Robust Estimation and Inference for Smooth Changes in the Unconditional Volatility Rickard Sandberg¹ and Genaro Sucarrat² This version: 7th March 2022 ## Abstract The unconditional volatility of financial return is frequently time-varying. To model this, the most common approach is to decompose the conditional volatility σ_t^2 multiplicatively into a smoothly varying non-stochastic process g_t , and a de-scaled stochastic process h_t : $\sigma_t^2 = g_t h_t$. We prove the consistency and asymptotic normality of the single-step QMLE for the parameters of g_t for a broad class of specifications g_t . Next, we derive a simple but robust and consistent estimator of the coefficient covariance. The exact specification of h_t need not be estimated or known, and h_t can be non-stationary in the distribution. This is important in empirical applications, since financial returns are frequently characterised by a non-stationary zero-process. We compare our single-step estimator with the multistep iterative estimator of Amado and Terasvirta (2013), and illustrate our results in an empirical application. ¹Stockholm School of Economics. ²Department of Economics, BI Norwegian Business School, Nydalsveien 37, 0484 Oslo, Norway. Webpage: http://www.sucarrat.net/.