth [1973] procedure. In that spirit, Gagliardini et al. [2016] proposed a two-step
procedure to infer dynamic risk premia. We draw from the latter to propose the follow-
ing two step procedure to recover time-varying risk premia from the ACB model. The
first step consists in the estimation of αi,t and βi,t by QML, for each asset i in the system,
i = 1, . . . , N . The second step deals with the estimation of vt from the cross section of
assets. For each t, we estimate this vector from (6) by regressing αt = (αi,t)i=1,...,n on
βt = (βi,t)i=1,...,n using OLS. Combining vt with parameter µ estimated in the first step
yields the time-varying risk premia λt.

3.2 Does the GMB factor matter in the regression of stock returns?

To assess the existence of a risk premium associated to climate related risks, we con-
sider ri,t the weekly excess returns of the 38 industries portfolio and the three standard
Fama-French factors to which we add a GMB factor: ft = (Mktt,HMLt, SMBt,GMBt)

′.
In order to highlight the benefits of using our proposed ACB pricing model, we compare
our results to the benchmark procedure of rolling Fama-MacBeth procedure.

Figure 4 illustrate dynamic betas of GMB built on environmental score (GMB3) for
two industries, Oil and Gas Extraction and Retail. While the Oil and Gas Extraction
industry experiences large increase in its sensitivity to climate-related risks, the retail
industry shows varying but positive exposure to the GMB factor. This illustrates the
increasing awareness about the challenges faced by the fossil fuel industry due to climate
change while the retail industry is not of high-stakes in the ecological transition.

Dynamic betas obtained from the first step of our procedure share similat features with
OLS estimates computed on a fixed 3-year window in terms of trends, magnitudes and
rankings to the GMB candidates. Details are given in Appendix B though Tables 5 to 9.
Conditional betas are however less volatile than the one recovered from rolling windows
regressions. Table 10 in Appendix B provides more details. This argues in favor of the
Autoregressive Conditional Beta (ACB) model to improve the dynamic factor loadings
estimation and thus reduces errors when computing the risk premium. Applying our
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(a) Oil and Gas Extraction (b) Services

Figure 4: Conditional Betas

two-step procedure allows to recover significant risk premium of around 4% annualised
for the market in every model. Additionally, the GMB factor risk premium is significant
for all GMB candidates except GMB3, with values of ranging from 1.3% to 4% annually.
Details are given in appendix B in Table 11. It clearly differs from the outcome of the
Fama-MacBeth procedure giving no statistically significant risk premium for any of the
equity pricing factors, including the GMB candidates. This supports the need for proper
dynamic beta modeling and time varying risk premium estimates.

Moreover, this new result in the literature underlines the overperformance of Green
stocks over Brown ones and confirms the ability of climate-related risks to explain the
cross-section of returns. The clear dynamic of the GMB risk premium, shown in Figure
5 strengthens our approach compared to the static standard Fama-MacBetch procedure.
One can observe an increasing risk premium in times of bull markets, for instance after
the 2008 crisis or when climate attention is at a peak, (e.g after the 2016 COP 21) and
turning negative in times of financial crises. Also, a significant difference in magnitude
appears between GMB candidates. Especially, GMB2, based on High-Stake industries,
delivers higher but more volatile risk premium. This result underlines the importance
of managing climate-related risks with several metrics, encompassing a wide range of
issues and favouring tangibility and transparency over black-box approaches to ease
market acceptance and pricing.

4 Volatility spillovers between Green and Brown Portfolios

Assessing the connection between Green and Brown stocks has become central in the
financial industry as demand for sustainable investment grows. In particular, as some
investors have long-only constraint, it is crucial to measure the contagion from climate-
related risks to Green assets. On that matter, Henriques and Sadorsky [2008] and Bondia
et al. [2016] study the connection between Oil prices and clean energy stocks returns.
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Figure 5: Conditional risk premium

However, their work only focuses on a particular sector and do not investigate spillovers
from Brown stocks. Recently, Nobletz et al. [2021] investigated the interconnection be-
tween clean energy indexes and sector portfolios. Alternatively, we model directly the
volatility spillovers between Green and Brown portfolios which allows for a more inter-
pretable contagion measure of volatility innovations stemming from climate-related risks.

Surprisingly, to the best of our knowledge, most spillover analysis on climate-related risks
have been conducted on carbon risk solely, using the methodology of Diebold and Yılmaz
[2014] based on the Generalized Variance Decomposition of Koop et al. [1996] in VAR
models. Linear models may not be the most adequate framework when studying financial
volatilities and we propose to use multivariate GARCH models instead. Such models
allow for a decomposition of the conditional variance of an asset between individual
effects and cross effects stemming from other assets in the system. Let us denote rt =

(rB,t, rG,t)
′ with rB,t and rG,t the returns of the Brown and Green portfolios respectively.

