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1 Introduction

Optimally combining forecasts from multiple models in order to robustly predict future paths
of macroeconomic variables is a methodology which has been advocated for some time in the
economic literature (for a comprehensive review, see Bassetti et al., 2020). The reason is that it
is hard to find an individual model, which can be considered the “best performing” in all possible
forecasting dimensions, i.e. for any variable, at any forecast horizon, at any point in history, and
for any loss function metric (be it in terms of point or density forecast). It is then quite natural
to think about combinations as a way of averaging multiple measurements of the same outcome.
These measurements may be the result of known econometric models, or they may come from a
mixture of unobserved data, models, and judgement calls, such as the figures published in survey
forecasts. The latter have been shown to improve forecast accuracy when added to model forecasts
(see e.g. Krüger et al., 2017; Tallman and Zaman, 2020).

Having the above in mind, we construct a real-time forecast exercise for the euro area real GDP
and HICP inflation using econometric models at one- and two-year-ahead forecast horizons. We
use several types of Bayesian Vector Auto-Regression models (BVARs), which became a standard
tool for forecasting and scenario analysis in the central banking community, above all for mid-
and long-term forecast horizons (see e.g. Domit et al., 2016; Angelini et al., 2019; Crump et al.,
2021). We choose several specifications, which differ on certain modelling choices, such as data
set size and composition, data transformation, degree of time variation, prior specification, and
inclusion of off-model information. In particular, we include standard BVAR models with constant
coefficients with Minnesota (Sims and Zha, 1998; Bańbura et al., 2010; Carriero et al., 2019)
and democratic priors (Villani, 2009; Clark, 2011; Wright, 2013); a model with time-varying
parameters (Primiceri, 2005); a model with a local mean and constant coefficients (Garnier et al.,
2015; Crump et al., 2016; Mertens, 2016; Del Negro et al., 2017; Bańbura and van Vlodrop, 2018);
and also a univariate unobserved component model with stochastic volatility (UCSV) in the style
of Stock and Watson (2007). For some models we use both a 3 and a 19 variable specification,
resulting overall in 13 different BVARs. Finally, we combine those model forecasts by means of
linear optimal pooling, where weights are selected in order to maximise forecast accuracy (Hall
and Mitchell, 2007; Jore et al., 2010; Geweke and Amisano, 2011; Amisano and Geweke, 2017),
both for each individual variable and for the aggregate of the two variables.

We evaluate the performance of individual models and their combinations over the period 2000-
2019 at the one- and two-year-ahead horizons, in terms of point and density forecast accuracy
by calculating Root Mean Square Forecast Errors (RMSFE), Log Predictive Scores (LPS) and
Continuous Ranked Probability Scores (CRPS). In order to assess calibration, we compute the
Probability Integral Transforms (PITs) and perform a test for the uniformity of the PITs distri-
bution (Berkowitz, 2001). The latter feature is often overlooked in forecast evaluations, although
it is key when accurate measures of uncertainty around the point forecasts are needed. We find
that combination improves on individual models, however, it does not achieve good calibration
for both variables and horizons.

We then turn to an additional source of information, namely the Survey of Professional Forecasters
(SPF), whose forecasts are known for having a good point forecast performance (Ang et al.,
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2007; Kenny et al., 2014). We construct a continuous distribution from the SPF histograms in
order to assess their accuracy and calibration. We find, as expected, high accuracy for the SPF
point forecasts, but poor performance from a density perspective, both in terms of accuracy and
calibration. Similar results are found, among others, in Clements (2018) and Clements (2014) for
the U.S. SPF.

As our previous analysis does not yield a clear “best” forecast when comparing a combination of
BVARs against survey forecasts, we investigate two additional approaches to incorporate infor-
mation from both methods in a unique forecast density, hence benefiting from more subjective
SPF forecasts, containing forward-looking information, and from the more academic and model
based BVAR forecasts, which are mostly based on backward looking information.

In the first approach, after simulating draws from the SPF distributions we obtain a SPF density
forecast, which we incorporate into the pool of models used for the optimal combination.
The second method is entropic tilting. Namely, we tilt either the individual BVAR models or
their model combination to either the first moment or both first and second moments of the
SPF. Therefore, we extend the literature that applies tilting to individual models (Krüger et al.,
2017; Altavilla et al., 2017; Ganics and Odendahl, 2021; Tallman and Zaman, 2020) and model
combinations (Galvao et al., 2021) or just combines macroeconomic models (Amisano and Geweke,
2017). To our knowledge, we are the first to combine tilted forecasts or to include survey forecasts
in macroeconomic model density combinations.

We find that incorporating survey information in model combinations improves forecast perfor-
mance and calibration, especially in the tilting method, albeit only limited to the first survey
moment. When the individual models or the combination are tilted to both mean and variance
of the SPF, there is a general worsening of the performance. Our results are similar to Galvao
et al. (2021) for U.K.’s GDP and inflation; they also found that judgement on the mean tends
to improve model density forecasts at short horizons, whereas survey second moments hinder
performance at short horizons. Combining individual BVARs both with and without judgement
improves accuracy with respect to individual models according to the LPS metric, while in terms
of CRPS the combination is worse than SPF for all variables and horizons, with the exception of
the two-year-ahead GDP forecast.

