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Abstract

We propose a factor model to measure expected inflation and the inflation risk
premium at different maturities that leverages two sets of market instruments,
inflation swaps and inflation caps and floors. The model features time-varying
long-term average inflation and variable inflation volatility and exploits the
information contained in survey-based inflation forecasts to anchor the objec-
tive measures of expected inflation. Medium-term expected inflation was close
to the ECB’s "below, but close to" inflation aim of 2% from 2010 to 2014, it
has since declined to a low in March 2020 and increased significantly in the
second half of 2021, up by more than 2% from September 2021. The inflation
risk premium, positive until 2014, has been negative since 2015 and reached
a minimum after the outbreak of the pandemic to return to values close to
zero in autumn 2021. The probability of inflation being negative over a 3-year
horizon peaked above 50% in late 2014 and early 2020. The probability of
exceeding the ECB’s inflation aim has always been lower than 40%, with the
exception of the 2011-12 period, until September 2021, after which it rose to
very high values, exceeding 80% in December 2021.
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1 Introduction

Since the aftermath of the sovereign debt crisis, euro area inflation and expected
inflation have been drifting downwards, raising concerns among market analysts and
policymakers about the anchoring of inflation expectations to the European Central
Bank’s (ECB) target —see Corsello et al. (2021) for a brief review. The downward
trend intensified, first in 2014 and, subsequently, with the outbreak of the Covid-
19 pandemic in 2020. On the contrary, since the second half of 2021, we have
been observing a fast and steep rise of consumer prices and inflation expectations.
Since expected inflation plays such an important role in monetary policy decisions,
a timely and reliable estimate of it is essential to define the monetary policy stance
and investors’decisions on portfolio allocations.
Two sets of variables are tipically used to infer the unobserved value of expected

inflation and the inflation risk premia. The first contains information on inflation
implied in derivative instruments traded daily on financial markets, such as bonds,
index-linked bonds, inflation swaps and inflation caps and floors, and is used to
calculate what is known as breakeven inflation; this measure, being priced in traded
assets, refers to a representative risk-neutral investor and is made up of a com-
ponent defined as objective expected inflation and a component that rewards the
uncertainty borne by the investor, the inflation risk premium. The second set of vari-
ables is obtained from analysts’surveys on expected inflation over different horizons,
conducted on a monthly or quarterly basis by specialized agencies or central banks,
and provides an objective measure of expected inflation, net of the risk premium
component. Often the two measures not only differ due to the wedge imposed by
the presence of the risk premium, but also go in different directions.1 Therefore one
may wonder which of the two measures gives the correct signal which is crucial for
both investors and monetary authorities.
The aim of this paper is to retrieve reliable estimates of objective expected infla-

tion at high frequency exploiting the information content of both types of variables.
Current models of expected inflation based on financial derivatives prices have

some important drawbacks. First, they assume pricing factors that have a con-
stant mean and, therefore, are unable to capture regime changes at low frequencies.
Second, they assume a constant volatility of inflation but we know that prices are re-
lated to volatility: a higher variance of the underlying increases the prices of options
as caps and floors; in general, only at-the-money options are fairly priced with the
Black and Scholes model that famously assumes constant volatility, while stochastic
volatility offers a very flexible and promising description of option prices. Empirical
evidence tells us that, similar to interest rates, low inflation volatility is associated
with a low inflation risk premium and, in turn, with low expected inflation, while

1See Cecchetti et al. (2021) for a discussion of the measures of inflation expectations derived
from the prices of financial instruments indexed to inflation and from the surveys of professional
forecasters.
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high volatility is associated with high levels.2 We model expected inflation with the
aim of overcoming these drawbacks.
This paper tackles the issue of decomposing breakeven inflation into the objective

and risk premium component by using both derivatives instruments and analysts’
surveys. We based on a setup developed in the seminal contributions of Bansal and
Yaron (2004) and Fleckenstein et al. (2017) that nests the contribution of the Hes-
ton (1993) stochastic volatility option pricing model. We use daily data of inflation
swaps, that provide a direct measure of average breakeven inflation, and inflation
caps and floors that provide information on the entire distribution of risk-neutral ex-
pectations of future inflation. The price of any derivative contract is simultaneously
a function of both the aggregate market view of the objective probability distrib-
ution of the underlying and the aggregate market risk attitude, but to those who
observe the market price, the two components seem inextricable. In our paper, we
complement the information coming from the markets with survey-based measures
of inflation expectations, using quarterly data of the survey of professional forecaster
(SPF) conducted by the ECB, which are transformed into daily data. Assuming the
absence of arbitrage, we are able to estimate the parameters driving the dynamics
of inflation under the objective probability measure and the corresponding objective
probability distribution of inflation.
Our analysis is based on a factor model that — by exploiting the informative

content of inflation swaps and inflation caps and floors — features a time-varying
long-term mean and a stochastic volatility for inflation. These last two characteris-
tics distinguish our model from those proposed in the literature for the euro area —
see, among others, Camba-Méndez and Werner (2017), Casiraghi and Miccoli (2019)
and Pericoli (2014). Our framework allows us to calculate the probability density
function of inflation over a given horizon, not only under the risk-neutral probabil-
ity measure, but also under the objective probability measure, net of the investors’
risk aversion.3 This offers the opportunity to calculate the objective probability
that inflation is below or above a certain threshold. It is worth pointing out that
the objective expected inflation implied in the model is anchored to analyst surveys
in order to link the model results with observed data;4 to the best of our knowl-

2See Abrahams et al. (2016) and references therein.
3Risk-neutral probabilities are probabilities of potential future outcomes adjusted for risk. The

term risk-neutral can sometimes be misleading because some people may assume it means that the
investors are neutral, unconcerned, or unaware of risk. In contrast, the risk-neutral probability
accounts for the investors’aversion to risk: in general, risk-neutral probabilities tend to assign more
weight to outcomes investors are worried about, attributing higher probability to extreme events
such as deflation or very high inflation. Mathematically, the risk-neutral probability is the implied
probability measure derived from the observable prices of the relevant instruments, defined using
a risk-neutral utility function and assuming absence of arbitrage. On the other hand, objective
probabilities are usually inferred from historical data, being estimated from the past dynamics of
prices and other financial variables.

4We impose that the estimates are close to the inflation expected by analysts surveyed by the
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edge, this is the first paper that incorporates these features, providing an innovative
contribution to literature on euro-area inflation along several dimensions.
Our approach follows the traditional literature on factor models for estimating

the term structure of interest rates and assumes that three factors are able to provide
a good representation of inflation fluctuations. These factors are “instantaneous
inflation”,5 “long-term inflation”and “expected volatility of inflation”. But contrary
to the traditional approach, the long-term average of inflation and the volatility of
inflation can vary over time, as in Fleckenstein et al. (2017). Furthermore, by
modeling inflation options, we can provide the entire probability distribution of
inflation under the risk-neutral and objective measure and calculate the probability
that inflation will be below or above a certain value over a certain horizon.
Our study is of particular interest for both policymakers and investors. The

former can estimate the objective inflation expectations, evaluate the degree of an-
choring of these expectations to the central bank’s target and possibly assess the
sensitivity of medium-to-long term inflation expectations to shocks affecting short-
term ones and to inflation surprises (Miccoli and Neri, 2015; Corsello et al., 2021).
The latter can use the measure of expected inflation to recover the discount rate in
real terms to value fixed-income portfolios over long horizons.
This paper links to a large flow of literature on expected inflation, on the risk of

deflation and the decoupling between expected short-term and long-term inflation.
The closest paper to ours is Fleckenstein et al. (2017) in which the authors, based
on the model by Heston (1993), extract the objective distribution of US inflation
using prices of inflation derivatives and provide estimates of the objective probabil-
ity of tail events and the inflation risk premium. Our main innovation compared
to their work consists of anchoring the objective expected inflation implied in the
model to analyst surveys. Cecchetti et al. (2015) use the information content of the
inflation options to estimate risk neutral densities of inflation using the methodology
introduced by Taboga (2016) and investigate signals of disanchoring of risk-neutral
expectations. The authors go beyond the evidence that can be deduced simply by
observing the moments of the distribution and propose to use different measures
of the comovement between the moments of short-term and long-term risk-neutral
distributions of inflation.6