We consider a general multivariate conditional volatility model

rt = Σ
1/2
t ηt, Σt = HtRtHt

where (ηt) is a sequence of independent and identically distributed random vectors with
zero mean and identity covariance matrix and Ht = diag{g1/2

t } the diagonal matrix of
individual conditional volatilities, gt = (gB,t, gG,t)

′, and Rt a correlation matrix mea-
surable with respect to the sigma-field {ru, u < t}. In particular, a very general model
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for gt is the Extended Constant Conditional Correlation (ECCC) GARCH model of
Jeantheau [1998] given by

gt = ω +

q∑
i=1

Air
2
t−i +

p∑
j=1

Bjgt−j . (7)

More precisely, we consider the unrestricted ECCC (uECCC) GARCH model of Conrad
and Karanasos [2010] relaxing the hypothesis of positivity of the off-diagonal terms in Bj

allowing for possibly negative GARCH spillovers. This model is particularly suited for
the analysis of volatility contagion as spillovers can easily be derived from the off-diagonal
elements of the matrices Ai and Bj . Indeed, consider a bivariate uECCC-GARCH(1,1)
model, we obtain the following equation for the conditional variance vector[

gB,t

gG,t

]
=

[
ω1

ω2

]
+

[
a11 a12

a21 a22

][
r2B,t−1

r2G,t−1

]
+

[
b11 b12

b21 b22

][
gB,t−1

gG,t−1

]

which yields

{
gB,t =

gG,t =

ω1 +

Brown own effect︷ ︸︸ ︷
a11r

2
B,t−1 + b11gB,t−1+

Green spillover︷ ︸︸ ︷
a12r

2
G,t−1 + b12gG,t−1

ω2 + a22r
2
G,t−1 + b22gG,t−1︸ ︷︷ ︸
Green own effect

+ a21r
2
B,t−1 + b21gB,t−1︸ ︷︷ ︸
Brown spillover

Following Conrad and Karanasos [2010] and Conrad and Weber [2013], we rewrite model
(7) in terms of volatility innovations ht := r2t −gt such that E[ht|Ft−1] = 0. In that case,
a volatility shock r2i,t can imply a positive or negative volatility innovation depending on
whether it is larger or smaller than expected. The model yields

{
gB,t =

gG,t =

ω1 +

Brown own effect︷ ︸︸ ︷
a11hB,t−1 + (a11 + b11)gB,t−1+

Green spillover︷ ︸︸ ︷
a12hG,t−1 + (a12 + b12)gG,t−1

ω2 + a22hG,t−1 + (a22 + b22)gG,t−1︸ ︷︷ ︸
Green own effect

+ a21hB,t−1 + (a21 + b21)gB,t−1︸ ︷︷ ︸
Brown spillover

Interestingly, this model allows not only to measure spillovers as the initial impact of
foreign volatility innovations (captured by coefficients a12 and a21), but also to model
spillovers persistence. Let us denote for i, j ∈ {B,G}, k = 1, 2, . . . ,

λii,k =
∂gi,t
∂hi,t−k

and λij,k =
∂gi,t
∂hj,t−k

.

Coefficients λij,k can thus be interpreted as the effect on the conditional variance of asset
i, gi,t, of an own volatility innovation hi,t−k, or a foreign volatility innovation hj,t−k, at
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time t − k. The computation of these coefficients follows from Conrad and Karanasos
[2010] and is detailed in Appendix E.

4.1 Long-only Green and Brown portfolios

We first investigate the relationship between long-only Green and Brown portfolios
volatilities. Figure 6 present the track and conditional volatilities of the two portfo-
lios formed on TruCost scope 3 carbon intensity and built following the Best-in-Class
approach. Of course, both portfolios being long equities, they appear highly correlated.
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(a) Portfolio tracks
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(b) Conditional volatilities

Figure 6: Performance and volatilities of the Green (green line) and Brown (brown line)
portfolios.

We fit a bivariate uECCC-GARCH(1,1) on the returns. The QML estimator yields[
gB,t

gG,t

]
=

[
0.037

0.033

]
+

[
0.038 0.039

0.013 0.056

][
r2B,t−1

r2G,t−1

]
+

[
0.964 −0.089

0.000 0.888

][
gB,t−1

gG,t−1

]

with a constant conditional correlation of 91.2%. We first notice that both Green and
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Brown portfolios impact each others volatilities. Interestingly, we note that the initial
impact of Green portfolio volatility innovations on the Brown portfolio is higher than
the effect of Brown portfolio volatility innovations on the Green portfolio as a12 > a21.
This indicates a higher immediate impact of the spillover effect stemming from Green
returns than from Brown returns. Additionally, Figure 7 presents the response functions
to volatility innovations ht−k for k = 1, . . . , 100. We remark that the Green portfolio
volatility appears less persistent than the Brown’s. Indeed, we clearly see the fastest
decay of the response functions as the number of lags increases for the Green portfolio.
Besides, the spillover effect from Green to Brown is less persistent than the effect of
Brown returns own volatility innovations. Finally, one can remark that even though
the volatility contagion from Brown to Green is low, it is persistent, due to the positive
parameter b21.
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(a) Response function of gB,t
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(b) Response function of gG,t

Figure 7: Response functions of the conditional volatilities of Brown and Green portfolios
to volatility innovations.

4.2 Factor-hedged Green and Brown portfolios

Spillover analysis on long-only portfolios may however carry misleading information on
the connection between Green stocks and climate-related risks. Indeed, both the Green
and Brown portfolios share expositions to similar factors that render the analysis of
variance innovations difficult to attribute to climate-related risks only. For example,
both portfolios are exposed to the Equity Market risk, and volatility innovations of this
factor will impact both portfolios. The contagion analysis between gG,t and gB,t should
thus be corrected to take into account the effect of global Equity factors, thus ensuring
that the remaining volatility innovations hB,t relate to climate-related risks.
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In order to study the contagion from Brown assets to Green assets, we propose to con-
sider the Brown and Green portfolios hedged from a set of common factors ft. The
ACB model presented in Subsection 3.1 is particularly suited to that extent. Indeed, it
allows to recover the estimated residuals in the conditional regression (1) which are by
construction conditionally orthogonal to the factors ft. We thus propose the following
two-step procedure to recover volatility spillovers between two long-only portfolios. In
a first step, for each portfolio, compute dynamically beta-hedged portfolios using the
ACB model. Let us denote v̊t the hedge-portfolios returns. In a second step, fit an
uECCC-GARCH(1,1) on v̊t to uncover volatility spillovers. Let g̊t the vector of individ-
ual conditional volatilities of the hedged portfolios.