The option that improves forecast performance the most, both in point and in density terms
for both variables and horizons, is the combination tilted to the SPF mean “ex-ante” (before
performing optimal pooling, each individual model is tilted). This higher performance is due to
improved initial conditions: when models are tilted to informative moments, they perform better
individually; consequently, the optimal pool will select different models compared to the non-tilted
case resulting in better final scores. We conclude that improving individual models (for example
by tilting each model to the SPF mean) and then combining them optimally is the best forecast
strategy, highlighting the complementary role of both methods. The improved initial conditions
are clearly visible when looking at scores for the non-tilted and the mean-tilted individual models
relative to the optimal pool (available in the online Appendix).

For robustness, we finally extend the evaluation to a bivariate setting, where accuracy is computed
using joint statistics for GDP and inflation forecasts, allowing to investigate whether models’ or
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surveys’ performance for one of the two variables can be explained by conditioning on the other
variable. Results are consistent with the univariate case, i.e. the optimal pool tilted ex-ante to
the mean of SPF provides again the most accurate results. We also confirm that the lack of
calibration of the SPF is not due to the survey respondents giving higher relevance to one of the
two variables, but rather their densities are simply too narrow (i.e. they are over-confident) for
both variables.

We conclude that judgement incorporated in survey forecasts can help model forecasts accuracy
and improve calibration, however, the way and extent to which it is incorporated matters.

The rest of the paper is organised as follows. In Section 2, we present the set of BVAR models
included in the combination and briefly explain the data used and combination method, as well as
show the performance results of the optimal pooling combination. In Section 3, we explain how we
construct the SPF forecast density from a discrete histogram and how do these forecasts perform.
In Section 4, we illustrate the two options used to combine model and survey information, and
present their results. Section 5 describes results for the bivariate analysis and Section 6 concludes.

2 Pool of Bayesian VARs

Bayesian VARs have become a standard tool for forecasting and scenario analysis at central
banks, due to their competitive performance and relatively easy implementation. At the same
time, results from such models are often sensitive to some modelling choices such as data set size
and composition, data transformation, degree of time variation, prior specification, and inclusion
of off-model information. To hedge against such model uncertainty, we consider several of the
most common model variants. In particular, we choose standard BVAR models with constant
coefficients with Minnesota (Sims and Zha, 1998; Bańbura et al., 2010; Carriero et al., 2019)
and democratic priors (Villani, 2009; Clark, 2011; Wright, 2013); a model with time-varying
parameters (Primiceri, 2005); a model with a local mean and constant coefficients (Garnier et al.,
2015; Crump et al., 2016; Mertens, 2016; Del Negro et al., 2017; Bańbura and van Vlodrop, 2018);
and also a univariate unobserved component model with stochastic volatility (UCSV) in the style
of Stock and Watson (2007). The survey local mean model and the specification with democratic
priors allow including off-model information (from long-term survey forecasts) to pin down the low
frequency evolution of the modelled variables (the trends). We consider “small” (three variables)
and “medium” (19 variables) data set sizes for the euro area as a whole and a bottom-up approach
whereby the euro area forecast is aggregated from the forecasts for its four largest countries (each
obtained with a “small” country data set). While trying to include a broad range of specifications,
we also aim at not “duplicating” models (including model versions that produce similar results).

The probabilistic forecasts from individual models are combined via a linear prediction pool
with optimal weights, chosen so as to maximise forecast accuracy (Geweke and Amisano, 2011).
Forecast combinations have frequently been found in empirical studies to produce better forecasts
than methods based on the ex ante best individual forecasting model. They have come to be
viewed as a simple and effective way to improve and robustify the forecasting performance of
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individual models, which are subject to problems such as model misspecification, instability (non-
stationarities), and estimation error. This applies to a combination of point forecasts, but also to
a combination of probability forecasts.

In the following sections, we present in more details the individual types of models, the data used,
the combination method, and the forecast performance thereof.

2.1 Bayesian VAR types

The following model types are included in the optimal pool:

1. VAR with “Minnesota” priors

Yt = c+

p∑
i=1

BiYt−i + εt, εt ∼ N (0, Ht) , (1)

where Yt is the vector of dependent variables, c is the intercept, B1 . . . Bp are matrices
of lagged coefficients and εt is a vector of innovations. We consider two versions of the
model: (i) “in differences” (Minn Dif ) in which the trending variables are transformed as
log-differences and (ii) “in levels” (Minn Lev) in which those variables are taken in logs.

We use independent normal priors for the coefficients Bi. The prior means are equal to 0,
with the exception of the prior for the diagonal of B1 (first lag of the dependent variable
in each equation) for the specification “in levels”, which is equal to 1. Following the “Min-
nesota” convention, the coefficients for more distant lags are “shrunk” more (have tighter
priors around 0). The priors’ variances are also adjusted for relative differences in pre-
dictability. The overall degree of shrinkage, as governed by the hyperparameter λ, is set to
the standard value of 0.2.1 The prior for the intercept c is non-informative. See Kadiyala
and Karlsson (1997), Bańbura et al. (2010), and Carriero et al. (2019) for more details on
this type of models, which represent one of the most popular implementation of Bayesian
VARs in recent applications in macroeconomics.

2. VAR with democratic priors (Dem)

Yt = µ+

p∑
i=1

Bi(Yt−i − µ) + εt, εt ∼ N (0, Ht) . (2)

In contrast to the previous version, this parameterisation of the VAR model is in deviation
from the unconditional mean µ (sometimes referred to as the “steady state”). Informative
normal priors are used for µ (Villani, 2009) and stochastic volatility for εt (Clark, 2011). As
the mean of the prior we take the long-term forecasts from Consensus Economics (as in the
“democratic prior” approach proposed by Wright, 2013).2 As this type of parameterisation

1We also evaluated the hierarchical approach of Giannone et al. (2015); the performance was similar to the
implementation with fixed λ.