The specification in this paper follows both the Heston (1993) stochastic volatility
option pricing model and the long-run risk consumption model of Bansal and Yaron

central bank, for the available maturities.
5In a continuous time model, this is the annualized continuously compounded inflation rate that

we expect to be realized for an infinitesimally short period of time, one day in our analysis.
6They find that, since mid-2014, negative tail events affecting short-term inflation expectations

have increasingly been channelled towards long-term views, triggering both downward revisions
in expectations and upward shifts in uncertainty; on the other hand, the short-term positive tail
events mostly left the long-term moments unchanged. This asymmetrical impact may signal a
bottom-up disanchoring in long-term inflation expectations.
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(2004). Joining these models, we obtain as in Fleckenstein et al. (2017) a framework
where inflation can have fluctuating uncertainty and a small, predictable long-term
component. In general, this allows for a wide range of possible time-series properties
for realized inflation and the inflation risk premium.
The literature on expected inflation and inflation risk premium is enormous.

Typically, researchers have studied the breakeven inflation implied in nominal coupon
bonds and in index-linked coupon bonds — see Abrahams et al. (2016), Adrian
et al. (2013), Buraschi and Jiltsov (2005), Christensen et al. (2016), Christensen
et al. (2012), Wright (2014) for a review —or one measured by inflation swaps —
see Haubrich et al. (2012), Camba-Méndez and Werner (2017), Fleckenstein et al.
(2017). As we mentioned above, we refer to this last field but we also link our objec-
tive measures of expected inflation to analysts’surveys in the spirit of Joyce et al.
(2010) and Kim and Orphanides (2012). Regarding the estimate of the inflation risk
premium, in the literature there are several models that have given different results
in terms of magnitude and even sign — see Adrian et al. (2013), Pericoli (2014),
Casiraghi and Miccoli (2019).
In a nutshell, our results show that the introduction of a time-varying long-term

average inflation and variable volatility of inflation improves the current estimate of
long-term expected inflation, that is close to 2%, the aim of the ECB in the medium
term. Our estimates cover the period between October 2009 and December 2021.
Long-term objective expected inflation was close to the ECB’s target from 2010
to 2014 but subsequently declined, with temporary increases due to new waves of
unconventional monetary policies, reaching a minimum in March 2020; after that
this trend reversed and long-term objective expected inflation markedly increased
in particular in the second half of 2021, climbing over 2% since September. The
inflation risk premium, which was positive until 2014, became negative since 2015
and reached a minimum after the outbreak of the pandemic in 2020, to return to
values close to zero in autumn 2021. The probability of inflation being negative over
a 3-year horizon peaked above 50% in late 2014 and in early 2020, with the outbreak
of the pandemic. Conversely, the likelihood that inflation could exceed the ECB’s
2% target was always below 40%, except for the 2011-12 period, until September
2021, after which it rose to very high values, exceeding 80% in December.
The paper is structured as follows. Section (2) presents the model, the identi-

fication strategy and the data. Section (3) documents the results of our estimates
while Section (4) compares them with those already in the literature. Section (5)
concludes.
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2 The model

We follow Bansal and Yaron (2004) and Fleckenstein et al. (2017) and estimate the
following model

i(X, Y, T ) = A(T ) +B(T ) ·X + C(T ) · Y + ε(T ) , (1)

m(V, T ) = G(T ) +H(T ) + U(T ) · V + e(T ) , (2)

where i(X, Y, T ) is the inflation swap rate with maturity T ,7 also referred to as iT
below, m is the volatility estimated from the risk-neutral density implied in options
with expiration T . X, Y, V are three factors that drive inflation swaps and the option
volatility. A(T ), B(T ), C(T ), G(T ), H(T ), U(T ) are vectors to be estimated. In
keeping with the spirit of term structure models, these vectors have a recursive
structure —see appendix. We consider 15 maturities for inflation swaps, i.e. 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, and 10 maturities for options volatility, i.e. 1,
2, 3, 5, 7, 10, 12, 15, 20, 30. The model we estimate, that is the formula for the swap
price and the volatility of the options, is obviously determined by the dynamics of
the factors and we report in the appendix both the derivation of the swap price and
the implied volatility of the option, and in particular why we can separate G(T )
and H(T ) + U(T ) · V in equation (2). The dynamics of inflation dI, where I is the
consumer price index, and the three factors under the objective probability measure
P is

dI = X · Idt+
√
V I · dZPI (3)

dX = κ(Y −X)dt+ ηdZPX (4)

dY = (µ− ξY )dt+ sdZPY (5)

dV = (δ − ψV )dt+ σ
√
V dZPV (6)

where ZPI , Z
P
X , Z

P
Y , Z

P
V are uncorrelated Brownian motions. The model (3-6) incor-

porates the factor X, which represents istantaneous expected inflation, that tends
to factor Y , which represents the long-run trend of inflation. Furthermore, inflation
dI is determined non only by X and indirectly by Y but also by V , a variance
factor that follows a stochastic process. The setting is reminiscent of the Bansal
and Yaron (2004) model for istantaneous and long-run consumption and the Heston
(1993) model for interest rates with stochastic volatility. In particular, the volatility
of inflation has two components: the volatility due to the variation in expected in-
flation Xt and the volatility resulting from unexpected inflation, driven by the state
variable Vt. The model (3-6) has a counterpart under the risk-neutral Q probability

7The inflation swap rate i(X,Y, T ) is equal to the expected inflation rate over the horizon T
under the risk neutral measure Q, i.e. i(X,Y, T ) = EQ[IT /I0 − 1] where Ik is the consumer price
index at time k. It relates to the swap price F (X,Y, T ) with the formula FT = (1 + iT )T .
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measure, i.e.:

dI = X · Idt+
√
V IdZQI (7)

dX = λ(Y −X)dt+ ηdZQX (8)

dY = (α− βY )dt+ sdZQY (9)

dV = (θ − φV )dt+ σ
√
V dZQV (10)

The connection between (7-10) and (3-6) is guaranteed by the assumption of a
system of market prices of risk8 that allows to obtain for each state variable the
same dynamics under both probability measures, imposing standard conditions to
exclude arbitrage opportunities. Note that even if the functional form of the drift
for the I process is the same under the objective —equation (3) —and risk-neutral
measures —equation (7) —this does not imply that the expected value is the same
under P and Q, because it is related to the different dynamics of X, Y and V .
The model (7-10) states that inflation can be written as

IT/I0 = exp(wT + uT ) (11)

wT =

∫ T

0

Xtdt

uT = −1

2

∫ T

0

Vtdt+

∫ T

0

√
VtdZI

where the mean and the variance of wT and uT are shown in the appendix.
We use the Heston (1993) model to derive the density of uT that we use to price

options.
We also estimate the parameters of the processes (3-6) under the objective prob-

ability measure to retrieve expected inflation and deflation probabilities under this
measure.

