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Abstract

A large dimensional network or system can generate long memory in its components, as
shown by Chevillon, Hecq and Laurent (2018, CHL) and Schennach (2018). These authors
derive conditions under which the variables generated by an infinite dimensional vector autore-
gressive model of order 1, a VAR(1), exhibit long memory. We go one step further and show
how these theoretical results can be put to practice for modeling and forecasting series with
long range dependence that belong to a large network or system. We estimate the VAR(1)
model equation by equation, by shrinking the parameters to generic conditions matching those
of CHL and Schennach, by ridge and Bayesian estimations. We consider two large-dimensional
applications where long memory has long been an established observation. Our proposal signif-
icantly outperforms ARFIMA and HAR models when forecasting a non-parametric estimate of
the log of the integrated variance of 250 assets, as well as seasonally adjusted historic monthly
streamflow series recorded in 97 locations of the Columbia river basin.

Keyword: Bayesian estimation, Ridge regression, VAR, ARFIMA, HAR, Forecasting.
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1 Introduction

Ever since Granger (1966) and Nelson and Plosser (1982), the question of the degree of persistence
in macroeconomic and financial variables has exhibited regular puzzles. Long memory (i.e., a
dependence between observations decaying hyperbolically with their distance in time, see Beran,
1992) is often encountered in economic and financial time series (at least since Smith, 1938, and
Cox and Townsend, 1947; see, e.g., Baillie, 1996, for an introduction) and long memory models are
found to provide a good empirical representation of persistence that is stronger than ARMA models
but weaker than unit-root processes. The econometric literature has found that its origin can take
several forms, such as aggregation (Granger, 1980, Abadir and Talmain, 2002), linear modeling
of a nonlinear process (e.g., Robinson and Zaffaroni, 1998, Miller and Park, 2010, Chen, Hansen
and Carrasco, 2010), structural changes (e.g., Diebold and Inoue, 2001, Gourieroux and Jasiak,
2001, Perron and Qu, 2010) as well as resulting from agents’ self-referential learning behaviors and
forward expectations (Chevillon and Mavroeidis, 2017, 2018). More recently, Chevillon, Hecq and
Laurent (2018, CHL henceforth) have shown that long memory can result from the marginalization
of a large dimensional system. More specifically, they provide a parametric framework under which
the variables of an n-dimensional vector autoregressive model of order 1, i.e., a VAR(1), can be
individually modelled as a fractional white noise (see Granger and Joyeux, 1980) as n tends to
infinity. Long memory may therefore be a feature of univariate or low dimensional models that
vanishes when considering larger systems. In the context of network dynamics, Schennach (2018,
Schennach henceforth) has found a related result of hyperbolic response of outputs to distant input
shocks. These sources of long memory differ from other sources mentioned in the literature, in
particular the aggregation mechanism of Granger (1980).

In this paper, we address the question of whether and how the asymptotic theoretical results of
CHL and Schennach can be put to use in empirical works. Given the large dimensional nature of
their models, inference in empirical works is likely to be imprecise. Hence, rather than attempting
to test the specification of a large scale model using a finite data set, we provide an assessment
of the proximity of the models to the data generating process by means of forecasting exercises.
We provide in particular a set of techniques using classical and Bayesian inference which allow an
empirical modeler to benefit from the asymptotic theoretical results of CHL and Schennach.

It is well known that a VAR(1) model can be estimated equation by equation, each equation
being an AR(1) model augmented by the first lag of all the other variables in the system. We refer
to these univariate equations as AR(1)-X models. Our objective is to test whether such AR(1)-X
models can constitute a viable alternative to pure long memory models like the ARFIMA model
or models known to approximate well the long memory like the HAR model of Corsi (2009). By
careful estimation of the AR(1)-X models, we evaluate whether the new source of long memory
identified by CHL and Schennach is empirically relevant, is useful for forecasting variables depicting
long memory and therefore is a good candidate for approximating the data generating process of
series displaying long memory. Given their asymptotic nature (in the cross-sectional dimension n,
not in the sample size T ), the results of CHL and Schennach involve systems so large that inference
may be infeasible or highly imprecise in finite samples.

We propose two methods to estimate the AR(1)-X model, which shrink the parameters towards
a set of constraints provided by the theory developed by CHL and Schennach. The first shrinking
strategy relies on an L2 penalization of the AR(1)-X model (i.e., ridge regression) and is denoted
RAR(1)-X (for Ridge AR(1)-X). The second one relies on an informative prior density in a Bayesian
approach, denoted BAR(1)-X (for Bayesian AR(1)-X).
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If the penalty weight in the RAR(1)-X model is set to zero or the prior variances in the BAR(1)-
X model are set to plus infinity, the theory inspired restrictions have no influence, and therefore
the RAR(1)-X and the BAR(1)-X are equivalent to the unrestricted AR(1)-X estimated by OLS
which is expected to deliver poor results when the number of parameters to estimate is large.
Alternatively, if the penalty term in the RAR(1)-X is set to plus infinity or the prior variances
of the BAR(1)-X are set to zero, the restrictions are fully imposed. Values of the penalty weight
or of the prior variances between these two extreme cases are worth considering in an empirical
application, and optimal values of these parameters can be chosen by cross-validation.

We compare the proposed shrinking estimation strategies of the AR(1)-X model to OLS esti-
mation and to three univariate models for short and long range dependence: the AR(1) model, the
autoregressive fractionally integrated moving average (ARFIMA) model, and the heterogeneous au-
toregressive (HAR) model of Corsi (2009). For this purpose, we perform two empirical applications
to the prediction of (i) the logarithm of a robust to jumps estimate of the daily integrated variance
(i.e., the MedRV of Andersen, Dobrev, and Schaumburg, 2012) computed on 5-minute returns for
250 US stocks, and (ii), the logarithm of monthly seasonally adjusted series of river streamflows
recorded and computed at 97 locations in the Columbia river basin over 90 years. Given that we
compare models based on different information sets, and that these models are of reduced form
type and aimed at forecasting, it makes sense to use comparison criteria based on forecasts. Thus
we compare forecasts produced by different models using the mean absolute deviation (MAD) and
mean square forecast error (MSFE) loss functions, and rely on the Model Confidence Set test of
Hansen, Lunde and Nason (2011) to discriminate between the models.

The rest of this paper is organized as follows. Section 2 provides the theoretical framework
needed to understand how a VAR can generate long memory when the dimension of the system
becomes large. The theory implies restrictions on the VAR parameters that can be useful for
improving estimation and forecasting. Section 3 explains how the theoretical restrictions are used in
the estimation of the VAR parameters, either by defining an informative prior density for conducting
Bayesian estimation, or by ridge estimation. Section 4 contains the empirical results. Conclusions
are offered in the last section. Proofs and technical details are contained in an appendix.