2For the variables for which the long-term survey forecasts (of sufficient length) are not available (e.g. interest
rates), we use non-informative priors.
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assumes the existence of constant unconditional mean, it is only used for variables “in
differences”. The priors for Bi are the same as above.

3. VAR with local mean (LM )

Yt − µt =

p∑
i=1

Bi (Yt−i − µt−i) + εt, εt ∼ N (0, Ht) , (3)

µt = µt−1 + ηt, ηt ∼ N(0, Vt). (4)

The VAR is written in deviation from a “local mean”, µt, that can vary over time as
a random walk (reflecting e.g. low frequency changes in demographics, productivity, or
inflation trend/expectations). For reasons similar to above, the specification is meaningful
for variables “in differences”. The priors for Bi are the same as above.

4. VAR with local mean linked to long-term expectations (SLM )

This type of VAR is specified as the previous one, but in addition the local mean is linked
to the long-term forecasts from Consensus Economics, zt:

zt = µt + gt, gt ∼ N (0, Gt) . (5)

Again, the specification is meaningful for variables “in differences” and the priors for Bi are
the same as above. See Bańbura and van Vlodrop (2018) for implementation details.

5. Time-varying parameters VAR with stochastic volatility (TVP)

Yt = ct +

p∑
i=1

Bi,tYt−i + εt, εt ∼ N (0,Σt) , (6)

ct = ct−1 + ηt, ηt ∼ N(0, U ct ), (7)

Bi,t = Bi,t−1 + ηt, ηt ∼ N(0, UBt ). (8)

This is the standard implementation of the VAR where all the coefficients can vary over
time; see Primiceri (2005) and Del Negro and Primiceri (2015).

6. Univariate unobserved component model with stochastic volatility (UCSV )

This is a “non-centred” version of the UCSV model as per Stock and Watson (2007), with
gamma priors on the error variances in the two stochastic volatility state equations (see
Chan, 2018). The model decomposes each variable into a trend and a transitory component,
where each component features an independent stochastic volatility:

yt = τt + e
1
2
(h0+ωhh̃t)εyt , εyt ∼ N(0, 1), (9)

τt = τt−1 + e
1
2
(g0+ωg g̃t)ετt , ετt ∼ N(0, 1), (10)

h̃t = h̃t−1 + εht , εht ∼ N(0, 1), (11)

g̃t = g̃t−1 + εgt , εgt ∼ N(0, 1). (12)

This is the only model estimated variable by variable, therefore yt is a scalar.
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Regarding the time-varying variances of the VAR innovations, Ht, in models 1-4 and 6 we follow
the approach for stochastic volatility of Carriero et al. (2019).3

Specifications 2. and 4. allow including off-model information that helps to pin down the uncon-
ditional mean and the trend, respectively. For this we use long-term forecasts from Consensus
Economics. Alternative sources of information could be considered as well, notably estimates of
potential growth to provide information on likely low frequency evolution of real GDP growth
(and possibly also of expenditure components).

2.2 Data set compositions

We build a real-time data set in order to simulate the environment available to SPF respondents
and policy makers at the time of the survey rounds. The data set is built from the historical
vintages from the ECB’s Statistical Data Warehouse (SDW), with cut-off dates adjusted to cor-
respond to those of the ECB SPF rounds. Where vintages are not available, we use a pseudo-real
time approach, assuming no revisions. For HICP inflation’s, vintages before 2006 were not sea-
sonally adjusted, therefore we adjust them using X11. Most series were backdated to 1970 using
the Area Wide Model (AWM) database (Fagan et al., 2005). The sample for the euro area goes
from 1970Q1 to 2019Q4. The first ten years of data (up to 1980Q1) are used as training sample.
Estimation starts in 1980Q2 and forecasts are done for the period 2001Q1 - 2019Q4.

The model variants also differ in terms of data set composition. For the models with aggregate
euro area data we use data sets with three and 19 variables. The latter is not feasible for some
model types due to computational reasons. The model specifications are summarised in Table 1.
A detailed list of variables along with the applied transformations is provided in Table A.1 in the
Appendix.

We also obtain bottom-up forecasts by aggregating results for the largest four countries of the
euro area (Germany, France, Italy and Spain). The latter models include country GDP and
HICP inflation, as well as the euro area level short-term interest rate. We use the period 1980Q1
- 1985Q4 as training sample. Estimation sample starts in 1986Q1. The forecasts are done for the
same periods as for the euro area data.

Table 1: Data set compositions

Minn Dif Minn Lev Dem LM SLM TVP UCSV

Euro area, 3 variables x x x x x x x
Euro area, 19 variables x - x - - - -

Big 4, 3 variables x - x - x x -

3The matrix of impulse response functions is assumed constant and log-variances follow univariate random walks.
Bis are sampled equation by equation as in Carriero et al. (2021) to speed up the computations.
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2.3 Combination method

We combine predictive densities from individual models via a linear optimal pool, where each
model contributes to the combination with a time-varying weight driven by the model’s perfor-
mance in terms of predictive density (see Geweke and Amisano, 2011), namely according to the
log scoring criterion:

t∑
s=T1

log (p(ys;Ys−h, . . . , Y1,M)) , (13)

where p(ys;Ys−h, . . . , Y1,M) is the predictive density from model M for variable ys given the
data Y1, . . . , Ys−h, approximated using a non-parametric kernel smoother. The individual pre-
dictive densities are obtained by simulating the parameters from the posterior distribution and
drawing the “future” shocks. The optimal weights are found by solving the following constrained
maximisation problem:

w∗t+h|t = arg max
wi

t∑
s=T1

log

[
I∑
i=1

wip(ys;Ys−h, . . . , Y1,Mi)

]
, (14)

where I is the number of models, w∗t+h|t = (w∗t+h|t,1, . . . , w
∗
t+h|t,I) and w∗t+h|t,i is the time-varying

weight for model Mi.
4 The weights are constrained to be non-negative and sum to one:

w∗t+h|t,i ≥ 0 ,

I∑
i=1

w∗t+h|t,i = 1.