2.1 Identification

The factors are obtained using a completely standard approach, which is entirely
based on the existing methodology widely applied in the literature. Following Chen
and Scott (1993), Duffi e and Singleton (1997) and Duffee (2002) we solve for the
values of X, Y , and V from specific inflation swaps and option volatilities, and then
jointly estimate the parameters of both the risk-neutral and objective dynamics for
these variables using maximum likelihood. The unobservable factors are extracted
by inverting the measurement equation by assuming that a number of assets equal
to the number of factors is observed without error. In particular, we assume that

8See the Appendix for the derivation of the system of market prices of risk and the relationships
between the drift parameters under the two probability measures.
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the two inflation swaps with a maturity of 2 and 30 years and the implied volatility
in the prices of the 3-year options are priced without errors,9 namely ε2 = 0, ε30 = 0,
e3 = 0. Therefore, the three factors, X, Y, V , are obtained by inverting the linear
system (1-2) for i = 2, 30 and j = 3. The other inflation swaps and volatilities are
priced with errors.
Furthermore, in order to estimate a reasonable value of expected inflation, we

anchor the objective expected inflation to analysts surveys; specifically, we assume
that the 1-year forward inflation rate in 0, 1 and 4 years time10 implied in the
inflation swaps estimated under the P measure, fP(X, Y, l) with l = 0, 1, 4, are close,
up to a measurement error, to the 1-year inflation expected by analysts surveyed by
the central bank, ESPF (Il+1/Il), i.e.

fP(X, Y, l) = ESPF (Il+1/Il) + zl , for l = 0, 1, 4 . (12)

We assume that the errors have distribution ε ∼ N(0,Σ), e ∼ N(0,Ψ) and z ∼
N(0,Ω) and that the covariance matrices are diagonal, i.e. the errors are uncorre-
lated, and denote the main diagonal elements with Σi, Ψj, Ωl. Then, we maximize
the log-likelihood function (13) conditional on the data over the 38-dimensional pa-
rameter vector Θ = {α, β, λ, κ, µ, ξ, σ, s, η, φ, ψ, δ, θ, Σ1, Σ3, Σ4, Σ5, Σ6, Σ7, Σ8,
Σ9, Σ10, Σ12, Σ15, Σ20, Σ25, Ψ1, Ψ2, Ψ5, Ψ7, Ψ10, Ψ15, Ψ20, Ψ25, Ψ30, Ω1, Ω2, Ω5}
using a standard simplex algorithm.

L = −(25/2) ln(2π) + ln(k) + ln |Jt+∆t| −
1

2
ln |Σ| − 1

2
ε′t+∆tΣ

−1εt+∆t (13)

−1

2
ln |Ψ| − 1

2
e′t+∆tΨ

−1et+∆t −
1

2
ln |Ω| − 1

2
z′t+∆tΩ

−1zt+∆t

− ln

(
2πσXσY

√
1− ρ2

XY

)
− 1

2 (1− ρ2
XY )

[(
Xt+∆t − µXt

σX

)2

−2ρXY

(
Xt+∆t − µXt

σX

)(
Yt+∆t − µYt

σY

)
+

(
Yt+∆t − µYt

σY

)2
]

−k(Vt+∆t + Vte
−ψ∆t) +

1

2
q(lnVt+∆t − lnVt + ψ∆t)

+ ln Iq

(
2k
√
Vt+∆tVte−ψ∆t

)
where Iq(·) is the modified Besseli function of the first kind of order q = 2δ/σ2 − 1
and k = 2ψ/(σ2(1− e−ψ∆t)). J is the Jacobian of the linear mapping from the two
inflation swaps and the implied volatility into X, Y and V . Note that, as usual in
this literature, the errors terms ε, e and z in equation (13) are valued under the Q
measure while the three factors, X, Y, V , under the P measure.

9For the choice of the assets assumed perfectly priced we follow Fleckenstein et al. (2017)
10These are the maturities for which survey data are available
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This methodology makes it possible to jointly estimate the parameters of both
the risk-neutral and objective dynamics and to recover the price of the risk inherent
in the prices of inflation securities. We test for the existence of risk premia by
examining whether the five parameters that appear in the objective dynamics of dI
are equal to the corresponding parameters in the risk-neutral dynamics.

2.2 Option prices

We do not directly use caps and floors quotes for the estimation of model (1, 2, 12),
while we use the standard deviation calculated from option price risk-neutral density
function as in Cecchetti et al. (2015). Once the parameters have been estimated,
we can retrieve the probability density function also under the objective measure P,
and consequently the corresponding objective prices.
Cap, C, and floor, P , prices are defined by

C(X, Y, V, T ;K) = D(T ) · EQ∗ [max(0, (1 + iT )T − (1 +K)T )]

P (X, Y, V, T ;K) = D(T ) · EQ∗ [max(0, (1 +K)T − (1 + iT )T )]

where D(T ) is the discount factor and Q∗ is a forward measure.11 Under Q∗, wT
is normally distributed with mean µu = ln((1 + iT )T ) − 1

2
σ2
w and variance σ

2
w, and

uT has a known distribution function h(uT ) that we recover as a special case of the
Heston (1993) model, with mean µu and variance σ

2
u. The discount factor D(T ) is

defined as
D(T ) = EQ

[
e−

∫ T
0 rsds

]
(14)

where rt is the nominal instantaneous riskless interest rate, which is the sum of the
real riskless interest rate Rt and instantaneous expected inflation Xt:

rt = Rt +Xt. (15)

Assuming that Rt and Xt are uncorrelated and that Rt = 0, cap and floor prices
can be written as (see appendix)

C = (1 + iT )−T
{∫ +∞

−∞

[
(1 + iT )TN(a1)euT − (1 +K)TN(a2)

]
h(uT )duT

}
(16)

P = (1 + iT )−T
{∫ +∞

−∞

[
(1 +K)TN(−a2)− (1 + iT )TN(−a1)euT

]
h(uT )duT

}
(17)

where

a1 =
uT − T ln(1 +K) + T ln(1 + iT ) + 1

2
σ2
w√

σ2
w

,

11The forward measure Q∗ is defined by the dynamics of I given by equations (7), (8), (9)
and (10), where the drift in (8) is augmented by η2B(τ)dt and the drift in (9) is augmented
by s2C(τ)dt, with τ = T − t. See Brigo and Mercurio (2006) for a detailed explanation of the
convenient definition of the forward definition.
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a2 = a1 −
√
σ2
w ,

K is the strike price and N(·) is the normal cumulative distribution function.
We confirm the correctness of the pricing formula for swaps, caps and floors in

figures (1), (2) and (3) showing the convergence of a Monte Carlo simulation with
3,000 extractions. The results show that the simulation replicates after less than
1,000 steps the prices obtained by the closed formulas (1), (16) and (17)12 .
We also verify that the prices of the options implied in the model are close to

the observed prices of the options.
Furthermore, we use the Gram-Charlier expansion to approximate the distribu-

tion function of the logarithm of inflation ln IT = wT +uT . Define x the standardized
value of inflation, with probability density function f(x) and the first two cumulants
c1 = µw + µu and c2 = σ2

w + σ2
u. The density function f(x) can be approximated by

f(x) ≈
[
1 + c1x+

1

2
(c2

1 + c2 − 1)
(
x2 − 1

)]
· n (x) (18)

where n(·) is the normal probability density function and [1, x, x2−1] are the Hermite
polynomials up to the second order. c1 and c2 are functions of the parameters of
model (1, 2, 12) and are shown in the appendix.