2 Long memory in a VAR(1) model

This section presents the conditions derived by CHL and Schennach needed to prove that long-
memory observed in a univariate time-series can be the result of the marginalization of an infinitely
large VAR(1) system. Let the observable vector yn,t of dimension n satisfy, for t ≥ 1,

(In −AnL) (yn,t − µ) = εn,t, (1)

where εn,t is a short memory process with zero expectation and variance-covariance matrix Σn.
While the specific assumptions differ in CHL and Schennach, we let, for clarity of exposition,

An = Tn + ηnDn,
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where ηn is a vanishing scalar sequence, and (Tn) and (Dn) denote sequences of Toeplitz matrices
that are, respectively, symmetric and antisymmetric. The entries of Tn are labelled as

Tn =


t
(n)
0 t

(n)
1 · · · t

(n)
n−1

t
(n)
1

. . .
. . .

...
...

. . .
. . . t

(n)
1

t
(n)
(n−1) · · · t

(n)
1 t

(n)
0

 . (2)

Following the exposition by Schennach, the process yn,t can be seen as generated by a network
that lies in a space of dimension one. She also considers higher dimensions, but for the purpose of
the analysis using financial and hydrological data, we restrict ourselves to a one dimensional linear
network so each node lies in Z. In the spirit of Diebold and Yılmaz (2009, 2014), who estimate
connectedness within a network using a VAR, this amounts to a system that consists of an infinite
but countable number of variables indexed by j ∈ Z. We denote the limiting, infinite dimensional,

vectors by (yt, εt) = limn→∞ (yn,t, εn,t), and the ith elements of yt, εt by y
(i)
t , ε

(i)
t , for i ∈ Z or N.

We next describe the two models that have been shown to generate long memory within an infinite
dimensional VAR(1) model such as (1).

CHL Model: These authors assume that the effect of Dn vanishes at rate ηn = o
(
n−2

)
. They

make a parametric assumption for the entries of Tn, namely that (i) there exists a sequence δn ∈(
0, 12
)

satisfying n2
(
δn − 1

2

)
= o (1) , such that (ii) t

(n)
k = Re

[
1
n

∑n−1
j=0 g

(
δn, e

i 2πj
n

)
e−

2iπjk
n

]
(for

k = 0, 1, . . . n − 1), where for (δ, ω) ∈ (0, 1) × R, g
(
δ, eiω

)
≡ 1{0≤u<πδ} + 1{π( 3

2
−δ)<u≤ 3π

2 }, with

ω = u mod 2π. They show that, as n → ∞, with (n− 1) /4 ∈ N, t(n)0 → 1
2 and t

(n)
k → 0 for k 6= 0.

Under the assumption εn,t ∼ IID (0,Σn) and Σn diagonal, they prove (in their Theorem 1) that, as
n → ∞, all components of yn,t tend to independent fractional white noises with identical degrees
of integration (all equal to one-half):

yn,t ⇒ µ+ ∆−1/2εt,

where ∆ = 1 − L and ⇒ denotes weak convergence of the associated probability measures. Since
the entries ofAn− 1

2In tend to zero as n→∞, the cross-sectional dependence between the elements

of yn,t vanishes as n→∞. Yet, as in this setting
∑n−1

k=0 t
(n)
k = 1 remains nonzero, the dependence

across individual series is sufficient to generate long memory in each of the components of the
multivariate processes.

Schennach Model: She considers the limiting structure where T = limn→∞An = limn→∞ Tn,
i.e., the case of an infinite dimensional network. She assumes that εt constitutes a short mem-
ory MA(∞) process. The entries (tk) of T are assumed to satisfy t0 > 0,

∑∞
j=0 tj = 1, and

card {j ∈ Z, tj > 0} < ∞. She then proves (in her Theorem 4) that, for all i, j, there exists a
cij > 0 such that, as k →∞

∂y
(i)
t+k

∂ε
(j)
t

= cijk
−1/2 +O

(
k−3/2

)
,
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i.e., the impulse response function of y
(i)
t+k to a shock ε

(j)
t is hyperbolic and its decay corresponds

to that of a process that is integrated of order 1
2 .

Both Schennach and CHL find long memory of fractional degree one-half in infinite dimensional
networks. They use different approaches and assumptions, but rely on the Toeplitz nature of
dependence across the infinite dimensional – yet countable – number of variables in the system
or nodes in the network. Both of them consider so-called bistochastic matrices whose rows and
columns sum to unity. Schennach focuses on the interactions within the limiting system/network
while CHL consider the evolution in dynamics as the finite system/network grows larger. Both find
that long memory arises only in the infinitely dimensional environment.

Schennach is less restrictive in her assumptions on εt. She does not specify the values of the
entries of A but assumes that only a finite number of tk are nonzero, so that a rotation of A is
banded (i.e., all subdiagonals are zero beyond a point). Hence, in the (one-dimensional) networks
she considers, each variable/node is only directly connected to a finite number of variables/nodes.

By contrast CHL rely on i.i.d. shocks and make parametric assumptions on Tn. In their setting,
variables/nodes are directly connected to all other variable/nodes, but with a connection that
becomes weaker as the dimension of the system/network increases.

Then Schennach’s result is that all response functions of all variables to all shocks exhibit
hyperbolic decay, whereas CHL’s applies only to the responses of variables to their idiosyncratic
shocks in the VAR system.

3 How to use the theory for estimation?

The theory summarized in Section 2 provides parametric restrictions on the matrix An of a VAR(1)
system of n variables, which imply that the variables have long memory properties when n tends
to infinity. The stylized “long memory” restrictions (i.e., implying that the variables of the system
have long memory properties) on the matrix An are that the diagonal elements are close to 0.5,
the other elements are close to 0, and the sum of the elements of each row is equal to 1.

Estimating An is needed to obtain forecasts of yn. We present here some methods to shrink the
estimates of An towards the theoretical results of CHL and Schennach reminded in Section 2. An
obvious way to strictly impose the restrictions consists in paramaterizing explicitly the elements
of An through the structure proposed by CHL or Schennach. This means in practice that all the
elements of An depend on a scalar δn that can be estimated by minimum distance or by maximum
likelihood (ML). This is certainly too restrictive and we want a certain degree of flexibility around
these restrictions.

Between the least restrictive strategy of ignoring the restrictions and estimating the VAR by
OLS, and the totally restrictive strategy mentioned above, there exists intermediate methods. One
of them is penalized regression (e.g., ridge or lasso), where the least squares criterion is augmented
with restrictions whose strength is modulated through penalty parameters. The resulting estimator
is shrunk in the direction of the restrictions. Since the theoretical restrictions we consider here do
not imply the exclusion of specific variables, the relevant penalization in our context is ridge, so we
do not consider lasso.

Bayesian estimation provides another intermediate method where the restrictions are embedded
in a prior density, in such a way that they hold a priori on average (through the prior expectation
of the parameters), but with some degree of uncertainty (through prior positive variances on the
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parameters or functions thereof). Depending on the degree of tightness of the prior, the prior
information pulls data information more or less strongly in the direction of the restrictions.

Ridge regression and Bayesian estimation are exposed respectively in Subsections 3.2 and 3.3.
The next subsection sets the details of the econometric model and its estimation, which in both
methods is an “equation by equation” approach to the estimation of the VAR system, denoted,
respectively, RAR(1)-X and BAR(1)-X. Appendix C explains the relation between the ridge and
Bayesian estimators.