The combined density is a mixture of the individual densities, weighted over time by the optimal
weights found in (14). For a discussion on proper scoring rules for optimal pooling, see for example
Martin et al. (2021).

2.4 Performance of Optimal Pooling

We look at each individual model and at their combination’s performance, according to the
following dimensions, described below: relative point accuracy (RMSFE), relative density accu-
racy (LPS and CRPS), absolute accuracy (PITs), and time-varying relative accuracy (cumulative
RMSFE, LPS, and CRPS with respect to SPF forecasts).

The root mean squared forecast error (RMSFE ):

1

T2 − T1 + 1

T2∑
t=T1

(yt − ŷit|t−h)2 ,

4Note that for the first 8 quarters of the evaluation sample we assume equal weights and the optimisation is
done for t = T1 + 8, . . . , T2.
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where T1 and T2 denote the beginning and the end of the evaluation sample, respectively, and
ŷit|t−h denotes the median of the predictive density for yt given the data up to t− h for model (or

combination) i. The measure is used to compare the accuracy of point forecasts.

The continuous ranked probability score (CRPS ):

1

T2 − T1 + 1

T2∑
t=T1

(∫ ∞
−∞

(F (y;Yt−h, . . . , Y1,Mi)− I(yt ≤ y))2dy

)
,

where F (·;Yt−h, . . . , Y1,Mi) denotes the predictive cumulative distribution function (correspond-
ing to the predictive density p(·;Yt−h, . . . , Y1,Mi)) and I(·) is an indicator function. The CRPS
(Gneiting and Raftery, 2007) considers the cumulative density of the forecast and its distance
from the realisation; the lower the score, the better the model accuracy.

The log-predictive score (LPS ):

1

T2 − T1 + 1

T2∑
t=T1

log(p(yt;Yt−h, . . . , Y1,Mi)) ,

where p(yt;Yt−h, . . . , Y1,Mi) is a predictive density for yt using information up to time t−h. The
log score is heavily affected by more extreme realisations. It may be therefore necessary to replace
particularly low values of predictive densities by a normalising constant (close to zero) in order
to avoid the log score reaching minus infinity.

The probability integral transform (PIT ):

PITt = F (yt;Yt−h, . . . , Y1,Mi), t = T1, . . . , T2 ,

provides a measure of the model calibration; for well-calibrated predictive distribution (i.e. such
that approximates well the actual distribution), the sequence PITT1 , . . . , P ITT2 should be uni-
formly distributed over the interval [0, 1]. To test the hypothesis of uniformity, we perform the
Berkowitz test (Berkowitz, 2001)5.

Cumulative relative RMSFE, CRPS, and LPS: we take the difference of each model combination’s
score with respect to the corresponding SPF’s score, and cumulate it over time.

Results for the individual models are presented in Appendix B. We also check the performance of
a combination with equal weights, wi = 1

I , for robustness. We find that equal weights improve on
most individual models, albeit not as much as the optimal pool. Only a few individual models do
better than the optimal pool, and none of them does better in all metrics, variables and horizons.
For inflation, the pooling seems to add particular value, with gains from individual models in the
order of 10− 20%.

5We also try the Knüppel test for the calibration of multi-step ahead density forecasts (Knüppel, 2015), obtaining
similar qualitative, albeit less discriminating, results. Omitted here and available upon request to the authors.
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Results from the univariate optimal pool are shown in the first column of Table 2 and in each
first panel of Figures 1 - 4, where the first figure shows the forecast distribution with median, 5th,
25th, 75th, and 95th percentile and the second figure shows the probability integral transforms
(PITs), measuring calibration. The same figures for each individual model are in Appendix B.

The two panels of Figure 5 investigate the relative performance of each combination method
with respect to optimal pooling. CRPS and -LPS are in differences from the optimal pool and
cumulated over time. Whenever a line is below zero, the loss function is smaller for the alternative
combination than for optimal pooling, therefore optimal pooling’s performance is worse. A line
above zero indicates that optimal pooling is to be preferred to the alternative. Whenever the line
is around zero, the two models have performed similarly (as is the case for the optimal pool with
SPF for one-year-ahead GDP forecasts). Figures C.1 - C.5 in the Appendix present analogous
results for the two-year-ahead forecasts.

3 Continuous forecast density from discrete SPF histograms

The Survey of Professional Forecasters (SPF) for the European Union has been taking place
quarterly since the beginning of 1999. The survey asks to a panel of professional forecasters
within the EU to give an estimate on the future values for euro area gross domestic product
growth, HICP inflation, and unemployment rate (de Vincent-Humphreys et al., 2019; Kenny et al.,
2013). We focus here on GDP and inflation forecasts, for two separate medium-term horizons,
namely one- and two-year-ahead6. Respondents are asked to give both a point forecast and to
assign probabilities for each variable’s future outcome falling within pre-determined ranges. The
individual responses are then aggregated, and a histogram of average probabilities for the economic
outlook results. We do not focus on individual responses, following the results in Genre et al.
(2013), where the simple average is proven to be the best combination method. Other aggregation
methods include optimal pooling like in Conflitti et al. (2015), and a more recent work by Diebold
et al. (2020), where the authors propose to build regularised mixtures of individual densities.