2.3 Data

We use daily data from October 2009 to December 2021 for inflation swaps with
maturities 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, and 30 years.
Instead of using the full spectrum of option quotes with the corresponding matu-

rity and strike prices, we summarize for each set of options with the same maturity
their volatility by calculating the standard deviation of the inflation risk-neutral
density function obtained from the option prices. This methodology makes it possi-
ble to reduce the number of parameters and to use a single time series of volatility
per maturity, ignoring the presence of possible non-linearity in prices. We estimate
the daily density function using zero caps and zero floors on euro-area HICP with
maturities 1, 2, 3, 5, 7, 10, 12, 15, 20, 30 years and 17 strikes that range from -3%
to 6%, for a total of around 170 time series. The density functions are estimated
with the Cecchetti et al. (2015) and Taboga (2016) methodology and the standard
deviation of the density is obtained by numerical integration.
The analysts’ forecasts are derived from the quarterly survey of professional

forecasters (SPF) conducted by the ECB, which are transformed into daily data
assuming that the forecasts are constant until the new release. From SPF we use
1-year expected inflation, 1-year forward expected inflation after one year and the

12For the swap, the Monte Carlo exercise shows the convergence of the swap price FT = (1+iT )T .
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mean of the aggregate probability distribution of 1-year forward expected inflation
after 4 years.

3 Results

3.1 Parameters and fitting

The estimates of the parameters of model (1, 2, 12) and the standard deviations
—calculated with the Huber sandwich estimator —are presented in Table (1). The
38 parameters are highly significant with low p-values, except for the parameter θ,
related to the long-term mean ( θ

φ
) of the volatility under the P-measure. Notably,

parameters under the Q measure and the P measure are significantly different. In
particular, as regards to the factor V , the speed of mean reversion ψ is much larger
under the P measure that the corresponding parameter φ under the Q measure,
resulting in a volatility under the P measure lower than that under the Q measure.
Morevoer, looking at the process of the factor Y corresponding to the long-run
trend of inflation, the long-term mean under the P measure (µ

ξ
) is 1.98%, while the

corresponding long-term mean under the Q measure (α
β
) is 2.98%.

Table (2) reports the pricing errors and the root mean squared errors for the
inflation swaps and Table (3) the counterparties for the implied volatilities. Overall,
the estimates of model (1, 2, 12) give a good approximation of the prices for both
inflation swaps (with a pricing error in the range [−5.15,+7.50] basis points) and
implied volatility (with a pricing error in the range [−5.42,+4.75] basis points).
The goodness of fit can be valued by Figure 4 for inflation swaps and Figure 5 for
implied volatility. The fitting for the former is particularly good, while for the latter
we observe increasing errors as the maturity increases. This result is due to the fact
that one factor may not be suffi cient to cross-sectionally fit the term structure of
implied volatilities.
In the spirit of the standard affi ne term structure models, we present the vectors

A, B and C, which appear to have the usual form interpretable as level, slope and
curvature and the vectors G, H and U , which are the corresponding loadings for the
factor V (Figure 6).

3.2 Estimated factors and implied volatility

We report the estimates of the factorsX and Y . The istantaneous expected inflation
X shows large fluctuations from 2010 to today with a first peak in 2011 at 2.4%, a
decline to -0.8% in 2015 and to -0.7% in 2020, and a maximum in December 2021 at
3.1% (Figure 7). Longer-term inflation Y , on the other hand, remained more stable
around 2% from 2010 to 2015, falling to 0.8% in 2016, rising around 1.5% in the
2017-2019 period, decreasing to below 1% from mid 2019 to early 2021, and finally
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rising to 2% in autumn 2021.
We also report the estimates of the implied volatilitym in equation (2) under the

measure Q and P (Figure 8). For all maturities it is obtained that those under the
P measure are lower than those under the Q measure, which means that objective
inflation tends to be less volatile than breakeven inflation.

3.3 Expected inflation and inflation risk premium

We use the model (1, 2, 12) to calculate inflation swaps under the P measure —also
labeled as expected inflation —and the inflation risk premium. The results for the
1-year, 3-year, 5-year, 10-year and 5-year five year forward maturity are presented
in Figure 9. Let us take the 3 and 5-year maturity as representative of the medium-
term outlook. For the 3-year maturity, the inflation risk premium, i.e. the difference
between the market value of the inflation swap and the model value of the inflation
swap estimated under the P measure, averages around 20 basis points from 2010 to
2015, drops to zero from 2015 to 2016, becomes negative between 2016 and 2017,
goes back to zero until 2019, becomes negative again until the last quarter of 2021,
and finally rises to approach zero. For the 5-year maturity, the dynamics of the
inflation risk premium is similar but the size is larger in absolute values.
The results show that the introduction of a variable long-term inflation improves

our understanding of expected inflation as we are able to achieve large variability
in expected inflation and inflation risk premium at the same time.13 Expected in-
flation over the long term was close to the ECB’s target from 2010 to 2014 but has
subsequently declined reaching a minimum in March 2020, with temporary increases
as the ECB adopted quantitative measures to avoid the materialization of a defla-
tionary scenario:14 in particular, at the beginning of 2015 with the launch of the
Asset Purchase Programme (APP), in the first quarter of 2016 with the increase in
the pace of monthly purchases of government bonds under the APP from 60 to 80
billion euros, and early 2020 with the launch of the Pandemic Emergency Purchase
Programme (PEPP). Thereafter, the declining trend reversed and long-term objec-
tive expected in‡ation markedly increased in particular in the second half of 2021,
climbing over 2% since September.
At the same time, the inflation risk premium, positive until 2014, became nega-

tive since 2015 and reached a minimum after the outbreak of the pandemic in early
2020, to go back to values close to zero in autumn 2021 —see Bulligan et al. (2021)
for a discussion of the comovement between the sign of the inflation risk premium
and the correlation between inflation expectation and expected growth.

13This peculiarity is not obtained with other commonly used models; see section 4 for a com-
parison with other results available in the litarture.
14See ? for estimates of survey- and market-based measures of inflation expectations and a

discussion of their dynamics in recent years.
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The inflation risk premium increases with maturity in absolute values but on
average shows negative values across the maturity spectrum between 2015 and 2017
and since 2019 (with some exceptions in the last months of 2021). Figure 10 shows
the average inflation risk premium and the 5th and 95th percentile in relation to
maturity. Considering the 5-year maturity as representative, compared to an average
value of approximately −2.5 basis points, the 5th percentile of the inflation risk
premium is equal to −36 basis points and the 95th percentile to 26 basis points.
Overall, the average value of the inflation risk premium between 2009 and 2021 is
increasing in relation to maturities since the 10-year maturity but remains at modest
levels, ranging between −4 and 12 basis points.