3.1 Econometric framework

We consider the estimation of a VAR(1) process, written for time t (dropping the subscript n on
An and on the processes) as

yt = τ +Ayt−1 + εt, (3)

for the vector yt consisting of n variables. The estimation of the parameters τ and A is performed
“equation by equation”, instead of globally for the system. Assuming εt is multivariate Gaussian
with zero expectation and constant covariance matrix Σ, the separate estimation by OLS of each
equation is equivalent to the maximum likelihood estimation of the system, even if Σ is not diagonal.
For Bayesian estimation, the equation by equation method is not equivalent to the joint estimation
of all equations, but the latter method is much heavier in computing time for the dimensions we
are interested in (e.g., 250 in the first empirical application).

A typical equation of the VAR(1) system is an AR(1)-X regression equation, that is written for
date t as

yt = γ0 + γ ′xt + εt, (4)

where yt is a variable of the system, γ0 is the intercept parameter, xt is the column vector containing
the first lag of the n variables of the system (including the first lag of yt), γ = (γ1, γ2, . . . γn)′ is
the vector of n slope coefficients of xt, and εt is an error term assumed to be Gaussian with zero
expectation and constant variance σ2. By convention, for any variable of the VAR, xt is ordered
in such a way that its first element is the lagged dependent variable (yt−1), and γ is ordered
accordingly: its first element (γ1) is the autoregressive coefficient of the dependent variable, and
the remaining elements are the coefficients of the other lagged variables. For example, if yt is the
first element of yt, γ

′ is the first row of the matrix A of the VAR(1) system, and γ0 is the first
element of τ .

For T observations, the AR(1)-X equation is written in the standard regression notation

Y = Zβ + ε, (5)

where Y = (y1, y2, . . . , yT )′, ε = (ε1, . . . , εT )′ ∼ N(0, σ2IT ), Z is a T × k matrix, with k = 1 + n
and t-th row equal to (1, x′t), and β = (γ0, γ

′)′.
The estimation of β by OLS is likely to be imprecise when n is large and to affect negatively

the quality of forecasts. To take advantage of the parametric restrictions implied by the theories
of CHL and Schennach, we opt for shrinking the elements of the vector β = (γ0, γ

′)′ in (5) so that

C1: the autoregressive coefficient (γ1) is close to 0.5,

C2: the other elements of γ are close to 0,

C3: the sum of the elements of γ is equal to 1.

In what follows, we explain how we implement this by ridge or Bayesian estimation.
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3.2 Ridge estimation

To achieve C1 and C2, we define a vector β0 as the shrinkage target of β such that

β0 = (0, d0, a0, . . . , a0)
′, (6)

where a0 = (1 − d0)/(n − 1) is repeated n − 1 times. The scalar d0 in (0, 1) is the target for
the autoregressive coefficient and it determines the target a0 of the other coefficients, which are
shrunk to a value that is close to zero when n is large. We use two penalty parameters to control
the shrinkage strength: λ2d for the autoregressive parameter, and λ2a for the other coefficients. The
penalty term is defined as

λ2d(γ1 − d0)2 + λ2a

n∑
i=2

(γi − a0)2 = (β − β0)
′Λk(β − β0), where Λk = diag(0, λ2d, λ

2
a, . . . , λ

2
a). (7)

In this way, the last n elements of β are shrunk to the corresponding elements of β0, but the first
element of β is not shrunk, the value (zero) of the first element of β0 being practically irrelevant.

The choice of β0 implies that the sum of the last n coefficients is equal to 1 in the target, but
the penalty is distributed over the n coefficients. To better achieve C3, we add the penalty term
λ2s(ι

′β − 1)2, where λ2s is a penalty parameter and ι = (0, 1, 1, . . . , 1)′ is a vector of k elements.
More generally, by writing the penalty as λ2s(ι

′β − ι′β0)
2, we cover the possibility that the target

value be different from 1.
The extended ridge (ER) estimator is obtained by minimizing the objective function

(Y −Zβ)′(Y −Zβ) + (β − β0)
′Λk(β − β0) + λ2s(ι

′β − ι′β0)
2, (8)

and can be shown to be (see Appendix A)

βER =
(
Z ′Z + Λk + λ2sιι

′)−1 (Z ′Y + Λkβ0 + λ2sιι
′β0). (9)

As usual, the ridge estimator simplifies to the OLS estimator if all the penalty parameters are set
to zero.

The values of d0, λ
2
d, λ

2
a, and λ2s can be chosen by cross-validation on a training sample. A grid

of values is set a priori for each of them. For each point of the grid, the estimator is computed using
80 percent of the training sample, forecasts are computed for the last 20 percent, and a forecast
loss function is computed. The chosen triplet is the value minimizing the loss function over the
grid. After this, the estimation is performed on a subsequent sample, and forecasts are computed
and evaluated over a post-estimation sample. Details are provided in Section 4.

3.3 Bayesian estimation

Bayesian estimation is based on a prior density for β and σ2, and the likelihood function, the latter
resulting from the assumption of normality of the error terms. Since the theory does not provide
information on σ2, its prior “density” p(σ2) is chosen to be the usual “non-informative” prior:

p(σ2) ∝ 1/σ2. (10)

The prior density of β is designed to include the theory restrictions C1-C3. We opt for a Gaussian
density for three reasons: it is convenient for computing the posterior density (see Appendix B);
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the implementation of the restrictions is easy through four scalar parameters, as explained below;
and the restrictions do not require an asymmetric density. The prior density is proportional to

exp[−1

2
(β − β0)

′Q0(β − β0)] exp[−1

2
h0(β

′ι− β′0ι)2]. (11)

The vector β0 is defined as (3.2); it depends on the scalar hyperparameter d0 (see below). To explain
the prior, let us first fix the scalar hyperparameter h0 to zero, and discuss the first Gaussian kernel
of (11), which corresponds to restrictions C1 and C2. Then β0 is the prior expectation, and Q0 is
the prior precision matrix. We specify this matrix to be diagonal:

Q0 = diag(0, 1/s2d, 1/s
2
a, . . . , 1/s

2
a), (12)

so that sd is the prior standard deviation of the autoregressive coefficient and sa is the the prior
standard deviation of the other coefficients. The strength with which the restrictions C1 and C2
are imposed depends on the values of sd and sa, respectively. Values close to zero correspond to a
strong prior belief in favor of the restrictions. For the intercept term, the prior precision is set to
zero, so that the data information dominates the prior information on this term.

Although the prior expectation β0 embeds the restriction C3 that the sum of the last n elements
of β is equal to 1, the prior variance of this sum is equal to s2d + (n − 1)s2a. Hence to obtain a
small variance, sa must be fixed to a very small value, which may be in contradiction with the
restriction C2. Indeed, the latter requires not to shrink excessively to zero the coefficients of the
last n elements of β. The second Gaussian kernel of (11) is designed to avoid the conflict between
the two restrictions, by adding a prior parameter that controls the strength imposed on the unit
sum, independently of the strength imposed on the individual coefficients. Notice that in the second
exponential function of (11), we have written β′0ι after the minus sign, instead of 1, to cover the
case where one wants this target to be different from 1, that is, the case where one defines β0

differently from (3.2).
If Q0 in the first kernel is a null matrix, the second kernel specifies that the prior mean of the

sum of the last n elements of β is equal to β′0ι (= 1 if β0 is given by (3.2)), and that its prior
precision is equal to h0. Hence a large value of h0 corresponds to a strongly informative prior on
the target for the sum of the coefficients.

