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Introduction Segnon

1 Introduction

In many real-world situations, we have to deal with non-negative integer-valued time
series. Such time series are often produced in fields that include economics, insurance,
medicine, epidemiology, queueing systems, communications, and meteorology and so
on. Examples for the wide range of practical applications are the daily or monthly num-
ber of cases in epidemiology, the number of stock market transactions or stock price
changes per minute in finance and the number of photon arrivals per microsecond mea-
sured in a biological experiment. Their analysis may present some difficulties, however,
and if the analysis is based on stochastic models, these models have to reflect the integer
peculiarity of the observed series. Various models have been suggested in the literature
to tackle the problem of integer-valued time series analysis. These models include the
traditional generalized linear model methodology and the state-of-the-art integer-valued
autoregressive moving average (INARMA), and integer-valued generalized autoregres-
sive conditional heteroscedasticity (INGARCH) processes. The first modeling approach
is very simple and consists of choosing a suitable distribution for count data and an ap-
propriate link function, (see Kedem and Fokianos, 2002). The second group of models
are adaptation of the well-known ARMA and GARCH processes in the modeling of
continuous-state and discrete-time series to count settings by means of thinning oper-
ators (see Weiß, 2008, for a recent review of the thinning operators). These processes
are developed to model stationary count data. Therefore, considerable effort has been
devoted to provide and prove general conditions that ensure existence and uniqueness
of second-order stationary solutions using Hilbert space techniques (see Ferland et al.,
2006; Latour, 1998; Doukhan and Wintenberger, 2008; Doukhan et al., 2012; Neumann,
2011). However, recent empirical observations indicate that some important count data
in modeling are strictly stationary2, and non square-integrable (see Segnon and Stapper,
2019).

The objective of this paper is to establish conditions for strict stationary of the
INARCH processes. We make use of the multiplicative ergodic theorem developed by
Ruelle (1982) for bounded operators in Hilbert space and show that the necessary and
sufficient conditions for stationarity is the negativity of a Lyapunov exponent associated
with these processes. Our result applies to the INGARCH model in Ferland et al. (2006),
and INFIGARCH and INHYGARCH models in Segnon and Stapper (2019). Since the
seminal paper by Bougerol and Picard (1992) the use of the multiplicative ergodic theo-
rem to study the stationarity of ARCH-type processes has become very popular.

The rest of the paper is structured as follows. Section 2 briefly presents the INARCH
processes. Our results are presented in Section 3 and Section 4 concludes.

2We recall, a process {Xt} is strictly stationary if for all, t, h ∈ Z, the law of (Xt, Xt+1, . . . , Xt+h) is indepen-
dent of t.
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2 Poisson INARCH(∞) processes

2.1 Definition

A sequence of integer-valued random variables {Yt}t∈Z is said to be an INARCH(∞)
process if:

(i) the distribution of Yt conditional on the σ−field Ωt−1 = σ (Yl, l ≤ t − 1) is Poisson
with mean λt,

(ii) there exist nonnegative constants c, ψi, 1 ≤ i ≤ ∞, such that

λt = c + ψ (L) Yt, (1)

where Pr(λt > 0) = 1 and ψ (L) =
∑∞

i=1 ψiLi.

This class of models also includes:

(a) The integer-valued HYGARCH(p, d, q) model for, c is an appropriately defined
constant, and

ψ(L) =

1 − Φ(L)
(
1 + η[(1 − L)d − 1]

)
B(L)

 (2)

=

∞∑
i=1

ψiLi,

with β0 > 0 and ϕ1, . . . , ϕm−1 ≥ 0, β1, . . . , βq ≥ 0, and ψi ≥ 0 for all i. In Eq. (2),
L denotes the lag operator. The lag polynomials are defined as Φ(L) = [1− β(L)−
α(L)] =

∑m−1
i=1 ϕiLi, where m = max(p, q), α(L) =

∑p
i=1 αiLi, β(L) =

∑q
j=1 β jL j

and B(L) =
[
1 − β(L)

]
. η ≥ 0 is an amplitude parameter, d ∈ [0, 1] and (1 − L)d is

the fractional differencing operator given by

(1 − L)d =

∞∑
k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
, (3)

where Γ(·) is the gamma function.

(b) The integer-valued FIGARCH(p, d, q) model for η = 1 in Eq. 2.

(c) The integer-valued GARCH(p, q) model for η = 0 in Eq. 2.

Remark 1. Segnon and Stapper (2019) show that for η ∈ (0, 1) implies that ψ(1) < 1,
and thus, the INHYGARCH process is covariance stationary.