We consider the benchmark model of Fama and French [1993] and consider the 3 factors
ft = (Mkt, SMB,HML). Figure 8 presents the performance and conditional volatilities
of the hedged Green and Brown portfolios formed on TruCost scope 3 carbon intensity
and built following the Best-in-Class approach. We clearly see that removing factors
exposures allows to obtain uncorrelated returns while the volatilities still appear to share
some common dynamics.

The QML estimator of the uECCC GARCH model yields

[
g̊B,t

g̊G,t

]
=

[
1.7e−4

5.8e−4

]
+

[
0.089 0.008

0.037 0.026

][
v2B,t−1

v2G,t−1

]
+

[
0.709 0.098

0.002 0.946

][
g̊B,t−1

g̊G,t−1

]

with a constant conditional correlation of -4.2%. Interestingly, the spillover from Brown
to Green portfolio is now higher than the one from Green to Brown portfolio. This
result contrasts with the one obtained on unhedged portfolios and gives new insights on
the volatility contagion stemming from climate-related risk to Green assets. Moreover,
Figure 9 shows that most of the conditional volatility of hedged Green portfolio is driven
by Brown portfolio volatility innovations. This effect is both observable in term of initial
effect and persistence. Unlike the misleading conclusions of the unhedged analysis, this
result highlights that long-only portfolios of Green assets are not fully hedged against
climate-related risks affecting Brown assets. This provides a strong argument in favor
of our proposed method for enhancing risk management.

Appendix F shows that similar results are found when using portfolios built following a
Best-in-Universe screening on a ratio of "avoided" over "induced" emissions computed
by Carbone4 (GMB4). However, when considering portfolios formed on GMB2 and
GMB3 criteria, we find no evidence of spillovers from Brown to Green.
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Figure 8: Performance and volatilities of the Hedged Green (green line) and Brown
(brown line) portfolios.
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Figure 9: Response functions of the conditional volatilities of Brown and Green hedged
portfolios to volatility innovations.
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5 Conclusion

The dynamic modeling of the relationship between asset returns and risk factor is cru-
cial when estimating asset pricing models and volatility contagion. In this paper, we
leverage the recent Autoregressive Conditional Beta model of Blasques et al. [2022] in
two ways. First, we show that direct modeling of dynamic conditional betas yield good
estimate of the relationship between stock returns and a Green Minus Brown factor.
This is particularly useful as the estimation of slope coefficients is central to recover risk
premia in dynamic asset pricing models. Building upon Fama and MacBeth [1973] and
Gagliardini et al. [2016], we use a two-step procedure to determine factors risk premia.
Our procedure allows us to uncover a significant Carbon-related risk premium, provid-
ing new arguments in the question of Green assets outperformance. Additionally, this
paper contributes to the analysis of volatility spillovers. We introduce a new procedure
to measure volatility contagion. In a first step, we recover the residuals from the ACB
model to ensure a dynamic hedging of a set of observable factors. In a second step, we
fit an unrestricted ECCC GARCH model on the hedged return series and derive the
volatility spillovers and their persistence. The application of this procedure on Green
and Brown portfolio provides a strong argument in favor of the proposed model as it
allows to uncover a strong and persistent effect of volatility innovations of Brown returns
on Green volatility for carbon based portfolios. This contagion effect seems to be lower
with Green and Brown portfolios built on environmental scores, advocating for broader
metrics of firms climate-related risks exposure for better risk management.
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Appendix A Details on GMB candidates

This section presents details on Green and Brown portfolios formed on different criteria
presented in Section 2. Reported average returns and Standard deviations are annu-
alised.

Mkt share (*100) Price to Book
Average 2.08 1.30

carbon_TruCost_BinC (GMB1) 0.65 1.02
carbon_TruCost_HS_BinU (GMB2) 0.39 1.31

envScore_ISS_BinU (GMB3) 4.75 1.59
envScore_ISS_BinC 6.84 1.42

carbon_Carbone4_IS_BinU (GMB4) 0.61 0.88
carbon_Carbone4_IS_BinC 0.56 1.03

Table 3: Median values for GMB candidates
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Appendix B Risk premium and conditional betas

This section gives details about conditional regressions outputs.

Intercept MKT SMB HML GMB
Coal -0.13 1.20 0.93 0.66 -0.78
Steel -0.13 1.38 0.66 0.47 -0.51

Mines 0.01 1.26 0.39 0.36 -0.47
Mach 0.08 1.20 0.36 0.04 -0.44
Chips 0.04 1.17 0.20 -0.50 -0.36

Fin 0.02 1.24 0.07 0.42 -0.33
Banks 0.03 1.02 -0.05 0.67 -0.31
ElcEq -0.02 1.11 0.48 0.08 -0.30
FabPr 0.01 1.09 0.89 0.18 -0.29
LabEq 0.06 1.08 0.34 -0.32 -0.25
Agric 0.03 0.74 0.21 0.03 -0.23