It is well-known that the product of two Gaussian kernels is a kernel of a Gaussian density.
Hence, (11) is the kernel of the Gaussian density (see Appendix A)

β ∼ Nk(β0,V0), (13)

where
V0 = (Q0 + h0ιι

′)−1. (14)

Notice that the expectation of β is β0, the same as in the first kernel. If h0 > 0, the prior covariance
matrix is not diagonal: actually, the covariances are negative, which is what is needed to reduce the
prior standard deviation of β′ι with respect to its value when the prior covariance matrix is diagonal.
For example, if d0 = 0.50, sd = sa = 0.02, h0 = 5000, n = 250, β0 = (0, 0.5, 0.002008(249 times)),
Q−10 = diag(100, 0.022(250 times)), the diagonal of V0 is (100, 0.019962(250 times)), the off-diagonal
elements are equal to 0 in the first line (and column), and the other covariances are equal to
−1.59681/106 (the corresponding correlation coefficient being equal to -0.004008). The prior stan-
dard deviation of β′ι is equal to 0.014128, much smaller than its value of 0.317 when the prior is
Nk(β0,Q

−1
0 ), where Q−10 is defined as diag(0, s2d, s

2
a, . . . , s

2
a).
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In summary, the prior density (13), when β0 is defined by (3.2) and Q0 by (12), is fully
determined by the four scalar hyperparameters d0, sd, sa, and h0, whatever the dimension n of the
VAR. These hyperparameters can be fixed to some values, as in the example above, or they can
be chosen for each equation of the VAR by a cross-validation procedure similar to the procedure
defined in the last paragraph of the previous subsection.

The computation of the posterior mean of β for the prior (10)-(13) is performed by the sim-
ple Gibbs sampling algorithm defined in Appendix B. The prior is not conjugate since V0 is not
proportional to σ2. It becomes conjugate if (13) is replaced by

β|σ2 ∼ Nk(β0, σ
2V0). (15)

The posterior mean corresponding to this conjugate prior is(
Z ′Z +Q0 + h0ιι

′)−1 (Z ′Y +Q0β0 + h0ιι
′β0

)
, (16)

where (14) has been used. If we set Q0 = Λk (by setting λ2d = 1/s2d and λ2a = 1/s2a) and h0 = λ2s,
this posterior mean is exactly the ER estimator (9). With the non-conjugate prior, one can only
derive the conditional (to σ2) posterior mean of β, which can be expressed (see Appendix B) as

β∗(σ
2) =

(
Z ′Z

σ2
+Q0 + h0ιι

′
)−1(Z ′Y

σ2
+Q0β0 + h0ιι

′β0

)
. (17)

This differs from (16) only by the presence of σ2. The Gibbs sampler defined in Appendix B is a
way to marginalize β∗(σ

2) with respect to σ2. The resulting unconditional posterior mean of β is
then different from the corresponding posterior mean/ER estimator when the prior is conjugate.

3.4 Forecasting

After obtaining a point estimate of β for an equation of the VAR system, such as the OLS estimator,
the extended ridge estimator, or the posterior mean, a one-step ahead point forecast of yt+1 is
simply obtained using a point estimate of (4), and the regressor xt+1 observable at time t. This is
equivalent to using the point estimates of all equations to form the estimated τ and A of the VAR
system (3), and then computing one-step ahead point forecasts as ŷt+1 = τ̂ + Âyt.

To compute h-step ahead forecasts, with h > 1, one can use iterated multistep forecasting or
direct multistep forecasting. An iterated h-step ahead forecast is based on the estimated VAR
and computed recursively as ŷt+h = τ̂ + Âŷt+h−1. This approach amounts to compute Âh, i.e., to
forecast all variables even if one is interested in only a subset of them (even just a single one). Hence
the forecast of a variable of interest may be contaminated by erroneous and imprecise forecasts of
the other variables (see, e.g., Schorfheide, 2005; Chevillon and Hendry, 2005).

If the objective is to forecast a subset of the series, or if one wishes to avoid the drawback inherent
in the iterated multistep method highlighted above, the direct multistep forecasting method is
preferable. The method consists in directly projecting yt on its lag yt−h, as in

yt = τh +Ahyt−h + ut. (18)

Ignoring that Ah = Ah, a typical equation of (18) can be cast in the form of 4) and (5), adapting
the definitions of Y , xt and Z, and ignoring the dependence in ut induced by recursive substitution.
For h > 1, we denote the equation corresponding to (5) by

Y(h) = Z(h)βh + u(h). (19)
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Hence, the system (18) can be estimated equation by equation, by OLS, ridge and Bayesian estima-
tion, as for h = 1. By proceeding in this spirit, no direct use is made in estimation of the relation
Ah = Ah, because this would imply that the regression coefficients of the different equations of (18)
are nonlinear functions of the same parameters (those of A), so that equation by equation estima-
tion would be pointless. In brief, the parameter βh is not treated as a function of the underlying
parameters of A.

Nevertheless, for ridge and Bayesian estimations, we let the target towards which βh is shrunk
depend on h and denote it by βh,0. This βh,0 relates to the first row of Ah

0 , like β0 is directly the
first row of A0 = d0In + a0 (Jn − In), where Jn is a matrix of ones, and a0 = (1 − d0)/(n − 1).
Practically, we set the last n elements of βh,0 to be close to the first row of Ah

0 when n is large
relative to h: this is achieved by setting (see Appendix C)

βh,0 =

(
0, dh0 ,

1− dh0
n− 1

, ...,
1− dh0
n− 1

)′
. (20)

The extended ridge estimator for the corresponding βh is defined as in (9), replacing β0 by
βh,0, the penalty parameters and the value of d0 being chosen by cross-validation for each horizon
h. For Bayesian estimation, we use the same type of prior as when h = 1 (i.e., (10) and(13)), also
replacing β0 by βh,0. Forecasts for specific elements of yt can readily be formed by estimating only
specific rows of (18), so that forecasts are obtained from the corresponding individual equations,
as in the case h = 1.

4 Empirical illustrations

In this section, we provide two applications to data where long memory has been documented in
the literature and for which multiple series supposedly belonging to the same system are available.
In both cases, for a large number of series, we compare out-of-sample forecasts obtained from
the AR(1)-X equation (4) by three estimation methods: OLS, ridge, and Bayesian estimation, as
defined in Section 3. We also include in the comparison the forecasts of three benchmark models,
which are purely univariate time series models in the sense that they specify yt as a function of the
(infinite) past of yt only. The six models and their estimation method are listed below:

1. AR(1): yt = γ0 + γ1yt−1 + εt, estimated by OLS.

2. ARFIMA(1,d,0): (1−L)d(yt−γ0−γ1yt−1) = εt, estimated by Gaussian maximum likelihood.

3. HAR (Corsi, 2009): yt = γ0 +γ1yt−1 +γ2
1
5

∑5
i=1 yt−i+γ3

1
21

∑21
i=1 yt−i+εt, estimated by OLS.