Remark 2. Ferland et al. (2006) show that the INGARCH(p,q) process exists and is
strictly stationary with finite first and second order moments, if and only if the following
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restriction is met:
∑p

i=1 αi+
∑q

j=1 β j < 1, which is equivalent to
∑∞

i=1 ψi < 1. In the simple
INGARCH(1, 1), ψi = α1β

i−1
1 for i ≥ 1 and the stationarity condition is well known to

be α1 + β1 < 1, which is equivalent to
∑∞

i=1 α1β
i−1
1 < 1 in the INARCH representation

above. The INGARCH(1, 1) reduces to an integrated INGARCH(1, 1) when the sum of
the lag coefficients is unity (α1 + β1 = 1). Segnon and Stapper (2019) point out that in
the INFIGARCH(p,q)

∑∞
i=1 ψi = 1. Thus, the process is not covariance stationary. We

note that the coefficient ψi in the INHYGARCH and INFIGARCH can be approximated
by ci−1−d, with c appropriately defined.

Since the INFIGARCH(p, d, q) process is not covariance stationary, its appears that
the INFIGARCH(p, d, q) is not a long memory model in the common sense. How-
ever, we aim to show in the next Section that the INARCH representation of the
INFIGARCH(p, d, q) process is strictly stationary using a multiplicative ergodic theo-
rem. Towards this end, we first look at the construction of an INARCH process.

2.2 Construction

Let {ut}t∈Z be a sequence of independent random variables with values in N (N is the
set of non-negative integers) with common mean ω. For each t ∈ Z and i ∈ N, let
ξ(i)

t = {ξ
(i)
t, j} j∈N represent a sequence of independent random variables having a common

mean ψi. All the variables us, ξ
(i)
t, j, (s ∈ Z, t ∈ Z, i ∈ Nand j ∈ N) are assumed to

be mutually independent. Using these random variables, we introduce a sequence of
random variables {Y (n)

t } that may be considered as successive approximations of Yt:

Y (n)
t =



0, if n < 0;

ut, if n = 0;

ut +

n∑
i=1

Y (n−i)
t−i∑
j=1

ξ(i)
t−i, j if n > 0.

(4)

From (4) we can see that Y (n)
t is a finite sum of independent Poisson variables. So,

the expectation and the variance of Y (n)
t are well defined. In the next Section we want to

show that Y (n)
t , as n → ∞, admits an almost sure limit Yt and that the limiting process

{Yt}t∈Z satisfies (1).

3 Stationarity of INARCH(∞) processes

To prove the strict stationarity of {Yt} we first show that for any fixed n, Y (n)
t is strictly

stationary.

3.1 Some basic definitions and results

Definition 1. Let {z j} j∈N be a sequence of independent and identically distributed non-
negative integer-valued random variables with mean ψ and finite variance σ2 which
is independent of a non-negative integer-valued random variable y. The generalized
Steutel and van Harn operator, ψ⋄, is defined as
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ψ ⋄ y =


y∑

i=1

zi if y > 0;

0 if y = 0.

(5)

Remark 3. The sequence {z j} j∈N is called a counting sequence. Let α⋄ be another
operator based on a counting sequence {x j} j∈N. Both operators ψ⋄ and α⋄ are said to
be independent if and only if the counting sequences {z j} j∈N and {x j} j∈N are mutually
independent.

Using the operator from Eq. 5, we may rewrite the sequence of random variables
{Y (n)

t }r∈N as

Y (n)
t =

n∑
i=1

E
(
ξ(i)

t−i

)
⋄ Y (n−i)

t−i + ut, n > 0, (6)

where E
(
ξ(i)

t−i

)
= ψi.

Proposition 1. If ψ(1) < 1 then the sequence {Y (n)
t }n∈N has an almost sure limit.