Chems 0.00 1.06 0.17 0.13 -0.23
Autos -0.03 1.29 0.40 0.18 -0.21

Comps -0.02 1.10 0.18 -0.42 -0.18
Other 0.03 0.90 -0.16 0.30 -0.18
Gold 0.05 0.41 0.36 -0.11 -0.17

Trans 0.07 1.02 0.25 0.21 -0.15
Aero 0.05 1.05 0.03 0.18 -0.13
Ships 0.18 1.03 0.28 0.19 -0.13
Paper -0.06 0.95 -0.01 0.05 -0.08
BldMt 0.02 1.11 0.42 0.31 -0.08
Rubbr 0.04 0.94 0.39 0.05 -0.07
MedEq 0.09 0.89 0.03 -0.20 -0.06
Drugs 0.05 0.83 -0.14 -0.42 -0.06

Oil -0.08 1.02 0.01 0.53 -0.04
BusSv 0.02 1.09 0.03 -0.44 0.01
Cnstr 0.03 1.24 0.63 0.43 0.05
PerSv 0.01 0.93 0.41 0.19 0.06
RlEst 0.02 1.00 0.42 0.31 0.07
Boxes 0.12 0.99 0.12 0.13 0.10
Insur 0.06 1.00 -0.09 0.42 0.10
Guns 0.20 0.65 -0.16 0.00 0.12
Fun 0.16 1.25 0.20 0.00 0.14

Toys -0.03 0.94 0.45 0.15 0.15
Food 0.06 0.60 -0.16 -0.04 0.16

Hshld 0.08 0.62 -0.22 -0.07 0.18
Whlsl 0.02 0.96 0.26 0.09 0.19
Txtls 0.06 1.16 0.46 0.32 0.20
Hlth 0.05 0.82 0.23 0.07 0.22

Smoke 0.14 0.69 -0.18 0.14 0.25
Util 0.10 0.69 -0.26 0.20 0.28

Books -0.09 0.94 0.22 0.38 0.30
Meals 0.13 0.83 0.10 0.06 0.32
Beer 0.09 0.64 -0.36 -0.04 0.33

Telcm -0.01 0.96 -0.18 0.24 0.35
Clths 0.10 1.06 0.28 0.16 0.38
Soda 0.08 0.84 -0.28 0.02 0.43
Rtail 0.03 1.00 0.01 0.05 0.88

Table 5: Average factor loadings from ACB regressions / Model GMB1
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MKT Model ACB
GMB1 GMB2 GMB3 GMB4

M
od

el
R

ol
lin

g GMB1 0.98 0.97 0.97 0.97
GMB2 0.98 0.98 0.98 0.98
GMB3 0.98 0.98 0.98 0.97
GMB4 0.97 0.98 0.96 0.99

Table 6: MKT Beta rankings correlation between models

SMB Model ACB
GMB1 GMB2 GMB3 GMB4

M
od

el
R

ol
lin

g GMB1 0.98 0.96 0.96 0.95
GMB2 0.96 0.97 0.93 0.96
GMB3 0.97 0.93 0.98 0.93
GMB4 0.96 0.97 0.93 0.97

Table 7: SMB Beta rankings correlation between models

HML Model ACB
GMB1 GMB2 GMB3 GMB4

M
od

el
R

ol
lin

g GMB1 0.90 0.80 0.69 0.81
GMB2 0.94 0.95 0.84 0.95
GMB3 0.85 0.84 0.93 0.83
GMB4 0.89 0.90 0.73 0.92

Table 8: HML Beta rankings correlation between models

GMB Model ACB
GMB1 GMB2 GMB3 GMB4

M
od

el
R

ol
lin

g GMB1 0.98 0.13 0.34 -0.12
GMB2 0.01 0.92 0.63 0.67
GMB3 0.31 0.57 0.97 0.29
GMB4 -0.18 0.52 0.26 0.95

Table 9: GMB Beta rankings correlation between models
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GMB1 GMB2 GMB3 GMB4
Agric 1.80 1.1 2.9 5.3
Food 5.50 1.5 0.9 1.2
Soda 1.40 1.9 0.7 1.0
Beer 2.50 1.4 1.2 1.4

Smoke 2.50 1.3 1.0 9.7
Toys 1.50 1.0 4.3 1.1
Fun 1.10 4.5 0.8 6.7

Books 0.50 2.7 4.8 2.6
Hshld 0.60 0.6 1.0 1.7
Clths 1.70 4.9 1.3 4.9
Hlth 0.50 4.0 2.1 1.0

MedEq 0.90 0.5 1.6 3.4
Drugs 3.40 2.9 2.0 3.5

Chems 2.3 1.9 0.9 1.2
Rubbr 1.70 3.1 0.7 2.2
Txtls 0.80 2.5 1.2 1.3

BldMt 1.20 1.0 1.4 3.3
Cnstr 1.40 2.4 0.9 1.3
Steel 1.60 2.7 1.2 1.8

FabPr 0.60 1.0 0.9 0.7
Mach 1.80 2.1 1.2 8.5
ElcEq 1.60 1.1 1.0 4.6
Autos 0.90 1.9 1.3 2.0
Aero 0.40 2.1 1.2 4.5
Ships 4.80 1.7 0.7 10.8
Guns 2.3 6.0 1.1 0.8
Gold 1.00 1.9 1.3 3.3

Mines 1.20 1.4 1.2 4.2
Coal 1.40 6.6 2.6 1.1

Oil 1.40 1.0 0.9 1.4
Util 1.90 1.1 1.4 5.9

Telcm 1.70 2.5 1.9 2.7
PerSv 1.50 2.6 1.1 2.1
BusSv 2.10 1.4 2.4 1.2
Comps 2.3 1.3 0.9 2.6
Chips 1.00 3.5 1.2 3.3