4. AR(1)-X: yt = γ0 + γ1yt−1 +
∑n

i=2 γixi,t−1 + εt, estimated by OLS. This is the model defined
in (4).

5. RAR(1)-X: This model is identical to the AR(1)-X. The estimator is the extended ridge
estimator defined by (9), see Section 3.2. Recall that in this case we shrink γ1 towards d0
with penalty parameter λd, γi toward (1 − d0)/n − 1 (∀i > 1) with the penalty λa, and∑n

i=1 γi towards 1 with a penalty of λS . The penalty parameters (i.e., λd, λa and λS) and d0
are chosen by cross-validation as explained at the end of Section 3.2; details are provided in
Appendix D.
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6. BAR(1)-X: This specification is also identical to the AR(1)-X but the estimation is performed
by the Bayesian method presented in Section 3.3. The prior for the variance of εt is non-
informative, see (10), and the prior for the regression coefficients β = (γ0, γ1, γ2, . . . , γn)′ is
the Gaussian density defined by (13) together with (3.2), (14) and (12). More specifically, the
prior on γ0 is quasi-noninformative (with a mean of 0 and a variance of 100), the prior mean
of γ1 is set equal to d0, and the prior mean of γi ∀i > 1 is set to (1− d0)/(n− 1). The prior
precision of γ1 is 1/s2d + h0, the prior precision of γi (∀i > 1) is 1/s2a + h0. The co-precisions
(the off-diagonal elements of the inverse of V0) are all set to h0. The larger h0, the smaller the
prior variance that the sum of the last elements of β is close to the sum of their prior means
(equal to 1 for (3.2)). The prior parameters d0, sd, sa and h0 are chosen by cross-validation
(see Appendix D for details).

For forecast horizons h > 1, we use iterated multistep forecasts (i.e., recursive substitution)
for the first three methods (AR(1), ARFIMA and HAR) and direct multistep forecasts for the last
three AR(1)-X, RAR(1)-X and BAR(1)-X; as discussed in Subsection 3.4, this avoids contaminating
forecasts across variables when additional (non autoregressive) regressors are present.

The out-of-sample forecasts (at several horizons) are compared to the observed values using
both the mean squared error (MSE) and the mean absolute deviation (MAE) loss functions. These
loss functions are defined for each model m as

MSE
(m)
h =

1

Th

Th∑
t=1

(ŷ
(m)
t,h − yt)

2, MAE
(m)
h =

1

Th

Th∑
t=1

|ŷ(m)
t,h − yt|, (21)

where h is the forecast horizon, Th is the number of forecasts, and ŷ
(m)
t,h is the forecast of yt at

horizon h by model m. The comparison tool is the model confidence set (MCS) procedure of
Hansen, Lunde, and Nason (2011) and we also report rolling windows of the average loss functions.

In the first application, yt is the logarithm of a measure of daily realized volatility for a set of
250 U.S. company stocks. In the second application, it is the logarithm of the monthly seasonally
adjusted river streamflows at 97 locations in the Columbia river basin.

4.1 Daily realized volatilities of U.S. stocks

The dataset consists of transaction prices at the 1-second sampling frequency for n = 250 large
capitalization stocks from the NYSE, AMEX and NASDAQ, covering the period from 2005-01-03
to 2017-07-24 (3,276 trading days). The trading session runs from 9:30 EST until 16:00 EST and
stocks are ordered by decreasing average daily transactions volume, i.e., with the most liquid coming
first. We aggregated the data at the 5-minute frequency and computed the MedRV estimator of
Andersen, Dobrev, and Schaumburg (2012), a non-parametric robust to jumps estimator of the
integrated variance. If rt,i is the ith 5-minute return of a given stock on a day t containing M
(e.g., 78) of such returns, log(MedRVt) (denoted by yt hereafter) is computed as the logarithm
of MedRVt = π

6−4
√
3+π

M
M−2

∑M
i=3 med(|rt,i|, |rt,i−1|, |rt,i−2|)2, where med (·) denotes the median.

Notice that VAR models for the logarithm of realized variances have been used for instance by
Anderson and Vahid (2007).

The six competing models are estimated on rolling windows of T = 1, 000 observations. They
are estimated first on the sample spanning the period from 2005-01-03 to 2008-10-31, and h-step
ahead forecasts of yt are computed for ten horizons (h = 1, 2, . . . , 10) leading to a total number
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of 2,277-h forecasts. The parameters estimated on each window are kept constant to produce 25
consecutive forecasts and then re-estimated on the next window of T observations. To speed up the
estimation, the four tuning parameters of the RAR(1)-X and BAR(1)-X models are only estimated
once by cross-validation on the first window of T observation and then kept constant. The rolling
is continued until the last possible window of the full sample. The models are estimated for each
of the n = 250 available series.

The presence of long memory in the volatility of the log-returns of financial assets is a well
recognized stylized fact (see Baillie, Bollerslevand Mikkelsen, 1996, Breidt, Crato and de Lima,
1998, Comte and Renault, 1998, among others). For the sake of illustration, the average value
(over the 250 series) of the estimated d parameters of the ARFIMA(1, d, 0) obtained on the full
sample is about 0.48 (with a standard deviation of 0.02).

To make sure that our empirical results are not specific to the chosen forecasting period, we
compare the forecasting power of the competing models on rolling windows. More specifically,
Figures 1 and 2 show, respectively, the averages (over the 250 stocks) of the MSE and MAE
loss functions for a sequences of rolling samples of 250 forecasts, and three forecast horizons (i.e.,
h = 1, 5 and 5). Figures 3 and 4 report, for the same three forecasting horizons, the time evolution
of the frequencies at which each model belongs to the MCS at the confidence level of 75% (named
MCS75 in the sequel), and again sequences of rolling samples of 250 forecasts. A frequency of 50
(percent) for model m at date t means that the model m is in the MCS75 for fifty percent of the
250 series; the MCS75 in question being obtained using the loss function computed from the 250
forecasts ending at date t. Notice that the MCS test is not applied to every consecutive window of
250 forecasts but every 25-th windows to facilitate the computations, so that 82 values are plotted
for each competing model.

To help summarize the results, in addition to these 4 figures, Table 1 reports the average value
(over the 82 windows) of the time evolution of the frequencies at which each model belongs to the
MCS75. These values correspond to the average value of the six lines plotted in Figures 3 and 4 as
well as the other forecasting horizons, i.e., for h = 1, . . . , 10.

Some comments, which apply equally to both loss functions, follow.

• AR(1) and AR(1)-X are strongly outperformed by the other models over the forecast period.
Their average losses are larger (often strongly) than those of the other models. The frequencies
of inclusion of these models in the MCS75 are very often smaller than 10 percent, and almost
never above 20. This is confirmed in Table 1, where these two models are by far the least
present on average in MCS75, whatever the forecast horizon and the choice of the loss function.