We consider, for each release of the SPF, a point forecast and a histogram of probabilities, for the
two target variables and the two horizons. From this information, it would be already possible to
calculate the SPF point forecast accuracy, standard deviation, and calibration scores, provided
one calculates a discrete approximation of the histogram, and assumes that the probability is
concentrated in the mid-point of each bin (Kenny et al., 2015). We follow this approach to
calculate mean and standard deviation for the tilting, described in the next section. Another
approach (Engelberg et al., 2009) is to assume a normal or a beta distribution for the SPF
histograms, however, this method presents the obvious shortcoming of possibly misspecifying the
distribution.

For this reason, we decide to take a non-parametric approach (see Billio et al., 2013, for an
application to prediction of stock market returns) and build a continuous SPF distribution, as well

6For each round, the target quarter refers to one (or two) years after the latest official release available at the
time of the questionnaire.
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as draws from this distribution, using a kernel smoother. The procedure to build the continuous
density for each SPF round is as follows: starting from the aggregated discrete probabilities,
we simulate N (=1000) random samples from multinomial distributions, each with sample size
equal to the average number of respondents times the number of bins7, and probabilities equal
to the SPF probabilities for each bin. For each sample we then draw numbers included in the
corresponding bin, making the assumption that the values are distributed uniformly within the
bin. For example, if the multinomial density has 25 counts for the bin with bounds [1.95 2.45),
we draw 25 numbers from the uniform distribution with those bounds. Finally, we fit N kernel
densities over the grid of values corresponding to the bins8 and take the average of these N
densities. We then simulate S (=5000) draws from the average kernel density over the same grid,
obtaining a simulated density forecast, which can be compared to densities from other models, or
combined with them.

3.1 Performance of SPF

Looking at SPF results, two main features of the forecasts emerge. First, the survey does extremely
well in terms of point accuracy (RMSFE), particularly for HICP inflation, where it does better
than optimal pooling (see Table B.1 in the Appendix, second column), with the exception of
two-year-ahead GDP. Second, in terms of density accuracy, the SPF tends to always be over-
confident, delivering narrow distributions and u-shaped PITs (see second panel of Figures 1 - 4
for the one-year horizon and C.1 - C.4 in Appendix for the two-year horizon). This is reflected
also in the log-scores, which, as displayed in the second column of Table 2, are always worse than
in the case of optimal pooling (the difference of the two scores is always negative, meaning that
the SPF log scores are smaller), by a larger margin in the case of GDP.

In terms of time variation, the SPF performance clearly worsens during and after the global
financial crisis. The degree of uncertainty, especially for GDP growth, was not captured by SPF
respondents; one reason for the large errors, particularly in density terms, is the fact that the
pre-determined bins for the GDP’s distribution did not reflect the economic developments. In
the SPF round of 2008Q3, for the forecast of GDP referring to 2009Q3, respondents did put a
large probability in the left-most bin, which nevertheless represented all values below -1.1%9. The
realisation for year-on-year GDP growth was close to -5% for that quarter. It is not possible to
know how the probability assigned to the left-most bin is distributed across values smaller than
-1.1%. For equally sized bins, in this particular round, the beginning of the bin would be -1.5%,
returning a predictive score of zero. This in turn would result in a value for the log-predictive
score of minus infinity. For this reason, we set a lower limit to the log score of -20, therefore
selecting this value whenever the log-score is smaller than -20; the same rule is applied to each

7Each respondent can give a probability to each bin, therefore we can approximate the number of total answers
as the product of respondents and bins. To simplify, we assume a constant number of 80 respondents for each
round. The number of respondents does not impact the final simulated draws.

8For the extreme bins of inflation, we assume a bin size equal to all the intermediate ones; for those of GDP, we
expand the left extreme bin such that it starts at values of -10. This is to allow a more realistic distribution in this
bin during crisis periods.

9The bins have been expanded since after that SPF round, with ten additional bins added, for values of GDP
growth down to -6.5%
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individual model and combination.

4 Incorporating model and survey information

In our first set of results, we find strengths and weaknesses in both judgement-based and combina-
tion of model-based forecasts. While the former perform particularly well in the point dimensions,
the latter can considerably improve the density and calibration. For this reason, we unify these
two sources of information and look at whether and how this improves forecast accuracy.

We focus on two additional methods:

1. Including the simulated SPF density described in Section 3 into the BVAR pool and com-
bining individual models + SPF by means of optimal pooling (Opt Pool w SPF in the
results);

2. Using entropic tilting, including moments from the SPF, in the following four options10:

(a) Tilt to the SPF mean each individual model, then perform optimal pooling (Mean-tilted
ex-ante);

(b) Tilt to the SPF mean and variance each individual model, then perform optimal pooling
(Mean and var-tilted ex-ante);

(c) Tilt to the SPF mean the optimal pool of combined models (Mean-tilted ex-post);

(d) Tilt to the SPF mean and variance the optimal pool of combined models (Mean and
var-tilted ex-post);

4.1 Combination of models with SPF densities

As a first method to add survey information to model forecasts, we take the same forecast densities
derived from the models described in Section 2 and the SPF density constructed as in Section 3
and combine them by means of a linear optimal pool. The optimal weights are again found by
solving the following constrained maximisation problem, analogous to (14):

w∗t+h|t = arg max
wi

t∑
s=T1

log

[
I+1∑
i=1

wip(ys;Ys−h, . . . , Y1,Mi)

]
, (15)

where w∗t+h|t = (w∗t+h|t,1, . . . , w
∗
t+h|t,I+1), w

∗
t+h|t,i is the time-varying weight for model Mi or for

the SPF density, and I is the number of models, to which we add the SPF density.