LabEq 2.00 1.4 2.9 1.3
Paper 2.00 2.1 1.2 0.9
Boxes 2.60 2.1 0.7 0.6
Trans 1.60 2.3 2.0 9.4
Whlsl 1.20 0.9 0.9 1.3
Rtail 0.80 1.0 1.2 2.1

Meals 4.00 7.0 0.9 1.5
Banks 1.00 1.6 1.6 0.9
Insur 0.90 1.1 1.8 0.9
RlEst 1.00 11.8 1.0 1.8

Fin 1.40 0.9 1.3 0.7
Other 5.50 2.0 3.5 2.1

Table 10: Factor loadings volatility ratios between rolling windows regressions and ACB
regressions
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Fama-MacBeth Conditional Risk Premium

GMB1 -4.83 2.59***

(10.34) (0.50)

GMB2 21.56* 4.12***

(12.98) (1.48)

GMB3 10.05 -0.26
(13.05) (0.33)

GMB4 11.45 1.35***

(9.98) (0.61)

MKT 23.81 17.67 18.66 9.79 4.11*** 3.86*** 3.78*** 4.28***

(18.55) (18.29) (17.84) (17.67) (0.16) (0.18) (0.15) (0.15)

SMB -2.46 -6.65 4.36 -2.64 -1.86*** -4.06*** -1.47*** -3.9***

(10.2) (10.7) (10.17) (10.62) (0.47) (1.04) (0.40) (0.76)

HML -12.42 -12.33 -11.61 -9.05 -1.35 -0.64 -2.02*** -3.06***

(11.28) (11.12) (4.15) (10.28) (0.51) (0.44) (0.34) (0.46)
***p < 0.01, **p < 0.05, *p < 0.1

Table 11: Factors average risk premium
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Appendix C Updating equations of the Score-Driven con-
ditional regression coefficients

This appendix presents the main idea of Score-Driven models and how it is applied to
the conditional regression to derive the updating equations presented in (4).

Score Driven models, also known as Generalized Autoregressive Score models (GAS)
were introduced by Creal et al. [2013]. They aim at generalizing models with time-
varying parameters where the updating is observation driven. In particular, consider
an observable process yt and assume it follows the conditional density p(yt|ψt,Ωt, θ)

where ψt is the time varying parameter of interest, θ a constant parameter, and Ωt the
information set available at time t. A Score Driven models features an updating equation
of the form

ψt+1 = ω + ξ S(ψt)
∂ log p(yt|ψt,Ωt, θ)

∂ψt︸ ︷︷ ︸
updating term

+c ψt (8)

where ω, ξ and c are unknown parameters to be estimated. The updating term is decom-
posed into a scaling term S(ψt), that is usually related to the inverse of the information
matrix, and the score of the likelihood with respect of the time-varying parameter. The
dynamics of the parameter of interest is thus driven by the scaled score. Interestingly,
numerous econometric models can be expressed as a Score-Driven model. For example,
if we assume that the observation conditional density is Gaussian and the parameter of
interest is the time-varying variance, under an appropriate choice of the scaling function,
Equation (8) yields the standard GARCH(1,1) model.

Blasques et al. [2022] built on this idea to derive a Score-Driven updating of the con-
ditional regression parameters. If we assume for all i, εi,t = gi,tνi,t where νi,t are iid
Gaussian, we obtain the log-likelihood contribution at time t

li,t =
ε2i,t
g2i,t

+ log(g2i,t), εi,t = ri,t −
m∑
j=1

βi,j,tfj,t. (9)

We thus obtain that
∂li,t
∂βi,j,t

= −2εi,tfj,t
g2i,t

and the inverse of the information matrix is

S(βi,j,t) = −

(
E

[
∂2li,t
∂β2i,j,t

|Ft−1

])−1

= −
g2i,t

2(µ2j + σ2j,t)
.
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Whence, we obtain the updating term

S(βi,j,t)
∂li,t
∂βi,j,t

=
εi,tfj,t

(µ2j + σ2j,t)

which yields the updating equations in (4).
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Appendix D Inference and Hypothesis testing in the ACB
model

This section presents the asymptotic results established by Blasques et al. [2022] on the
consistency and asymptotic normality of the multistep QML estimator. Building upon
these results, we present a test procedure to verify beta constancy and significance. In
particular, we establish the asymptotic distribution of the Wald, Quasi Likelihood ratio,
and Rao-score test statistics.

D.1 Asymptotics of the multistep QML estimator

Let us denote for any j ∈ {1, . . . ,m} the true parameter θ(j)
0 = (µ0j , ω0j , a0j , b0j)

′ driving
the individual GARCH(1,1) equations of each factor fj as defined in (2). The first step
of the estimation consists of estimating independently θ

(j)
0 by standard QML

θ̂(j)
n = argmin

θ∈Θ
Õ(j)

n (θ), Õ(j)
n (θ) =

1

n

n∑
t=2

l̃jt(θ) (10)

where θ is a generic element of the parameter space Θ and

l̃jt(θ) =
(fj,t − µ)2

σ̃2j,t(θ)
+ log σ̃2j,t(θ), σ̃2j,t(θ) = ω + a(fj,t−1 − µ)2 + bσ̃2j,t−1(θ)

with a given initial value σ̃2j,1(θ) = g̃ > 0.