• ARFIMA and HAR perform comparably, especially considering their average losses. Their
frequencies of inclusion in the MCS75 are also similar, but sometimes more different than the
losses. In broad outline, these frequencies fluctuate between 25 and 50 percent until mid-2012,
and then between 50 and 70 percent. Table 1 shows that on average these two models belong
to the MCS75 in about 50% of the cases, whatever the forecast horizon and the choice of the
loss function.

• RAR(1)-X and BAR(1)-X perform comparably and better than ARFIMA and HAR, with
smaller losses and higher frequencies. The latter are most of the time between 65 and 75%,
though for horizons 5 and 10, the RAR frequencies are higher (by 10 to 20 points) than
the BAR frequencies in 2012 and 2013, and again from March 2016. Interestingly, Table 1
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Figure 1: Average MSE (over the 250 series) computed on rolling windows of 250 observations.
The three panels are respectively for h = 1, 5 and 10.
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Figure 2: Average MAE (over the 250 series) computed on rolling windows of 250 observations.
The three panels are respectively for h = 1, 5 and 10.
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Figure 3: Frequencies (over the 250 series), at each date, at which each model belongs to the MCS
(at 75% confidence level) for MSE loss function. The three panels are respectively for h = 1, 5 and
10.
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Figure 4: Frequencies (over the 250 series), at each date, at which each model belongs to the MCS
(at 75% confidence level) for MAE loss function. The three panels are respectively for h = 1, 5 and
10.
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suggests that for h = 1, BAR(1)-X is on average the most frequently in the MCS75 but for
h > 1, RAR(1)-X is even better than BAR(1)-X, with an average frequency in the MCS75
around 70%, i.e., 20 points higher than ARFIMA and HAR.

In brief, the use of the theoretical constraints in the AR(1)-X model through the proposed
Bayesian and ridge estimation methods strongly improves the model forecasting performance with
respect to OLS. The bad performance of the latter is due to a lack of precision because 251 coef-
ficients are estimated using 1,000 observations, whereas the shrinkage methods impose a relevant
theoretical structure on the estimated coefficients. The performance of the shrinkage methods is
also most of the time significantly superior to that of the ARFIMA and HAR models; this difference
can be attributed to the use of a larger, but relevant, information set.

Table 1: Average frequencies (over the 250 series and the 82 rolling windows), at which each model
belongs to the MCS (at 75% confidence level)

h AR(1) ARFIMA(1,d,0) HAR AR(1)-X RAR(1)-X BAR(1)-X

MSE

1 4.005 52.946 50.463 5.580 61.756 64.698
2 5.412 44.573 45.605 4.874 72.430 56.094
3 6.602 48.015 47.131 6.281 73.427 56.746
4 7.620 50.074 46.731 6.973 68.716 63.319
5 8.716 53.156 48.168 7.002 69.664 62.069
6 9.205 52.020 48.672 7.664 68.316 61.931
7 9.630 50.716 48.677 7.284 70.306 60.459
8 9.906 51.274 48.780 7.714 71.649 58.474
9 10.202 49.877 46.874 8.202 70.800 59.733
10 10.894 48.435 45.467 8.183 70.341 58.578

MAE

1 4.107 54.688 52.771 5.717 63.488 66.298
2 5.027 45.773 47.136 5.106 73.585 56.706
3 6.247 48.706 47.901 6.859 74.281 58.202
4 7.007 51.659 48.163 7.264 69.807 64.588
5 7.911 54.573 49.748 7.279 70.637 63.570
6 8.316 52.963 49.881 8.084 69.457 63.042
7 8.854 51.812 50.074 7.857 71.802 61.877
8 9.294 52.454 51.175 7.970 72.765 60.805
9 9.595 50.499 49.146 8.227 71.990 61.017
10 10.222 49.427 47.304 8.607 71.210 59.096

4.2 Monthly river streamflows in the Columbia river basin

Natural streamflows play a significant role in shaping biological communities and they regulate
ecological processes in local ecosystems. In most industrialized economies streamflows are modified
as a result of human activity (agricultural, industrial, . . .), and regulated as such. Forecasting
future flows is essential for planning dam discharges and adaptation.
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In the hydrology community, many studies have been carried out on the test for long memory
streamflow processes, following the seminal paper of Hurst (1951) on dimensioning dams for the
Nile river, and which pioneered the literature on long memory. For instance, Montanari, Rosso
and Taqqu (1997) applied ARFIMA modelling to the monthly and daily inflows of Lake Maggiore,
Italy. Depending on the modelling strategy, their confidence interval for the degree of long memory
varies with a [.35, 45] range. This is a feature that has often been documented in the hydrology and
streamflow forecasting literatures. Ooms and Franses (2001) documented that monthly river flow
data displays long memory, in addition to pronounced seasonality based on simple time series plots
and periodic sample autocorrelations. Wang et al. (2002) investigated the long memory property of
two daily streamflows of the Yellow River in China and found that both daily streamflow processes
exhibit strong long memory. It must be noted that long memory is not found in all hydrological
datasets, depending on the data considered, the frequency and length of observation (see, for
instance, Rao and Bhattacharya, 1999, and Montanari et al., 2000), but as mentioned in the
doctoral thesis of Wen Wang (2006) at the Technological University of Delft, ARFIMA models
remained at the time the main contenders for forecasting streamflows (though some neural network
based techniques may help capturing some nonlinearities). Over the last 15 years, the literature
has explored machine learning techniques (artificial neural networks, support vector machines, . . .)
for forecasting hydrological series and have found mixed evidence depending on the situations.
To assess these results Papacharalampous et al. (2019) perform an extensive comparison of 20
prototypical multistep forecasting models (11 ‘stochastic’, i.e., extensions of ARMA models, and 9
‘machine learning’ models) over hundreds of simulated and empirical datasets and using 18 accuracy
metrics. Their findings are that (i) most empirical series exhibit a degree of long memory between
0 and 0.45, with a median close to 0.2 (see their Figure 1), (ii) the most accurate ‘stochastic’ and
machine learning techniques perform similary, and (iii) ARFIMA models belong to the class of
most accurate ‘stochastic’ techniques (see their Figure 18).

To illustrate our modelling approach, we assess its forecasting accuracy using the Modified
Streamflow dataset of the Columbia river basin provided by the Bonneville Power Administration
(BPA), the United States Army Corps of Engineers and the U.S. Bureau of Reclamations. To quote
the BPA: “Since irrigation practices have changed since the historical streamflows were observed,
the historical streamflows have been adjusted to account for current levels of irrigation depletions.”
Hence “Modified streamflows are historical streamflows that would have been observed if current
irrigation depletions (as of year 2018) existed in the past and if the effects of river regulation
were removed.” These modified flows allow for intertemporal comparisons of the natural inflows
since they are adjusted to a common level of irrigation development and evaporation in upstream
reservoirs and lakes, and they reflect no regulation by dams. They are recorded and computed at
97 locations in the Columbia river basin over 90 years (October 1928-December 2018, i.e., 1, 083
monthly observations). We model and forecast the logarithm of the monthly series and we adjust
them for seasonal variations using X12arima in Oxmetrics version 8.10.