3.4 Comparison with survey forecasts

We compare expected inflation estimated under the P measure with that surveyed
by the ECB SPF for the 1-year forward maturity in 1-year time and in 4-year time15

(Figure 11). It is well known that in the last years the expected inflation measured
by SPF, that is considered an objective measure of expected inflation (net of the risk
premium component), has been higher than breakeven inflation (priced in traded
assets and thus including inflation risk premium), and this has generated a negative
inflation risk premium. Expected inflation detected by the SPF was also almost
always higher than the expected one estimated by our model for the two maturities
until the end of 2020, such that the inflation risk premium implied by the SPF sur-
veys was not only negative but also lower than that estimated by the model; in the
last year instead, the SPF estimates of expected inflation were lower than our objec-
tive estimates. Fitted annual inflation expected in 1 year closely follows break-even
inflation producing a small and stable inflation risk premium, which however turns
almost always negative from 2015. Furthermore, the estimated inflation expected
in 1 year is close to SPF expected inflation up to half 2012, since then the former
tends to decline more compared to the latter until the beginning of 2021, when the
objective model estimates become higher than the survey counterparts. For the es-
timated inflation expected in 4 years, adjusted expected inflation and SPF expected
inflation differ from 2012 but are generally closer to each other than the counterparts
expected in 1 year. The difference between the two objective estimates of inflation
expected in 4 years is negative between half 2012 and end 2020 and changes sign
becoming positive later; in general, this difference widens when inflation decreases
(as between end 2012 and 2016, and between end 2018 and the first quarter of 2020)
while it decreases when inflation rises. At the end of 2021 however, after the marked
rise of inflation, the positive difference between the model objective estimate (2.07%)
and the survey estimate (1.85%) is around 22 basis points.

15They represent one-year inflation expected in one year and four years, respectively.
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3.5 Probability density functions and probability of defla-
tion/inflation

The model allows to calculate the probability density function under the measure P
using the approximation presented in equation (18). Figure 12 shows the densities
for the 2, 3, 5, and 10 year maturities. These densities allow us to calculate the
probability that inflation falls within selected ranges over a defined horizon under
measure P. Since the risk of observing deflation or exceeding the ECB target are
among the most debated topics within the economic analysis debate, we report, on
the one hand, the probability that inflation is negative and, on the other hand, the
probability that it exceeds 2% over a three-year horizon under both measures P and
Q in Figure 13.
The probability under measure P that inflation is negative in three years is

negligible from 2009 to mid-2014 and from 2017 to early 2020. It exceeds 50%
in late 2014 and in early 2020 with the outbreak of the pandemic. Since 2009,
the probability under measure P is lower than that under measure Q during quiet
periods, while it is higher during times of crisis. The objective probability of inflation
exceeding the ECB target of 2% is less than 40%, except for the 2011-12 period when
it reaches 70%, until September 2021; in the last quarter of 2021 it rose to very high
values, exceeding 80 per cent in December. In general, the probability of inflation
exceeding 2% is similar in the two measures but looking at the peaks observed at
the beginning and at the end of the review period, while in the first the probability
under measure P was lower than that under measure Q, in the most recent peak the
probability under measure P was haigher than that under measure Q.

4 Extension

4.1 Comparison with other models

We compare our results with those obtained from the models prevalent in the lit-
erature and among central banks. Figure 14 presents the expected inflation and
the inflation risk premium for the 5-year maturity in five years estimated with the
methodology of this paper (CGP), with those obtained by replicating the method-
ology of Adrian et al. (2013) (ACM), Joslin et al. (2011) (JSZ) and Pericoli (2014)
(PER). The long-term average expected inflation estimated with the ACM and JSZ
models is set at 1.9%, close to the ECB’s long-term inflation target. The long-term
average expected inflation estimated with the CGP and PER models is not con-
strained, as the long-term expected inflation is anchored to the analysts’inflation
survey. CGP expected inflation is similar to that estimated with the PER method-
ology and extremely different from ACM Expected Inflation, which is surprisingly
stable. JSZ expected inflation, a measure adopted by the ECB staff as published
in Camba-Méndez and Werner (2017), is less variable and very close to CGP and
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PER estimates. As for the inflation risk premium, the CGP premium has a sim-
ilar dynamics to the ACM one, while is different from the PER premium, which
is smoother and never drops to negative values. The JSZ risk premium is very
similar to that estimated by CGP. Overall, the CGP estimates seem to provide a
reasonable description of expected inflation thanks to the introduction of long-term
variable average inflation avoid setting long-term expected inflation at a particular
value.

5 Conclusion

We propose a factor model to measure expected inflation and the inflation risk
premium that leverages two sets of market instruments, inflation swaps and inflation
caps and floors, and that takes into account analysts’survey forecasts of inflation to
anchor objective measures of inflation. The model specification, featuring variable
long-term average inflation and variable inflation volatility, allows for a fairly general
structure of inflation risk premia.
We use a specification developed in the seminal contributions of Bansal and

Yaron (2004) and Fleckenstein et al. (2017) that nests the contribution of the Heston
(1993) option pricing model with stochastic volatility. Our framework makes it
possible to calculate the density function of inflation over a given horizon not only
under the risk-neutral probability measure, but also under the objective probability
measure. Furthermore it offers the opportunity to calculate the objective probability
that inflation is below or above a certain threshold.
The results show that the introduction of time-varying average inflation and

time-varying volatility of inflation improves the current estimate of long-term ex-
pected inflation, that is just below the inflation aim of the ECB in the medium term.
In particular, long-term expected inflation was close to the ECB’s target from 2010
to 2014 but has subsequently declined reaching a minimum in March 2020, with tem-
porary increases due to new waves of unconventional monetary policies; thereafter,
the declining trend reversed and long-term objective expected inflation markedly
increased, in particular in the second half of 2021, climbing over 2% since Septem-
ber.As a result, the inflation risk premium, which was positive until 2014, became
negative since 2015 and reached a minimum after the outbreak of the pandemic in
early 2020, to go back to values close to zero in autumn 2021.
The probability of inflation being negative over a 3-year horizon peaked above

50% in late 2014 and early 2020 with the outbreak of the pandemic. Conversely, the
likelihood that inflation could exceed the ECB’s 2% target was always below 40%,
except for the 2011-12 period, until September 2021; in the last quarter of 2021 it
rose to very high values, exceeding 80% in December.
The model makes it possible to analyze the differences between the spot and

forward inflation risk premium over different maturities and to investigate its con-
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tribution to changes in breakeven inflation, an issue at the center of the economic
policy debate in the second half of 2021. To this end, the model allows us to inves-
tigate two questions raised in recent months not only by the ECB but also by the
monetary authorities of the main advanced countries. First, it allows us to establish
whether the increase in inflation expectations in the medium and long term is due
to the positive effect of the re-anchoring of inflation expectations to the ECB tar-
get or to a worrying dis-anchoring of expectations. Second, it makes it possible to
investigate which financial variables, macroeconomic variables or commodity prices
impact the inflation risk premia and inflation expectations. We leave these projects
to future research.
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A Appendix

A.1 Derivation of the system for the market prices of risk

Given a generic diffusion process dWt = h(Wt)dt + f(Wt)dZ
P
W,t, where Z

P
W,t is a

standard Brownian motion under the objective P-measure, the essentially affi ne
market price of risk16

ΛW
t = γW0 + γW1 g(Wt)

defines the relationship between ZPW,tand the corresponding Brownian motion process
under the risk-neutral Q-measure ZQW,t, i.e.