In the second step, we estimate the parameter driving the GARCH(1,1) equation (3) of
the residuals εi,t denoted ϑ

(εi)
0 = (ω0εi , a0εi , b0εi)

′, the parameter ϑ(i,0)
0 = (ω0αi , ξ0αi , c0αi)

′

driving the dynamic of the time-varying intercept, and ϑ
(i,j)
0 = (ω0,i,j , ξ0,i,j , c0,i,j)

′

the parameter driving the dynamic of the time-varying βi,j , for j ∈ {1, . . . ,m}. Let
ϑ
(i)
0 = (ϑ

(εi)
0

′
,ϑ

(i,0)
0

′
,ϑ

(i,1)
0

′
, . . . ,ϑ

(i,m)
0

′
)′, θ0 = (θ

(1)
0

′
, . . . ,θ

(m)
0

′
)′ and the full parameter

φ
(i)
0 = (θ′

0,ϑ
(i)
0

′
)′. Let ϑ a generic element of Θϑ and φ = (θ′,ϑ′)′. We estimate ϑ

(i)
0 by

ϑ̂(i)
n = argmin

ϑ∈Θϑ

Õn(θ̂n,ϑ), Õ(i)
n (φ) =

1

n

n∑
t=2

l̃
(i)
t (φ) (11)

where

l̃
(i)
t (φ) =

ε̃i,t(φ)

g̃2i,t(φ)
+ log g̃2i,t(φ), ε̃i,t(φ) = ri,t − α̃i,t(φ)−

m∑
j=1

β̃i,j,t(φ)fj,t,

g̃2i,t(φ) = ω + αṽ2i,t−1(φ) + βg̃2i,t−1(φ), α̃i,t(φ) = ωαi + ξαi ε̃i,t−1(φ) + cαiα̃i,t−1(φ)

β̃i,j,t(φ) = ωi,j + ξi,j
fj,t−1 ε̃i,t−1(φ)

µ2j + σ̃2j,t−1(θ)
+ ci,j β̃i,j,t−1(φ).
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The multistep QML etimator is thus given by φ̂
(i)
n = (θ̂′

n, ϑ̂
(i)′
n )

′
.

Under a set of technical assumptions that we denote [A-ACB], Blasques et al. [2022]
show the following results.

Theorem 1 (CAN of the QMLE (Darolles, Francq and Laurent, 2018)). Under the set
of assumptions [A-ACB], we have

θ̂n → θ0 a.s. and ϑ̂(i)
n → ϑ

(i)
0 a.s. as n→ ∞.

In addition,
√
n(φ̂(i)

n −φ
(i)
0 )

L→ N (0,Ωi) (12)

where Ωi is an invertible matrix.

D.2 Testing for constant conditional betas

Although the assumption of beta constancy is rarely backed by an economic rationale,
linear regressions with constant slope parameters remain predominant in the financial
literature. It is therefore useful to introduce test procedures to verify this assumption.
Moreover, this general testing setup can easily be extended for model selection to assess
new factors’ relevancy.

Assume that we want to test the hypothesis H0,ij : βi,j,t = ω0,ij against H1,ij : βi,j,t is
time-varying. From (4), constancy of βi,j,t is obtained when ξ0ij = 0. However, testing
for this constraint on ϑ0 is difficult. Indeed, under H0,ij : ξ0ij = 0, the conditional
beta βi,j,t tends to ωij/(1− cij) and there exists an infinity of pairs (ωij , cij) such that
βi,j,t = ω0,ij , resulting in a non identifiable model under the null hypothesis. Test-
ing problems where parameters are not identified under the null induces non standard
asymptotic distributions of the classical tests statistics. Hansen [1996] in particular
provides a methodology to conduct such tests. To simplify the testing procedures, we
rather suppose that the parameter c0ij is known and set at an arbitrary value cij . This
solves the identification issue and we can now test H0,ij(cij) : ξ0ij = 0 using standard
techniques. Let us denote R the constraint matrix such that Rφ

(i)
0 = ξ0ij . The triptych

of the Wald, Rao-score, and Quasi Likelihood Ratio (LR) statistics is given by

Wn = n(R φ̂
(i)
n )′

(
RΩ̂i,nR

′
)−1

(R φ̂
(i)
n )

Rn = n
∂Õn(φ̂

(i)
n|H0,ij

)

∂φ′ J−1
n|H0,ij

R′(RΩ̂i,n|H0,ij
R′)−1RJ−1

n|H0,ij

∂Õn(φ̂
(i)
n|H0,ij

)

∂φ

Ln = 2n
[
Õn(φ̂

(i)
n|H0,ij

)− Õn(φ̂
(i)
n )
] (13)
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where φ̂
(i)
n|H0,ij

is the multistep QMLE restricted by H0,ij(cij), Ω̂i,n is a consistent esti-

mator of Ωi, Ω̂i,n|H0,ij
is a consistent estimator of Ωi under H0,ij(cij), and

Jn|H0,ij
=
∂2Õn(φ̂

(i)
n|H0,ij

)

∂φ∂φ′

is a consistent estimators of Ji = E
∂2l

(i)
t (φ0)

∂φ∂φ′ under H0,ij(cij).

Proposition 1. Under the set of assumptions [A-ACB], under H0,ij(cij), Wn and Rn

test statistics follow a χ2
1 distribution and the critical regions at the asymptotic level ν

are given by {
Wn > χ2

1(1− ν)
}
,
{
Rn > χ2

1(1− ν)
}
.

where χ2
1(1 − ν) is the (1 − ν)-quantile of the χ2 distribution with 1 degree of freedom.