To confirm the presence of long memory in the data, we estimated on the 97 series and on
the full sample an ARFIMA(0, d, 0) and an ARFIMA(1, d, 0) model by maximum likelihood. The
average d̂ is equal to 0.45 with a standard deviation of 0.06 for the former and 0.21 with a standard
deviation of 0.19 for the latter.

We now report the results of a forecasting comparison of the six models listed at the beginning of
this section. The estimation and forecasting are organized as described in the previous subsection,
with rolling windows of 400 observations for estimation but because both the number of series and
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the number of observations are smaller than in the previous application, all models are reestimated
each time a new observation becomes available. The first window corresponds to the period October
1928-January 1962. We obtain a total of 683-h forecasts for the 97 series, where in this application,
h = 1, 2, . . . , 6.

Figures 5-8 report the forecasting results in the same way as in Figures 1-4, but for horizons
1, 3 and 5. For this application, the MCS test is applied every 5-th window of 50 forecasts leading
to a total of 125 tests. Theses results lead to the following observations:

• The AR(1)-X model (estimated by OLS) has the worst forecasting performance, whatever
the forecasting horizon.

• The ARFIMA, HAR, RAR(1)-X and BAR(1)-X have average losses much lower than the
AR(1)-X.

• The BAR(1)-X is the model that belongs the most often in the MCS75. For instance, for
h = 1, 2 and 3, the BAR(1)-X belongs to the MCS75 on average in more than 90% of the
cases (see Table 2) against 60 to 75% for the AR(1), ARFIMA(1,d,0) and HAR models and
against 78% for RAR(1)-X.

Table 2: Average frequencies (over the 97 series and the 125 rolling windows), at which each model
belongs to the MCS (at 75% confidence level)

h AR(1) ARFIMA(1,d,0) HAR AR(1)-X RAR(1)-X BAR(1)-X

MSE

1 61.344 68.973 69.905 47.282 77.171 95.505
2 66.400 70.416 74.425 37.386 78.746 94.334
3 70.606 70.623 74.507 46.829 77.023 92.066
4 73.856 72.998 72.412 43.909 82.351 89.608
5 79.002 76.132 74.449 37.287 83.357 81.386
6 77.823 73.237 72.503 33.402 82.334 81.056

MAE

1 64.495 70.680 73.963 46.400 77.616 92.627
2 67.810 70.771 75.340 39.167 78.969 93.278
3 70.548 71.984 75.588 50.111 77.155 90.977
4 72.841 72.478 75.076 46.639 82.219 88.998
5 79.068 76.759 76.577 40.462 84.198 83.571
6 78.078 72.652 73.229 36.412 84.091 82.804

5 Conclusions

This paper considers a novel approach in empirical work for modeling a variable exhibiting long
range dependence using a large cross-section of related variables, instead of using its own and
long history. This approach is based on two recent theoretical contributions that show that long
memory can be caused by dependences within a large network or system. We provide two estimation
techniques that harness the informativeness of the theoretical models and use them to drive the
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Figure 5: Average MSE (over the 97 series) computed on rolling windows of 50 observations. The
three panels are respectively for h = 1, 3 and 5.
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Figure 6: Average MAE (over the 97 series) computed on rolling windows of 50 observations. The
three panels are respectively for h = 1, 3 and 5.

21



AR(1) 
HAR 
RAR(1)­X 

ARFIMA(1,d,0) 
AR(1)­X 
BAR(1)­X 

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

10

20

30

40

50

60

70

80

90

100

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

                                                                                       h=1

%
ag

e 
in

 M
C

S
 a

t 
7
5
%

 c
o

n
fi

d
en

ce
 l

ev
el

 w
it

h
 M

S
E

AR(1) 
HAR 
RAR(1)­X 

ARFIMA(1,d,0) 
AR(1)­X 
BAR(1)­X 

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

10

20

30

40

50

60

70

80

90

100

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

                                                                                       h=3

%
ag

e 
in

 M
C

S
 a

t 
7
5

%
 c

o
n

fi
d

en
ce

 l
ev

el
 w

it
h

 M
S

E

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

10

20

30

40

50

60

70

80

90

100

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

                                                                                       h=5

%
ag

e 
in

 M
C

S
 a

t 
7
5
%

 c
o
n

fi
d

en
ce

 l
ev

el
 w

it
h

 M
S

E

Figure 7: Frequencies (over the 97 series), at each date, at which each model belongs to the MCS
(at 75% confidence level) for the MSE loss function. The three panels are respectively for h = 1, 3
and 5.
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Figure 8: Frequencies (over the 97 series), at each date, at which each model belongs to the MCS
(at 75% confidence level) for the MAE loss function. The three panels are respectively for h = 1, 3
and 5.

23



estimation, either via an extended ridge regression that shrinks the estimates toward a structure
derived from the theory, or by using the latter to design an informative prior in a Bayesian setup.

In two empirical applications in the context of (i) realized volatilities of stocks that are interde-
pendent within financial markets; and (ii) streamflow series of the Columbia river basin, we show
that our proposed modeling and estimation strategy improves upon standard techniques.

Importantly, our results show that it is possible to model variables that exhibit strong depen-
dence over long horizons even in a dataset with a short time span, provided that the cross-sectional
dimension is large. Indeed, information related to the distant past can be estimated using a large
collection of variables within a system or a network.

Appendices

Appendix A: Proof of (9) and of (13)

Proof of (9): notice that (β′ι − β′0ι)2 = (β′ι − β′0ι)(β′ι − β′0ι)′ = β′ιι′β − 2β′ιι′β0 + β′0ιι
′β0.

By developing the quadratic forms, the ER objective function (8) is equal to β′Z ′Zβ− 2β′Z ′Y +
β′Λkβ− 2β′Λkβ0 + λ2sβ

′ιι′β− 2λ2sβ
′ιι′β0 +Y ′Y + λβ′0Λkβ0 + λ2sβ

′
0ιι
′β0. Solving the first-order

condition yields the solution (9).

Proof of (13): to show that that the kernel (11) corresponds to (13), we can write that (11) is equal
to

exp{−1

2
[(β − β0)

′Q0(β − β0) + h0(β
′ι− β′0ι)(β′ι− β′0ι)′]} = K0 exp[−1

2
f(β)],

where K0 does not depend on β and

f(β) = β′(Q0 + h0ιι
′)β − 2β′(Q0β0 + h0ιβ

′
0ι) = (β − β̄0)

′V0
−1(β − β̄0) + C0,

where V0
−1 = Q0 + h0ιι

′, β̄0 = V0(Q0β0 + h0ιβ
′
0ι), and C0 = β̄′0V

−1
0 β̄0 does not depend on β.

Hence, the prior density depends on β only through exp[−1
2(β − β̄0)

′V0
−1(β − β̄0)], which is the

kernel of the Gaussian density Nk(β̄0,V0). To show that this Gaussian density is the same as (13),
we show that β̄0 = β0:

β̄0 = (Q0 + h0ιι
′)−1(Q0β0 + h0ιβ

′
0ι) = (Q−10 −

h0Q
−1
0 ιι

′Q−10

1 + h0ι′Q
−1
0 ι

)(Q0β0 + h0ιβ
′
0ι)

= β0 + h0Q
−1
0 ιβ

′
0ι−

1

1 + h0ι′Q
−1
0 ι

(h0Q
−1
0 ι ι

′Q−10 Q0β0︸ ︷︷ ︸
=β′

0ι

+h0Q
−1
0 ιι

′Q−10 h0ιβ
′
0ι)

= β0 + h0Q
−1
0 ιβ

′
0ι
(

1− 1

1 + h0ι′Q
−1
0 ι
− h0ι

′Q−10 ι

1 + h0ι′Q
−1
0 ι

)
= β0.