10Schemes 2(c)-2(d) are also studied in Galvao et al. (2021).
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4.2 Entropic tilting

The second method consists of imposing the SPF moments as restrictions onto each individual
density before performing optimal pooling, or onto the optimally combined distribution of forecast
densities. To do that, we use a relative entropy approach, as seen in Robertson et al. (2005). The
procedure consists of re-weighting the draws from the forecast distribution so that it satisfies the
required restrictions while being as close as possible to the original distribution. Tilting has been
used in the past to produce conditional forecasts (imposing that the path for some variables over
the forecast period is equal to some predetermined quantities, such as in Robertson et al., 2005) or
to produce forecasts that satisfy economic theory, by imposing moments such as Euler conditions,
as seen in Giacomini and Ragusa (2014). The tilting procedure is relatively straightforward.
The following exposition is a summary from Robertson et al. (2005), as it corresponds to the
methodology that we use.

For each variable, we start with the (h x k) matrix that contains the forecast density – that is,
k draws for 1 to h quarters ahead. The distribution is a random sample from the forecasting
density, so initially we assign the same initial weight to each draw, πi = 1

k , i = 1, ..., k. The basic
idea of tilting is to modify those weights so that the re-weighted distribution, with weights π∗i ,
satisfies the restrictions of interest; in this case, those coming from the SPF. However, the weights
are found so that the new distribution is “close” to the original one. In order to measure the
closeness of both probability distributions, we use the Kullback-Leibler Information Criterion,

K(π∗i , πi) =

k∑
i=1

π∗i log(π∗i /πi).

The new weights are then calculated so that they minimise K(π∗i , πi), subject to the following
constraints,

π∗i ≥ 0 ,

k∑
i=1

π∗i = 1 ,

k∑
i=1

π∗i g(yi) = ḡ.

The first two constraints are trivial and imply that the new weights should be positive and should
sum to 1. The third constraint imposes the restrictions and implies that the expectations of a
function of the draws from the forecasting distribution should be equal to a fixed quantity. For
example, if g(yi) = yi, the restriction is put on the mean of the distribution, which we would fix
to m̄. In our application, where we use restrictions based on the SPF, we consider the standard
deviation, in addition to the mean.

Matching the SPF standard deviation is straightforward. Given a variance ḡ2, then,

g(yi) = (yi − m̄)2.
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Finally, the minimisation problem yields the following solution for the new weights:

π∗i =
πiexp(γ

′g(yi))∑k
i=1 πiexp(γ

′g(yi))
.

In this case, γ is the multiplier associated with the restrictions, which can be found numerically
as:

γ = arg min
γ̃

k∑
i=1

πiexp(γ̃′[g(yi)− ḡ]).

4.3 Performance of model combination with SPF

Results from the various combinations mentioned above can be found in Table 2 and in the
following Figures. Since we already described the results for optimal pooling without judgement
and for SPF forecasts in Sections 2 and 3, we focus here on the five remaining specifications.

The first method implies adding the forecast distribution simulated for the SPF to the pool of
BVARs and finding weights which maximise the predictive likelihood. Figures 10 and C.10 show
the resulting optimal weights; Figure 8 and C.8, for reference, show the optimal weights from the
pool of BVARs only. The weights for SPF densities are never very large, which is also reflected in
the relative cumulative scores of Figures 5 and C.5. The dashed line for optimal pool with SPF
is almost always near zero for GDP growth, meaning that CRPS and LPS are similar for both
optimal pools, including and excluding SPF. For inflation, the weight of SPF is more persistently
positive in the second half of the sample, reflecting in an effect on the pool’s accuracy. Looking
at average scores in the Table, however, the effect seems to vanish over the sample, with the two
optimal pools returning very similar scores (third column in Table 2, scores relative to optimal
pool without SPF are close to 1 for CRPS and to 0 for the LPS).

The two pools obtained from tilting to the SPF mean improve considerably on the original optimal
pool and on the SPF; RMSFE, CRPS, and LPS all get better, especially for inflation. Over time,
as shown in the cumulative scores, both options perform very well for GDP at both horizons,
as well as for inflation. The dashed lines referring to the mean-tilted combinations are always
below the others, particularly since the global financial crisis, when model performance begins
to diverge across combinations. The only exception is again the two-year-ahead GDP, where, in
terms of CRPS, the optimal pool does better and, in terms of LPS, the optimal pool performs
very similarly to the mean-tilted combinations.

The mean-tilted ex-ante pool, in particular, always outperforms the other methods, both on
average and over time. This is due to the tilting of individual models, which results in improved
initial conditions. Consequently, different models are selected by the optimal pooling, resulting
in different combination weights (see Figure 9, compared to the weights for non-tilted models in
Figure 8), and better final results. The improved initial conditions are clearly visible in Tables
D.1 and D.2 in the Appendix, showing scores for the non-tilted and the mean-tilted individual
models relative to the optimal pool, for GDP and HICP, respectively. For example, for GDP
4-quarters ahead the models with the best log score after tilting are the time-varying parameters
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(TVP), the local mean (LM) and the Minnesota in levels (MinnL). These are also the models
which get a positive weight for the majority of the sample (see Figure 9). The large Minnesota
(Minn Large) and the survey local mean multi-country (SLM MC) models, which were obtaining
a positive weight before tilting, are now excluded from the pool. For HICP inflation, the TVP
and Minnesota multi-country are included in the pool after tilting, albeit with smaller weights,
while the SLM is excluded. A larger weight is given to the DPSV and the DP Large models.