In addition, under the same assumptions,

Ln → χ(π) with χ(π) =
7m+3∑
j=1

πiχ
2
i

where π = (πi)i=1,...,7m+3 is the vector of eigenvalues of the matrix J−1R′ΛR with

Λ =
[
RJ−1R′]−1

[RΩR′]
[
RJ−1R′]−1′

.

Proof. We begin by studying the asymptotic distribution of the Wald statistic under the
null H0,ij(cij) : Rφ

(i)
0 = 0. From (12) and Slutsky lemma, we obtain

√
n(Rφ̂(i)

n −Rφ
(i)
0 ) =

√
nR(φ̂(i)

n −φ
(i)
0 )

L→ N (0,RΩiR
′) (14)

and from the quadratic form, we thus have

n(R φ̂(i)
n )′

(
RΩ̂i,nR

′
)−1

(R φ̂(i)
n )

L→ χ2
1

under H0,ij(cij) : Rφ
(i)
0 = 0. Thus, the critical region of the Wald test at the asymptotic

level α is
{
Wn > χ2

1(1− α)
}
.

To study the Rao-score statistic, we first introduce the Lagrangian function associated
with the likelihood optimization problem constrained by H0,ij(cij), Õn(φ) + (Rφ)′λ.
The first-order condition is then

∂Õn(φ̂
(i)
n|H0,ij

)

∂φ
+R′λ̃n = 0 (15)

34



with λ̃n the Lagrange multipliers vector.

Under H0,ij(cij), we have

√
n(Rφ̂(i)

n ) = R
√
n(φ̂(i)

n −φ
(i)
0 )

and
0 =

√
n(Rφ̂

(i)
n|H0,ij

) = R
√
n(φ̂

(i)
n|H0,ij

−φ
(i)
0 )

since φ̂
(i)
n|H0,ij

is the constrained estimator. By subtraction, we thus obtain

√
n(Rφ̂(i)

n ) = R
√
n(φ̂(i)

n − φ̂
(i)
n|H0,ij

). (16)

Using Taylor expansions, we can also notice that

0 =
√
n
∂Õn(φ̂

(i)
n )

∂φ

oP (1)
=

√
n
∂Õn(φ

(i)
0 )

∂φ
+
√
nJ(φ̂(i)

n −φ
(i)
0 ) (17)

and
√
n
∂Õn(φ̂

(i)
n|H0,ij

)

∂φ

oP (1)
=

√
n
∂Õn(φ

(i)
0 )

∂φ
+
√
nJ(φ̂

(i)
n|H0,ij

−φ
(i)
0 )

which yields by subtraction

√
n
∂Õn(φ̂

(i)
n|H0,ij

)

∂φ

oP (1)
= −

√
nJ(φ̂(i)

n − φ̂
(i)
n|H0,ij

)

hence
√
n(φ̂(i)

n − φ̂
(i)
n|H0,ij

)
oP (1)
= −

√
nJ−1

∂Õn(φ̂
(i)
n|H0,ij

)

∂φ
. (18)

From (15), (16) and (18), we thus obtain

√
n(Rϑ̃n)

oP (1)
= RJ−1R′√nλ̃n (19)

which yields
√
nλ̃n

oP (1)
=

[
RJ−1R′]−1√

n(Rφ̂(i)
n )

hence from (14), under H0,ij(cij),

√
nλ̃n

L→ N (0,Λ) with Λ =
[
RJ−1R′]−1

[RΩR′]
[
RJ−1R′]−1′
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as n→ ∞. Taking the quadratic form, we obtain under H0,ij(cij),

nλ̃′
nRĴ−1

n|H0,ij
R′(RΩ̂i,n|H0,ij

R′)−1RĴ−1
n|H0,ij

R′λ̃n
L→ χ2

1

and (15) yields

n
∂Õn(φ̂

(i)
n|H0,ij

)

∂φ
Ĵ−1
n|H0,ij

R′(RΩ̂i,n|H0,ij
R′)−1RĴ−1

n|H0,ij

∂Õn(φ̂
(i)
n|H0,ij

)

∂φ

L→ χ2
1. (20)

It follows that the critical region of the Rao-score test at the asymptotic level α is{
Rn > χ2

1(1− α)
}
.

We finally focus on the Quasi Likelihood Ratio statistic. Using Taylor expansions, we
get

Õn(φ̂
(i)
n )

oP (1)
= Õn(φ

(i)
0 ) +

∂Õn(φ
(i)
0 )

∂φ′ (φ̂(i)
n −φ

(i)
0 ) +

1

2
(φ̂(i)

n −φ
(i)
0 )′J(φ̂(i)

n −φ
(i)
0 )

and

Õn(φ̂
(i)
n|H0,ij

)
oP (1)
= Õn(φ

(i)
0 )+

∂Õn(φ
(i)
0 )

∂φ′ (φ̂
(i)
n|H0,ij

−φ
(i)
0 )+

1

2
(φ̂

(i)
n|H0,ij

−φ
(i)
0 )′J(φ̂

(i)
n|H0,ij

−φ
(i)
0 ),

hence, by subtraction,

Ln
oP (1)
= 2n

∂Õn(φ
(i)
0 )

∂ϑ′
(φ̂

(i)
n|H0,ij

− φ̂
(i)
n ) + n(φ̂

(i)
n|H0,ij

−φ
(i)
0 )′J(φ̂

(i)
n|H0,ij

−φ
(i)
0 )

−n(φ̂(i)
n −φ

(i)
0 )′J(φ̂

(i)
n −φ

(i)
0 ),

and, from (17),

Ln
oP (1)
= 2n(φ̂

(i)
n −φ

(i)
0 )′J(φ̂

(i)
n|H0,ij

− φ̂
(i)
n )

+n(φ̂
(i)
n|H0,ij

−φ
(i)
0 )′J(φ̂

(i)
n|H0,ij

−φ
(i)
0 )− n(φ̂

(i)
n −φ

(i)
0 )′J(φ̂

(i)
n −φ

(i)
0 )

oP (1)
= n(φ̂

(i)
n − φ̂

(i)
n|H0,ij

)′J(φ̂
(i)
n − φ̂

(i)
n|H0,ij

).