Proof. We closely follow the Proof of Proposition 2 in Ferland et al. (2006), Page 928.
It follows from Eq. (4) that Y (n)

t is obtained through a cascade of thinning operations
along the sequence {ut}t∈Z. So, the expectation and the variance of Y (n)

t are well defined
and given by

µn = E

ut +

n∑
i=1

Y (n−i)
t−i∑
j=1

ξ(i)
t−i, j


= ω +

n∑
i=1

E


Y (n−i)

t−i∑
j=1

ξ(i)
t−i, j


(7)

Let (Ω,F, P) be the common probability space on which the relevant random vari-
ables are defined. Because Yn

j is a non-decreasing sequence of non-negative integers, we
have

∀ω ∈ Ω, lim
n→∞

Yn
t (ω) = Yt (8)

which is either finite or infinite. We will show that the set

A∞ = {ω : Yt(ω) = ∞} =
∞⋂

n=1

∞⋃
k=n

Ak = lim sup
n

An (9)

is of probability zero, where

An =
{
ω : Yn

t (ω) − Yn−1
t (ω) > 0

}
, for n > 1. (10)
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On the one hand:

E
(
Yn

t − Yn−1
t

)
≥

∞∑
k=1

Pr
{
ω : Yn

t (ω) − Yn−1
t (ω) = k

}
= Pr(An). (11)

On the other hand:
E
(
Yn

t − Yn−1
t

)
= µn − µn−1 ≡ νn. (12)

Obviously, the sequence ■

Proposition 2. Let Ct = {ci, j}1<i, j<n be an finite-dimensional random matrix given by

Ct =


ξ(1)

t−1 ξ(2)
t−2 . . . ξ(n)

t−n

1 0 . . . . . .
...

. . .
. . .

. . .

0 . . . 1 0


, (13)

Zt+1 =
(
Y (n)

t ,Y (n−1)
t−1 ,Y (n−2)

t−2 , . . .Y (0)
t−n

)′
and Ut+1 = (ut, 0, . . . )′.

Then, (6) has a stationary and ergodic solution if and only if

Zt+1 = E (Ct+1) ⋄ Zt + Ut+1, t ∈ Z, (14)

has a stationary and ergodic solution where

E (Ct) ⋄ := c̃i j⋄ =


ψ⋄ i = 1;

1⋄ i = j + 1

0⋄ otherwise.

Proof. Eq. (14) is a state-space representation of (6), and thus, any stationary solution
of (14) is also a stationary solution of (6) and vice versa. Analogously, any ergodic
solution of (14) is also an ergodic solution of (6), and vice versa. The proof of the
ergodicity follows from Lemma A 1.2.7 in Brandt et al. (1990).

■

Lemma 1. Let ψ(z) = zn−α1zn−1− · · ·−αn−1z−αn with
∑n

k=1 |αk| ≤ 1 and αn > 0. Then
the roots of ψ(z) are all inside the unit circle.

Proof. Let us consider the unit circle ζ = {z : |z| = 1} and suppose
∑n

k=1 |αk| < 1. The
functions h(z) = zn and T (z) = −(α1zn−1 +α2zn−2 + · · ·+αn) are both analytic inside and
on ζ. Hence, on ζ,

|T | ≤
r−1∑
k=0

|αn−kzk| ≤

n−1∑
k=0

|αn−k| < 1 = |h|.

Based on the theorem of Rouché, h(z) and h(z)+T (z) have the same number of zeros
inside ζ. But h has n zeros inside ζ. Therefore, we conclude that all roots of α(z) are
inside the unit circle. ■
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Lemma 2. (Lemma 2.1 in Bougerol and Picard (1992)) Let {An, n ∈ Z} be a sequence
of independent, identically distributed, random matrices such that E

(
log+ ∥A0∥

)
is finite.

If, almost surely,

lim
n→+∞

1
n

log ∥A0A−1 · · ·A−n∥ = 0,

then the top Lyapunov exponent associated with this sequence is strictly negative.

Proposition 3. The process defined in Eq. (14) has a unique strictly stationary and
ergodic solution if and only if the top Lyapunov exponent γ associated with the random
matrices {Ct}t∈Z is strictly negative. The unique strictly stationary solution (Yt)t∈Z of
(14) is given by

Zt =

∞∑
k=0

E (CtCt−1 . . .Ct−k+1) ⋄ Ut−k. (15)

Proof. We can see that the random matrices {Ct} in Eq. 13 consist of independent and
identically distributed non-negative integer-valued random variables, ξ(i)

t , with the base-
line distribution f (Poisson or negative Binomial) and with a finite mean, ψi and vari-
ance. This means that all the coefficients of these matrices are integrable. Furthermore,
the random vectors {Ut}t∈Z contain i.i.d. non-negative integer-valued random variables
and therefore are also integrable. All these imply that E(log+ ||C0||) and E(log+ ||U0||)
are finite and therefore, the top Lyapunov exponent γ of the sequence {Ct, t ∈ Z} is well
defined.