In the first line, the explicit form of the inverse of Q0 +h0ιι
′ is obtained by applying the Sherman-

Morrison formula.

Appendix B: Bayesian estimation of the AR-X(1) model

The results exposed in this appendix are included for ease of reference. They are well known, see
e.g. Bauwens, Lubrano, and Richard (1999) for details.
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For the regression equation (5), with the assumption of normality of the error term, the prior
(10) and (13), the posterior density of β and σ2 is proportional to

(σ2)−(T+2)/2 exp{− ŝ

2σ2
} exp{−1

2
(β − β̂)′

Z ′Z

σ2
(β − β̂)} exp{−1

2
(β − β0)

′V −10 (β − β0)}, (22)

where β̂ is the OLS estimator (Z ′Z)−1Z ′Y , and ŝ is the sum of squared OLS residuals.
Because the prior density is not conjugate, the posterior marginal density of β is not available

analytically. However, the posterior density of (β, σ2) can be simulated by applying a Gibbs sampler
iterating between β and σ2. Indeed, the posterior density of β conditional on σ2 is Gaussian:

β|σ2,Y ,Z ∼ Nk(β∗,V∗), (23)

where

V∗ =

(
Z ′Z

σ2
+ V −10

)−1
, (24)

β∗ = V∗

(
Z ′Y

σ2
+ V −10 β0

)
:= β∗(σ

2). (25)

and the complementary conditional density of σ2 is inverted-gamma:

σ2|β ∼ IG(T, (Y −Zβ)′(Y −Zβ)). (26)

The Gibbs sampling algorithm to generate S draws (β(s), (σ2)(s)), for s = 1, 2, . . . , S, from the
posterior of the parameters (after S0 warming-up draws) is organized as follows:

1. Choose an initial value (σ2)(0) (e.g. ŝ/(T − k − 2)).

2. Set s = 1.

3. Draw successively β(s) from the Normal density (23) where β∗ and Q∗ are computed with
σ2 = (σ2)(s−1), and (σ2)(s) from IG(T,Y −Zβ(s))′(Y −Zβ(s)).

4. Set s = s+ 1 and go to step 3 unless s > S0 + S.

5. Discard the first S0 values of β(s) and (σ2)(s).

The posterior expectation of β is approximated by the mean of the S draws β(s), or by the
mean of the S conditional expectations β∗[(σ

2)(s)].

Appendix C: Explanation of (20)

Using a0 = (1− d0)/(n− 1), A0 = d0In + a0 (Jn − In) = nd0−1
n−1 In + 1−d0

n−1 Jn. Using Jhn = nh−1Jn,

Ah
0 =

h∑
j=0

h!

j! (h− j)!

[(
nd0 − 1

n− 1

)h−j (1− d0
n− 1

)j]
J jn

=

(
d0 +

d0 − 1

n− 1

)h
In +

1

n

[
1−

(
d0 +

d0 − 1

n− 1

)h]
Jn
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and hence Ah
0 =

(
dh0 + o

(
n−1

))
In +

(
1−dh0
n + o

(
n−1

))
Jn, for n >> h, so that the firs row is then

close to
(
dh0 ,

1−dh0
n , ...,

1−dh0
n

)′
. The target βh,0 in (20) is obtained by putting 0 as first element and

dividing the last n − 1 elements by n − 1 (instead of n) to ensure that the sum of the target is
exactly equal to 1.

Note that this is restricted to large n relative to h, as Ah = 1+o(1)
n Jn when h >> n.

Appendix D: Technical details

Model confidence set

The procedure of Hansen et al. (2011) is applied using the MAE and MSE loss functions defined
in (21) to perform the hypothesis tests of equal predictive accuracy needed to obtain each model
confidence set. These tests are performed at the 25% significance level, so that the resulting MCS
is at the confidence level of 75%. The test statistic is the range statistic that requires a bootstrap
procedure.

For the application to daily realized volatilities, 10,000 bootstrap samples are used, with a block
length of 5 observations to account for potential serial correlation and conditional heteroscedasticity
in the losses. For the application to monthly river streamflows, the number of bootstrap samples
is 1,000 and the block length is 3.

Data source

The data for the modified river streamflows of the Columbia river basin are available at
https://www.bpa.gov/p/Power-Products/Historical- Streamflow-Data/Pages/Historical-Streamflow-
Data.aspx

Cross validation

Table 3 reports the grids of the cross-validations performed to choose the values of the tuning pa-
rameters that determine the shrinkage for the RAR(1)-X and BAR(1)-X models. The grids are the
same for both applications. The cross-validations are performed only on the first estimation window
of the sample. It might be more at the advantage of both methods to renew the cross-validation
for each new window of estimation, but this would increase the computation time considerably.

Table 3: Grids for the cross-validations

d0 0.2 to 0.55 by steps of 0.025

RAR(1)-X λ−1d 0.01 to 0.05 by steps of 0.01
λ−1a 0.01 to 0.05 by steps of 0.01
λ2S 0 to 5,000 by steps of 1,000

d0 0.2 to 0.55 by by steps of 0.05
BAR(1)-X sd 0.01 to 0.05 by steps of 0.01

sa 0.01 to 0.05 by steps of 0.01
h0 0 to 5,000 by steps of 1,000
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Figure 9: Histogram of the four tuning parameters estimated by cross-validation for the first
application (i.e., log(MedRV)) on the first sample of 1,000 observations.

Figures 9 and 10 provide the histograms of the values obtained by the cross-validations, for
RAR(1)-X and BAR(1)-X. The ordinates show the number of series, for example d0 is equal to
0.55 for a bit less than 150 series (out of 250) for RAR and a bit more than 150 for BAR in the
first application. In the second application, the cross-validation procedure chooses d0 = 0.55 for
about half of the series, and the value 0.2 for about 25 percent in the case of RAR (40 in the case
of BAR).

The parameters 1/λd of RAR and sd in BAR are selected at the lowest values of the grid (0.01
or 0.02) for about two-thirds of the series in the first application. In the second application, 1/λd
is selected in equal proportions at the boundaries of the grid range (0.01 and 0.05), whereas sd is
selected mainly at the end of the range. The parameters 1/λa of RAR and sa in BAR are selected
differently between RAR and BAR and between applications 1 and 2.

The additional shrinkage of the sum of the coefficients toward 1 by the parameter λ2S (RAR)
or the equivalent parameter h0 (BAR) is effective for around 120 series (about 48 percent) in the
first application, but for very few series in the second application.

These results illustrate the flexibility of the cross-validation procedure.
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Figure 10: Histograms of the four tuning parameters estimated by cross-validation for the second
application (i.e., river streamflows) on the first sample of 400 observations.
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