From (15) and (18), it follows that under H0,ij(cij),

Ln
oP (1)
=

√
nR′λ̃nJ

−1λ̃′
nR

√
n (21)

and, from (19), Slutsky lemma, and the quadratic form of multivariate normally dis-
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tributed variables, we obtain

Ln → χ(π) with χ(π) =
7m+3∑
i=1

πiχ
2
i

where π = (πi)i=1,...,7m+3 is the vector of eigenvalues of the matrix J−1R′ΛR with

Λ =
[
RJ−1R′]−1

[RΩR′]
[
RJ−1R′]−1′

.
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Appendix E Spillover Persistence in the unrestricted ECCC
GARCH model

This section builds upon Conrad and Karanasos [2010] and Conrad and Weber [2013]
to detail the computation of the λij,k coefficients.

Let us consider the univariate representation of Equation (7). We denote

A(L) =

q∑
i=1

AiL
i, and B(L) = I2 −

p∑
j=1

BjL
j ,

and let β(L) = 1−
2×p∑
j=1

βjL
j = detB(L). We can rewrite (7) as

B(L)gt = ω +A(L)r2t ⇔ β(L)gt = µ+α(L)r2t (22)

with µ = adj[B(1)]ω and α(L) = adj[B(L)]A(L) and thus we obtain the ARCH(∞)
form

gt = µ/β(1) +Φ(L)r2t , (23)

with Φ(L) = [Φij(L)]i,j=1,2 = α(L)/β(L). Note that Φij(L) = αij(L)/β(L) =
∞∑
k=i

Φij,kL
k

can be thought as the ARCH(∞) kernel of a GARCH(2p, p+ q).

Consider now the UECCC-GARCH(1,1) equation

gt = ω +Ar2t−1 +Bgt−1. (24)

Similarly to (23), we obtain the rewriting in term of volatility innovations ht

C(L)gt = ω +A(L)ht ⇔ γ(L)gt = adj[C(1)]ω + adj[C(L)]A(L)ht

where C(L) = I2−CL, C = A+B, A(L) = AL, and γ(L) = 1−
2p∑
j=1

γjL
j = detC(L).

Thus we can derive the ARCH(∞) representation

gt = adj[C(1)]ω/γ(1) +Λ(L)ht,

with Λ(L) = [λij(L)]i,j=1,2 =
adj[C(L)]A(L)

γ(L)
. We thus have that the coefficients λij,k
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of the ARCH(∞) kernels [λij(L)]i,j=1,2 =
∞∑
k=i

λij,kL
k verify

λii,k =
∂gi,t
∂hi,t−k

and λij,k =
∂gi,t
∂hj,t−k

.

As noted by Conrad and Weber [2013], the bivariate uECCC-GARCH(1,1) model allows
for a simple recursive expression of the λij,k coefficients. Indeed, we have the univariate
GARCH(2,2) representation in terms of ht of equation (24)

γ(L)gt = adj[C(1)]ω +α(1)ht−1 +α(2)ht−2

where

α(1) =

(
a11 a12

a21 a22

)

α(2) =

(
a21(a12 + b12)− a11(a22 + a22) a22b12 − a12b22

a11b12 − a21b11 a12(a21 + b21)− a22(a11 + a11)

)

where aij and bij are elements of matrices A and B respectively. We can recursively
express

λij,k = γ1λij,k−1 + γ2λij,k−2, for k ≤ 3

with λij,1 = α
(1)
ij , λij,2 = γ1α

(1)
ij + α

(2)
ij where γ1 = c11 + c22, γ2 = c12c21 − c11c22, and

cij are elements of matrix C.
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Appendix F Green and Brown portfolios formed on other
criteria
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(c) Response function of gB,t
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Figure 10: Performance, Conditional volatilities, and Response functions of Brown and
Green portfolios formed on GMB2 criterion.
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(c) Response function of gB,t
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Figure 11: Performance, Conditional volatilities, and Response functions of Brown and
Green portfolios formed on GMB2 criterion hedged of Fama French factors.
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Figure 12: Performance, Conditional volatilities, and Response functions of Brown and
Green portfolios formed on GMB3 criterion.
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Figure 13: Performance, Conditional volatilities, and Response functions of Brown and
Green portfolios formed on GMB3 criterion hedged of Fama French factors.
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(c) Response function of gB,t

0 20 40 60 80 100

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

λ22

λ21

(d) Response function of gG,t

Figure 14: Performance, Conditional volatilities, and Response functions of Brown and
Green portfolios formed on GMB4 criterion.
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(c) Response function of gB,t
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Figure 15: Performance, Conditional volatilities, and Response functions of Brown and
Green portfolios formed on GMB4 criterion hedged of Fama French factors.
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