ZQW,t = ZPW,t +

∫ t

0

ΛW
s ds = ZPW,t +

∫ t

0

γW0 + γW1 g(Ws)ds

Note that, in case of a CIR process, we have h(Wt) = k0+k1Wt , f(Wt) = σ
√
Wt and

g(Wt) =
√
Wt. Assuming standard conditions to exclude arbitrage opportunities,17

the relationship between Brownian motions allows to obtain under the Q-measure
the same dynamics followed by the state variable W under the P-measure, by ap-
propriately adjusting the drift parameters.18 Since model (7-10) has three state

16See Cheridito et al. (2007) for a review of different specifications of market prices of risk.
17See Cheridito et al. (2007) for details.
18See the Appendix in Cecchetti (2020) for a simple derivation of the link between the risk

neutral and objective dynamics for some stochastic processes, given the assumption of a proper
market price of risk.

19



variables, i.e. W = (X, Y, V ), with different stochastic processes where X links to
Y , the market price of risk is defined by a system that links the dynamics under the
two probability measures.
The dynamics under the risk-neutral Q-measure

d

 X
Y
V

 =

 0
α
θ

 dt+

 −λ λ 0
0 −β 0
0 0 −φ

 X
Y
V

 dt+

 η 0 0
0 s 0

0 0 σ
√
V

 dZQX
dZQY
dZQV


can be written in terms of the dynamics under the objective P-measure

d

 X
Y
V

 =

 0
µ
δ

 dt+

 −κ κ 0
0 −ξ 0
0 0 −ψ

 X
Y
V

 dt+

 η 0 0
0 s 0

0 0 σ
√
V

 dZPX
dZPY
dZPV


as

d

 X
Y
V

 =

 0
α
θ

 dt+

 −λ λ 0
0 −β 0
0 0 −φ

 X
Y
V

 dt+

 η 0 0
0 s 0

0 0 σ
√
V

 dZPX
dZPY
dZPV

+

 0
γY0

γV0 /
√
V

 dt+

 γX1 −γX1 0
0 γY1 0

0 0 γV1 /
√
V

 X
Y
V

 dt


=

 0
α + sγY0
θ + σγV0

 dt+

 −λ+ ηγX1 λ− ηγX1 0
0 −β + sγY1 0
0 0 −φ+ σγV1

 X
Y
V

 dt+

 η 0 0
0 s 0

0 0 σ
√
V

 dZPX
dZPY
dZPV


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and the mapping for the drift parameters between the two measures is

κ = λ− ηγX1
µ = α + sγY0
ξ = β − sγY1
δ = θ + σγV0
ψ = φ− σγV1

Note that the Feller condition for the CIR process governing the dynamics of V must
apply for the solution to be bounded below by zero. Note also that (γX0 , γ

Y
0 , γ

V
0 )

and (γX1 , γ
Y
1 , γ

V
1 ) define the differences between the drift terms for the processes X,

Y and V within the objective P-measure and risk-neutral Q-measure and allow the
market to incorporate time-varying inflation risk premia into prices.

A.2 Inflation swap pricing

From equations (7) and (11) , the price index at time T can be written

IT/I0 = exp

(∫ T

0

Xsds−
1

2

∫ T

0

Vsds+

∫ T

0

√
VsdZI,s

)
where we can set I0 = 1 without loss of generality. The cash flow of an inflation
swap is equal to IT − (1 + iT )T and since the present value of the inflation swap is
nil at inception, we can write

EQ
[
exp

(
−
∫ T

0

rsds

)(
IT − (1 + iT )T

)]
= 0

We define the instantaneous nominal rate equal to the sum of the instantaneous real
rate and expected inflation, rt = Rt +Xt, and substituting rt and IT obtain

EQ
[
e−

∫ T
0 Rsds

]{
EQ
[
e−

∫ T
0 Xsdse

∫ T
0 Xsds− 1

2

∫ T
0 Vsds+

∫ T
0

√
VsdZI,s

]
− EQ

[
e−

∫ T
0 Xsds(1 + iT )T

]}
= 0

which implies

(1+i)T =
EQ
[
exp

(
−1

2

∫ T
0
Vsds+

∫ T
0

√
VsdZI,s

)]
EQ
[
exp

(
−
∫ T

0
Xsds

)] =
1

EQ
[
exp

(
−
∫ T

0
Xsds

)] (A.1)
If we set EQ

[
exp

(
−
∫ T

0
Xsds

)]
= H(X, Y, τ) where τ = T − t, H satisfies the

following PDE

1

2
η2HXX +

1

2
s2HY Y + λ(Y −X)HX + (α− βY )HY −XH −

∂H

∂τ
= 0
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We guess a solution of the form H = exp(A(τ)+B(τ)X+C(τ)Y ) such that HXX =
B2H, HY Y = C2H, HX = BH, HY = CH and obtain

∂B(τ)/∂τ = −λB(τ)− 1

∂C(τ)/∂τ = λB(τ)− βC(τ)

∂A(τ)/∂τ =
1

2
η2B2(τ) +

1

2
s2C2(τ) + αC(τ)

The equation are solved by the use of an integrating factor and direct integration.
We substitute the solutions into the expression for H(X, Y, T ) into equation (A.1)
and evaluate at τ = T . This gives equation (1).

A.3 Term structure of inflation swaps

The vectors A(T ), B(T ), C(T ) have the following expression under the Q-measure:

A(T ) = − 1

T
·



αλ
β−λ

(
1
β

(
T − 1

β
(1− e−βT )

)
− 1

λ

(
T − 1

λ
(1− e−λT )

))
+ s2λ2

2(λ−β)2

(
1
β2

(
T − 2

β
(1− e−βT )

)
− 1

2β

(
T − 1

λ
(1− e−2βT )

))
− 2
βλ

(
T − 1

β
(1− e−βT )− 1

λ
(1− e−λT ) + 1

β+λ
(1− e−(β+λ)T )

)
+ 1
λ2

(
T − 2

λ
(1− e−λT ) + 1

2λ
(1− e−2λT )

)
+ η2

2λ2

(
T − 2

λ
(1− e−λT ) + 1

2λ
(1− e−2λT )

)


(A.2)

B(T ) = − 1

T
· −(1− e−λT )

λ
(A.3)

C(T ) = − 1

T
· λ

β − λ

(
1

β
(1− e−βT )− 1

λ
(1− e−λT )

)
(A.4)

The last four lines of equation (A.2) can be substituted by σ2
w(T ) defined below by

equation (A.6).

A.4 Distribution of inflation

Under the Q∗-measure the two members of equation (11), wT and uT , have the
following distribution. wT ∼ N(µw(T ), σ2

w(T )) where

µw(T ) = (1 + iT )T − 1

2
σ2
w(T ) (A.5)
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and variance

σ2
w(T ) =

s2λ2

(λ− β)2

(
1

β2

(
T − 2

β
(1− e−βT ) +

1

2β
(1− e−2βT )

)
(A.6)

− 2

βλ

(
T − 1

β
(1− e−βT ) +

1

λ
(1− e−λT ) +

1

β + λ
(1− e−(β+λ)T )

)
1

λ2

(
T − 2

λ
(1− e−λT ) +

1

2λ
(1− e−2λT )

))
+
η2

λ2

(
T − 2

λ
(1− e−λT ) +

1

2λ
(1− e−2λT )

)
The distribution of uT is obtained from

du = −1

2
V dt+

√
V dZI

dV = (θ − φV )dt+ σ
√
V dZV

that is a special case of the Heston (1993) model with characteristic function E[eiζuT ]
of uT given by

exp(L(T ) +M(T )V ) (A.7)

where

L(T ) =
θ(φ+ γ)