Finally, for the case of the tilting to both first and second moments of SPF, there is a general
worsening of the performance for all variables and horizons. We notice from the distribution and
the PITs charts that this method seems to forsake model information and closely replicates the
SPF forecast performance. We conclude that it is counterproductive to include too much survey
information when this is not well calibrated.

5 Bivariate analysis

In this section, we describe results analogous to Section 4 for a bivariate setting. We perform
optimal pooling for both GDP and inflation by maximising the bivariate predictive performance,
i.e. the predictive performance of the joint pdf of both variables. This analysis allows to investigate
whether models or surveys’ performance for one of the two variables or some specific area of interest
of the same variable can be explained by conditioning on the other variable.

To measure accuracy, we consider three scoring functions. We look at the energy score, a multivari-
ate generalisation of the CRPS (see Gneiting et al., 2008), the bivariate LPS, and the conditional
PITs (Diebold et al., 1999).

The energy score (ES ) is defined as:

1

S

S∑
i=1

‖Ỹi − Y ‖ −
1

2S2

S∑
i=1

S∑
j=1

‖Ỹi − Ỹj‖

where S is the number of draws of forecast densities for each period, ‖·‖ denotes the Euclidean
norm on Rd (here, d = 2), Ỹ is the vector of forecast densities, and Y is the vector of realisations.

The bivariate log-predictive score (LPS ),

1

T2 − T1 + 1

T2∑
t=T1

log(p(Yt|Yt−h, . . . , Y1))

is analogous to the univariate case, but here Yt is a vector and not a scalar.

The conditional PIT is given by:

PITt(y1t | y2t) = F (y1t | y1t−h, . . . , y11, y2t−h, . . . , y21), t = T1, . . . , T2
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This is obtained by first calculating the univariate PITs (based on the CDF of the first variable),
then the conditional PITs (PITs of the second variable, given that the PITs of the first variable
fall within chosen quantiles). The procedure for the bivariate evaluation results in two conditional
PITs, PITt(GDP | HICP ) and PITt(HICP | GDP ), respectively. In our results, we focus on
two parts of the PITs distribution; a “central” part, given by the central 68% of the distribution
and a “tails” part, which is the sum of quantiles 0th−16th and 84th−100th. The conditional PITs
are evaluated in the same way as the unconditional ones; for well-calibrated predictive distribu-
tions (i.e. such that approximates well the actual distribution), the sequence PITT1 , . . . , P ITT2
should be uniformly distributed over the interval [0, 1]. To test the hypothesis of uniformity, we
again perform the Berkowitz test (Berkowitz, 2001).

5.1 Performance of bivariate combinations

Table 3 shows results for the bivariate combinations. As for the univariate case, ES and LPS
of the different forecasts are shown relative to the first column, optimal pooling. The Berkowitz
test is in absolute terms. Results are consistent with the univariate case. According to the LPS
metric, the optimal pool tilted ex-ante to the mean of SPF does best, followed by the optimal
pool tilted ex-post to the mean in the one-year-ahead and by the optimal pool with SPF in the
two-year-ahead. The ES, similarly to the CRPS, penalises less the SPF and the combinations
tilted to both mean and variance of SPF. At the two-year horizon, only the pooling with SPF
does better than optimal pooling for this metric.

Conditional calibration can be assessed both in Table 3 and in Figures 6-7. The latter focuses
only on the best and the worst performing combinations and shows both the unconditional and
the conditional PITs for each variable for the two combinations. The two subplots in the bottom
part of the Figure include conditional PITs for the “center” and the “tails”. For example, the
middle subplot of Figure 6 shows the PITs of GDP conditional on the PITs of inflation falling
in the mid-68% of the distribution at one-year-ahead horizon. The bottom subplot shows the
PITs of GDP, conditional on the PITs of inflation falling either in the first 16% or in the last
84% of the distribution. The mean-tilted ex-ante combination satisfies uniformity for almost all
conditional PITs, failing only for the two-year-ahead PITs of GDP conditional on the extremes
(< 16% and > 84%) of inflation. The mean and variance-tilted combination, in contrast, carries
over the poor unconditional calibration also in the conditional case. Table 3 indicates that the
SPF is not correctly calibrated in any case. The lack of calibration of the SPF is not documented
by the evidence that the survey respondents give higher relevance to one of the two variables, but
their densities are simply too narrow.

Finally, we look at the weights from optimal pooling for the bivariate case, in Figures 8 (pool
without SPF) and 10 (pool including SPF). There are large differences in terms of selected models
compared to the univariate optimal pool, which include SPF getting a larger weight both before
and after the 2008 crisis, new models entering the pool with positive weight, and other models
being excluded (notably the SLM model, which for inflation had a large positive weight during
most of the sample). Weights in the multivariate case are less volatile than those for univariate
combinations of GDP, in particular at the beginning of the sample, but still more volatile than
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those for univariate combinations of inflation. Despite these differences in weights visible also in
the two-year-ahead results in the Appendix (Figures C.8-C.10), results in terms of density perfor-
mance are very similar to the univariate pooling, as discussed above. The main difference to notice
is the improvement in GDP point forecasting accuracy when applying bivariate combinations (see
Table B.1): five cases over the six combination schemes have lower root mean square forecasting
errors in the bivariate case than in the univariate case. However, the evidence is opposite for
inflation forecasting, where performance deteriorates in the bivariate case.