Suppose that there exists a strictly stationary solution {Zt}t∈Z of Eq. (6). By iterating
Eq. (14), we have for t > 0,

Z0 = E (C0) ⋄ Z−1 + U0

= E (C0C−1) ⋄ Z−2 + U0 + E (C0) ⋄ U−1

= E (C0C−1 . . .C−t) ⋄ Z−t−1 + U0 +

t∑
j=1

E
(
C0 . . .C− j+1

)
⋄ U− j

= E

 t∏
j=0

C− j

 ⋄ Z−t−1 +

t∑
j=0

E

 j−1∏
i=0

C−i

 ⋄ U− j

Z0 = E
(
C(t)
)
⋄ Z−t−1 + U(t)

with t ∈ N0 and where
∏−1

i=0 C−i = 1.
All the coefficients of Ct, Yt and Ut are nonnegative. The characteristic polynomial

of E(Ct) is Ψ(z) = zn − ψ1zn−1 − · · · − ψn−1z − ψn. By Lemma 1, the roots of Ψ(z) are
all inside the unit circle, then limt→∞ E

((∏t
j=0 C− j

)
ei
)
= 0 a.s. where ei denotes the

canonical basis of Rn.

limt→∞ E
(∏t

j=0 C− j
)
= 0

limt→∞ E
(
||
∏t

j=0 C− j||
)
= 0

6
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then limt→∞ E
(∏t

j=0 C− j
)
⋄ Y−t−1 = 0 a.s. According to Lemma 2 the associated

top Lyapunov exponent γ is strictly negative, so that the series
∑t

j=0 E
(∏ j−1

i=0 C−i
)
⋄ U− j

converges a.s. Therefore, {Zt}t∈Z is a strictly stationary and ergodic process, solution of
Eq. (6).

Now, we aim to prove the uniqueness of the strictly stationary solution. Let {Wt}t∈Z

be another strictly stationarity solution of Eq. (14). The norm of the following difference
for t > 0

||Z0 −W0|| = ||E (C0C−1 . . .C−t) ⋄ (Z−t−1 −W−t−1) ||

≤ ||E (C0C−1 . . .C−t) ⋄ || ||Z−t−1 −W−t−1||

≤ ||E
(
C(t)
)
⋄ || ||Z−t−1 −W−t−1||,

by Lemma 1, converges to 0, a.s. and the fact that the law of the difference
(Z−t−1 −W−t−1) is independent of t, imply that Z0 − W0 converges to 0 in probabil-
ity. We conclude that Z0 =W0 and that Eq. (6) has a unique solution, once the counting
process are known. ■

Corollary 1. The process {Yt}t∈Z is a strictly stationary and ergodic process.

The Proposition 3 holds its validity for any fixed number n. When n → ∞, then
Ct becomes an infinite dimensional random matrix and as pointed out by Schaumlöffel
(1991) the multiplicative ergodic theorem of Oseledec (1968) cannot easily be extended
to an infinite-dimensional context. The reason is that in infinite dimensions the orbits
of a linear operator can be quite complicated. For that reason we need here additional
assumptions to guarantee the validity of the Proposition 3. Following Ruelle (1982)
we show that the compactness of the linear operator C is the necessary and sufficient
condition for the strict negativity of the associated top Lyapunov exponent.

Let H denotes a separable infinite-dimensional Hilbert space and B(H) the algebra
of all bounded operators and the ideal of all compact operators. The space H∧q is the
qth exterior power of H and it consists of the completely antisymmetric elements of
the Hilbert space tensor product of q copies of H. Let {en} be any orthonormal basis
B for H. According to Definition 7 in Van Barel et al. (1999) [Definition of extended
infinite companion matrix], the ∞ ⊗ ∞ matrix C = (ci j), ci j = (Ce j|ei), i, j ∈ N, see
Eq. 13, representation of the operator C has a block structure that corresponds to the
block structure of the basis B. Formally, we have

C =
[
Ci, j
]∞
i, j=1

, (16)

where the blocks Ci, j are square of order K.
To prove the compactness of C we need first to prove that the linear bounded operator

C has a tri-block diagonal matrix representation with finite blocks. This idea has been
put forward by Bakić and Guljaš (1999) and the following Proposition shows that a tri-
block diagonal matrix representation for the bounded operator C can be obtained from

7
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any orthonormal basis of the Hilbert space H by an arbitrary small Hilbert-Schmidt
perturbation.

Proposition 4. Suppose C ∈ B(H) be an operator having a tri-block diagonal matrix

C =



C1,1 C1,2 0

C2,1 C2,2 C2,3 0

0 C3,2
. . .

. . .
. . .