σ2
T +

2θ

σ2
ln

(
1− k0

1− k0eγT

)
M(T ) =

φ+ γ

σ2
· 1− eγT

1− k0eγT

and where

γ =

√
σ2(ζ2 + iζ) + φ2

k0 = (φ+ γ)/(φ− γ)

Then, the density function of uT , obtained by inverting the characteristic function,
is given by

h(uT ) =
1

2π

∫ ∞
−∞

e−iζuT exp(L(T ) +M(T )V )dζ (A.8)

The cumulants of uT are obtained in closed form by repeatedly differentiating the log
of the characteristic function (A.7) with respect to the argument ζ and evaluating
the derivatives at ζ = 0. The first cumulant of uT , i.e. the mean of uT , is given by

µu(T ) = −1

2

(
V − θ

φ

)
1

φ
(1− e−φT )− 1

2

θ

φ
T (A.9)
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The second cumulant of uT , the variance of uT , is given by

σ2
u(T ) =

(
1 +

σ2

4φ2

)(
− θ

φ2 (1− e−φT ) +
θ

φ
T

)
(A.10)

− σ2

2φ2

(
− θ
φ
e−φT +

θ

φ2 (1− e−φT )

)
+
σ2

4φ2

(
− θ

φ2 (e−φ − e−2φT ) +
θ

2φ2 (1− e−2φT )

)
+

((
1 +

σ2

4φ2

)
1

φ
(1− e−φT )− σ2

2φ2 e
−φT +

σ2

4φ2

1

φ
(e−φT − e−2φT )

)
V .

The distribution of inflation is defined in terms of the joint density of uT and
that of wT , that given their independence is the product of their marginals. The
cumulants of the distribution of the logarithm of inflation are equal to the sum
of the cumulants of wT and that of uT . We use the Gram-Charlier expansion to
numerically approximate this density under the P-measure given that we know the
functional form and the moments of both components.

A.5 Gram-Charlier expansion

Denote the first and second cumulant of inflation as c1 = µw(T ) + µu(T ) —defined
in equations (A.5,A.9) —and c2 = σ2

w(T ) + σ2
u(T ) —defined in equations (A.6,A.10)

—see Chateau and Dufresne (2017) for references. Standardize inflation and define
it x. The first three Hermite polynomials Hen, for n = 1, 2, 3, are given by

He0 = 1

He1 = x

He2 = x2 − 1

By the definition of Gram-Charlier expansion, the density of x can be approximated
up to the second order by

f(x, T ) ≈
[
He0 + c1He1 +

1

2

(
c1

2 + c2 − 1
)
He2

]
· n(x)

=

[
1 + c1x+

1

2

(
c1

2 + c2 − 1
)

(x2 − 1)

]
· n(x)

where n(·) is the density function of the standard normal. In order to overcome the
usual problem of having negative values of the term in square brackets we use the
following normalization

f(x, T ) ∼=
[
1 + c1x+ 1

2
(c1

2 + c2 − 1) (x2 − 1)
]2[

1 + c1
2 + 1

2
(c1

2 + c2 − 1)2
] · n(x)
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The probabilities of observing an inflation below zero and above 2% are equal to

Pr(x < 0) =

∫ 0

−∞
f(x, T )dx (A.11)

Pr(x > 0.02) =

∫ ∞
0.02

f(x, T )dx . (A.12)

Figure 12 reports f(x, T ) for T = 2, 3, 5, 10. Figure 13 reports the probabilities
(A.11-A.12) for T = 3.

A.6 Pricing of caps and floors

The no-arbitrage price of a cap option is given by the expectation under the risk-
neutral measure Q of the discounted payoff:

EQ
[
D(T ) ·max(0, IT − (1 +K)T )

]
.

Applying the change-of-numeraire technique, this expectation can be computed as
the product of the convenient numeraire, D(T ), and the expectation under the Q∗
forward measure:

D(T ) · EQ∗
[
max(0, IT − (1 +K)T )

]
where

D(T ) = EQ
[
e−

∫ T
0 Xsds

]
= (1 + iT )−T

and the expectation can be written as

EQ∗
[
max(0, (1 + iT )T − (1 +K)T )

]
= EQ∗

[
max(0, euT+wT − (1 +K)T )

]
as function of uT and wT whose joint density is f(wT , uT ) = f(wT ) · f(uT ) by the
independence between wT and uT . By direct integration:

EQ∗
[
max(0, euT+wT − (1 +K)T )

]
=

∫ +∞

−∞

∫ +∞

−∞
max

(
0, euT+wT − (1 +K)T

)
fwT ·fuT dwTduT .

As euT+wT > (1 +K)T if and only if wT > T ln(1 +K)− uT the expectation can be
written as∫ +∞

−∞

∫ +∞

T ln(1+K)−uT
euT ewT fwT fuT dwTduT−(1+K)T

∫ +∞

−∞

∫ +∞

T ln(1+K)−uT
fwT fuT dwTduT .

(A.13)

• Under the Q∗ measure wT ∼ N(ln((1 + iT )T )− σ2
w/2, σ

2
w) with density,

fW =
1√

2πσ2
w

e−
1
2

(wT−ln((1+iT )
T )+σ2w/2)

2

G
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and distribution function

FW (w) = N

(
w − ln((1 + iT )T ) + σ2

w/2√
G

)
• The first term of of (A.13) can be written as∫ +∞

−∞
euT fuT

∫ +∞

ln
(1+K)T

euT

ewT fwT dwTduT (A.14)

Because
∫ +∞
−∞ euT fuT duT = EQ∗ [euT ] = 1, this term converges.

The term in w can be written as∫ +∞

ln
(1+K)T

euT

ewT fwT dwT = EQ∗
[
ewT1

ewT>
(1+K)T

euT

]
(A.15)

Since wT is normal, ewT is lognormal with mean

E[ewT ] = eln((1+iT )T )−σ2w/2+σ2w/2

variance
V ar[ewT ] = (eσ

2
w − 1)e2(ln((1+iT )T )−σ2w/2)+σ2w

and density
1√

σ2
w2πew

e
− 1
2

(
(ln ew−ln((1+iT )

T )+σ2w/2)
2

σ2w

)

equation (A.15) becomes

EQ∗
[
ewT1

ewT>
(1+K)T

euT

]
=

∫ ∞
(1+k)T

euT

1√
2πσ2

w

e−
1
2

(ln(ewT −ln((1+iT )
T )+σ2w/2)

2

G d(ewT ) .

By a change of variable w = ln(ew), d(ew) = ewdw∫ ∞
T ln(1+k)−uT

ewT
1√

2πσ2
w

e−
1
2

(wT−ln((1+iT )
T )+σ2w/2)

2

G dwT . (A.16)

Combining terms and completing the square, the exponent in (A.16) becomes:

− 1

2σ2
w

(w2 + ln((1 + iT )T )2 +
σ4
w

4
− 2w ln((1 + iT )T ) + wσ2

w − ln((1 + iT )T )σ2
w − 2σ2

ww)

= − 1

2σ2
w

(
w − (ln((1 + iT )T ) + σ2

w/2)
)2

+ ln((1 + iT )T )

and defining a = uT−T ln(1+K)+ln((1+iT )T )+σ2w/2√
σ2w

, (A.16) can be written as

(1 + iT )T
∫ ∞
T ln(1+k)−uT

1√
2πσ2

w

e−
1
2

(wT−(ln((1+iT )
T )+σ2w/2))

2

G dwT = (1 + iT )T ·N(a) .
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• The second term of (A.13) can be written as

−(1 +K)T
∫ +∞

−∞
fuT [1− FW (T ln(1 +K)− uT )]duT

−(1 +K)T
∫ +∞

−∞
N(a−

√
σ2
w)fuT duT .

where [1− FW (T ln(1 +K)− uT )] = N(a−
√
σ2
w).