0
. . . Cn,n Cn,n+1 0
. . . Cn+1,n Cn+1,n+1

. . .
. . .

0
. . .

. . .
. . .



, (17)

according to the decomposition H = ⊕∞n=1Hn onto finite square dimensional sub-
spaces Hn and

lim
n
||Cn,n|| = lim

n
||Cn+1,n|| = lim

n
||Cn,n+1|| = 0. (18)

Then C is a compact operator.

Proof. Given any orthonormal basis in H and according to Lemma 2 in Bakić and Guljaš
(1999) C allows a suitable Hilbert-Schmidt perturbation and thus, has a tri-block matrix
representation. With the tri-block matrix representation of C the proof of the proposition
follows from Theorem 2 in Bakić and Guljaš (1999).

■

The following assumptions are provided in Ruelle (1982). Let (M,Ω, p) be a prob-
ability space and ϑ : M → M a measurable p−preserving transformation on H. Let
C : Ω→ L(H) be measurable to the bounded operators such that

(1.1) log+ ||C(·)|| ∈ L1(M, p).

Let us define
Ct

x = C(ϑt−1x) · · ·C(ϑx)C(x).

Then, there exists a subset Γ+ ⊂ M such that ϑΓ+ ⊂ Γ+, p(Γ+) = 1 and

(1.2) lim supt→∞ log ||C(ϑt−1x)|| ≤ 0, if x ∈ Γ+.

(1.3) Furthermore, there exist ϑ−invariant functions l+q : Γ+ → R
⋃
{−∞} such that

lim
1
t

log ||(Ct
x)∧q|| = l+q

if x ∈ Γ+, for all integers q > 0.

Proposition 5. Suppose that the assumptions (1.1), (1.2) and (1.3) hold and that C is
compact. Then the top Lyapunov exponent γ associated with the infinite random matrices

8
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{Ct}t∈Z is strictly negative (−∞) and the process defined in Eq. (14) has a unique strictly
stationary and ergodic solution, (Zt)t∈Z, that is given by

Zt =

∞∑
k=0

E (CtCt−1 . . .Ct−k+1) ⋄ Ut−k. (19)

Proof. The assumptions (1.1) and (1.2) follow from the square integrability of log+ ||C||

and the ergodic theorem. For q = 1, lim
1
t

log ||(Ct)|| = l1. Ct acts as a bounded linear

operator on H∧q and since ||(Ct)∧q|| ≤ ||Ct||q, the assumption (1.3) holds.
Let define

ϖN = {x ∈ Γ+ : lim
q→∞

1
q

l+q (x) ≥ −N}.

Then

−N p(ϖN) ≤
∫
ϖN

p(dx)
1
q

l+q (x) (20)

≤

∫
ϖN

p(dx)
1
q

log ||C(x)∧q||.

Because C(x) is compact, it follows that when q→ ∞, then 1
q log ||C(x)∧q|| → −∞.

Since

1
q

log ||C(·)∧q|| ≤ log+ ||C(·)|| ∈ L1(M, p),

we must have p(ϖN) = 0 for all real N.
■

Corollary 2. Let assume that the support of f is unbounded, f ({0}) = 0 and all the
coefficients ψ are nonnegative. Then, if

∑n
i=1 ψi = 1, then the INARCH process defined

in Eq. (14) has a unique stationary solution.

Proof. By induction on n, we have

det (zIn − E(C1)) = zn

1 − n∑
i=1

ψiz−i

 .
The inequality |a − b| ≥ |(|a| − |b|)| implies that if |z| > 1, then

det (zIn − E(C1)) > 1 −
n∑

i=1

ψi. (21)

Since the right-hand side is zero and since det (zIn − E(C1)) = 0, we conclude that
the spectral radius ρ of the matrix E(C1) is 1. Furthermore, all the coefficients of the
matrix C2C1 are almost surely positive and C1 has no zero column nor zero row. Since
C1 is not a.s. bounded, these properties imply by (Kesten and Spitzer, 1984, theorem 2)
that the top Lyapunov exponent γ satisfies γ < log ρ. As result, γ < 0 and the corollary
follows from Theorem 3. ■
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4 Conclusion

This paper has provided general conditions for the existence and uniqueness of a strictly
stationary solution independent of future for the INARCH(∞) processes. Using the the-
ory of products of infinite random matrices in a separable Hilbert space we show that
the INGARCH process and its long memory versions recently developed in Segnon and
Stapper (2019), in particularly the INFIGARCH process, are strictly stationary.
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