• Combining the terms, the price of the cap (A.13) is given by

(1 + iT )−T
∫ +∞

−∞
((1 + iT )T ·N(a) · euT − (1 +K)T ·N(a−

√
σ2
w)) · fuT duT

The price of the floor option can be derived in a specular way.

For a different derivation, see also appendix B in Fleckenstein et al. (2017).
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B Tables and figures

Figure 1: Swap price

The Figure shows the convergence of the Monte Carlo swap price to the closed form swap price for a
given choice of initial values of the state variables and maturity.
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Figure 2: Call price

The Figure shows the convergence of the Monte Carlo call price to the closed form call price for a given
choice of initial values of the state variables and maturity.
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Figure 3: Put price

The Figure shows the convergence of the Monte Carlo put price to the closed form put price for a given
choice of initial values of the state variables and maturity.
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Table 1: Results of estimates

parameter std.err. t-stat p-value

λ 0.38631 0.00059497 649.3 0
β 0.03055 0.0000239 1278.33 0
s 0.00132 0.00000231 570.94 0
η 0.00829 0.00010077 82.22 0
α 0.00091 0.00000068 1338 0
σ 0.02059 0.00001018 2023.61 0
ξ 1.1408 0.0047767 238.83 0
µ 0.02264 0.00009816 230.66 0
κ 0.29929 0.00068047 439.83 0
ψ 1.0086 0.00058369 1727.91 0
φ 0.00118 0.00040851 2.89 0
θ 0.00001 0.00000523 1.57 0.06
δ 0.0003 0.0000109 27.86 0

Σ1 0.00001 0.00000023 30.77 0
Σ3 0 0.00000001 26.16 0
Σ4 0 0.00000006 11.38 0
Σ5 0 0.00000034 11.23 0
Σ6 0.00001 0.00000023 38.73 0
Σ7 0.00002 0.00000016 116.85 0
Σ8 0.00003 0.00000015 176.89 0
Σ9 0.00005 0.00000013 371.07 0

Σ10 0.00006 0.00000012 463.98 0
Σ12 0.00006 0.00000012 540.33 0
Σ15 0.00007 0.00000012 595.35 0
Σ20 0.00003 0.00000014 231.98 0
Σ25 0.00001 0.00000021 63.94 0
Ψ1 0 0.00000018 14.69 0
Ψ2 0 0.00000004 31.04 0
Ψ5 0 0 299.27 0
Ψ7 0 0.00000001 224.97 0

Ψ10 0 0.00000011 32.27 0
Ψ12 0 0.00000018 25.02 0
Ψ15 0 0.00000028 11.09 0
Ψ20 0 0.00000037 9.23 0
Ψ30 0.00001 0.00000073 7.1 0
Ω1 0.00024 0.00000011 2131.08 0
Ω2 0.00002 0.00000043 57.3 0
Ω5 0 0.00000009 48.97 0

The Table reports the parameters of model (1, 2, 12) estimated using a quasi-Newton algorithm. The
standard error (std.err.), the t-statistics (t-stat) and the p-value (p-value) are computed with the Huber
sandwich estimator
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Table 2: pricing error of inflation swaps

tenor error std RMSE
1 7.50 14.36 16.20
2 0 0 0
3 -3.05 4.41 5.36
4 -4.53 6.71 8.09
5 -5.15 8.21 9.69
6 -5.10 8.79 10.16
7 -4.30 8.73 9.73
8 -2.96 8.23 8.75
9 -1.33 7.68 7.80
10 0.20 7.27 7.27
12 2.23 6.56 6.93
15 3.65 5.81 6.86
20 2.83 4.58 5.38
25 0.96 3.15 3.30
30 0 0 0

The Table reports the pricing error in basis points (error), the standard deviation (std.dev) and the root
mean sqared erros (RMSE)in basis points of inflation swaps in equation (1).

Table 3: pricing error of implied variances

tenor error std.dev, RMSE
1 -5.13 16.10 16.90
2 -1.84 10.67 10.82
3 0 0 0
5 -0.47 11.90 11.91
7 1.76 15.23 15.33
10 4.75 17.94 18.56
12 2.16 22.12 22.22
15 3.22 17.51 17.80
20 0.55 18.89 18.89
30 -5.42 21.86 22.52

The Table reports the pricing errors in basis points (error), the standard deviation (std.dev) and the root
mean sqared erros (RMSE) of implied volatility in equation (2).
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Figure 4: observed and fitted inflation swap

The Figure reports the observed and fitted inflation swaps under the Q-measure.
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Figure 5: observed and fitted standard deviation

The Figure reports the observed and fitted standard deviation under the Q-measure. The observed
standard deviation is calculated as the second moment of the density implied in inflation caps and floors
quotes.

Figure 6: factors of the inflation swaps term structure

The Figure reports the factor loadings for the inflation swaps and for the implied variance. The loading
of vectors G and H are multiplied by 100.
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Figure 7: istantaneous and long-term inflation

The Figure reports the istantaneous inflation (X) and long-term inflation (Y) estimated from the model.
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Figure 8: implied variance under the Q and P measure

The Figure reports the fitted implied variance under the Q and the P measure.
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Figure 9: fitted Q-measure inflation swap (breakeven), fitted P-measure inflation
swap (expected) and inflation risk premium

The Figure reports the fitted Q-measure inflation swap (breakeven), the fitted P-measure inflation swap
(expected) and the inflation risk premium for the maturity 1-, 3-, 5-, 10-, and 5-year five year forward.
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Figure 10: inflation risk premium

The Figure reports the average inflation riskpremium and the 5% and 95% percentiles.
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Figure 11: fitted Q-measure inflation, fitted P-measure inflation, inflation risk pre-
mium and expected inflation surveyed by the SPF

The Figure reports the 1-year forward fitted P-measure (breakeven) inflation, the fitted Q-measure (ex-
pected) inflation, the inflation risk premium, SPF annual inflation expected after one year (left panel)
and the mean of the aggregate probability distribution of SPF annual inflation expected after 4 years
(right panel).
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Figure 12: P-measure inflation densities

The Figure reports the densities of inflation under the P measure for the 2, 3, 5 and 10 year maturity.
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Figure 13: probability of inflation lower than 0 and greater than 2% over the fol-
lowing 3 years

The Figure reports the P-measure (—) and Q-measure (- -) probability that inflation is lower than 0% and
greater than 2% on average over the following three years.
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Figure 14: 5-year five year forward expected inflation and inflation risk premium for
different models

The Figure reports 5-year 5 year forward expected inflation and the inflation risk premium estimated by
this paper (CGP), that estimated as in Adrian et al. (2013) (ACM), Joslin et al. (2011) (JSZ) and Pericoli
(2019) (PER). JSZ and PER are at monthly frequency. The average of the long-term expected inflation
estimated with the ACM and JSZ models is imposed to be equal to 1.9%, the long-term inflation aim of
the ECB. The long-term expected inflation estimated with the CGP and PER models is unconstrained.
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