6 Conclusions

We evaluate in real time density forecasts from a broad range of Bayesian VARs for euro area GDP
and inflation. We look at average density performance over the sample, at overall calibration,
and at relative performance over time. We then combine results from individual models by means
of a linear optimal pool, finding significant improvements with respect to each model and to
a trivial combination with equal weights. In addition, we consider forecasts from the Survey of
Professional Forecasters and build a continuous distribution and simulated draws from the survey’s
aggregate histograms. Evaluating these forecasts along the same dimensions, we see a very good
performance in terms of point forecast, but a poor performance for density and calibration, with
SPF density forecasts being overconfident and poorly calibrated. In order to exploit the positive
point performance, we include complete distributions for SPF forecasts in the model densities via
two methods. First, we add the SPF as an additional density forecast to the linear optimal pool.
Gains with respect to the original optimal pool in this case are limited. Second, we use first and
second moments from the SPF’s histograms to tilt the model densities. We tilt both the individual
model densities before combining them and the already combined density. We find that when both
moments are used for the tilting, there is a general worsening of the performance, both for the
models tilted ex-ante (before combination) and ex-post (after combination). In the case of tilting
only to the first moment, all results improve with respect to other alternatives and with respect
to SPF only, particularly when individual models are tilted before being combined. Evidence is
similar when the evaluation is carried out jointly for the two variables and not marginally as is
commonly reported in literature. Therefore, the lack of calibration of the SPF cannot be justified
by the survey respondents giving higher relevance to one of the two variables, but by the evidence
that survey densities are simply too narrow.

We conclude that there are some benefits to including forward-looking medium-term judgement
forecasts to a combination of purely statistical models, with improvements in the point forecast
accuracy which are not achieved by a simple optimal pooling of those models. Good forecast
calibration and density performance, on the other hand, come mostly from combining individ-
ual models, confirming the advantages of hedging against model uncertainty by using several
specifications.
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Table 2: Relative accuracy scores and uniformity test results for the different univariate combi-
nations:

Optimal
Pool:
absolute
scores

SPF Optimal
Pool with
SPF

µ-tilted
ex-ante

µ-tilted
ex-post

µ and σ-
tilted ex-
ante

µ and σ-
tilted ex-
post

GDP 4-q
CRPS 0.808 0.994 0.997 0.935 0.932 0.966 0.971
LPS -1.922 -0.627 0.030 0.302 0.026 -0.406 -0.485
Berkowitz 0.042 0.000 0.016 0.624 0.279 0.000 0.000

GDP 8-q
CRPS 0.994 1.091 1.001 1.080 1.033 1.102 1.099
LPS -1.973 -1.112 -0.094 -0.042 -0.095 -1.243 -1.303
Berkowitz 0.020 0.000 0.011 0.099 0.004 0.000 0.000

HICP 4-q
CRPS 0.503 0.932 0.991 0.917 0.937 0.943 0.944
LPS -1.306 -0.024 0.003 0.117 0.056 -0.007 -0.082
Berkowitz 0.839 0.002 0.704 0.218 0.156 0.000 0.000

HICP 8-q
CRPS 0.567 0.949 1.020 0.922 0.941 0.964 0.963
LPS -1.429 -0.040 -0.001 0.082 0.032 -0.263 -0.284
Berkowitz 0.552 0.000 0.961 0.368 0.232 0.000 0.000

Note: CRPS is calculated as the ratio between each model’s score and those of optimal pooling, included
in column 1. A number smaller than one indicates a preference for the forecast in that column over
optimal pooling. LPS is calculated as the difference between the two scores, therefore a positive value
indicates a preference for the forecast over optimal pooling. Berkowitz test is in absolute terms, where
a p-value smaller than 0.10 indicates that the null hypothesis of good calibration can be rejected at the
10 percent confidence level; i.e. the density is not well calibrated.
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Table 3: Relative accuracy scores and uniformity test results for the different bivariate combina-
tions:

Optimal
Pool:
absolute
scores

SPF Optimal
Pool
with
SPF

µ-tilted
ex-ante

µ-tilted
ex-post

µ and σ-
tilted ex-
ante

µ and σ-
tilted ex-
post

4-q
ES 1.015 0.995 0.987 0.961 0.954 0.983 0.984
LPS -3.355 -0.416 0.144 0.433 0.220 -0.106 -0.352
Berkowitz c 0.538 0.000 0.907 0.690 0.650 0.000 0.000
y | h t 0.008 0.000 0.010 0.112 0.098 0.000 0.000
Berkowitz c 0.026 0.013 0.078 0.219 0.168 0.002 0.001
h | y t 0.141 0.061 0.235 0.394 0.724 0.010 0.003

8-q
ES 1.254 1.054 0.989 1.024 1.016 1.069 1.068
LPS -3.766 -0.501 0.061 0.233 -0.017 -0.782 -0.874
Berkowitz c 0.214 0.000 0.623 0.721 0.185 0.000 0.000
y | h t 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Berkowitz c 0.075 0.002 0.156 0.707 0.225 0.000 0.000
h | y t 0.632 0.030 0.915 0.238 0.383 0.003 0.002

Note: ES is calculated as the ratio between each model’s score and those of optimal pooling. LPS is
calculated as the difference between the two scores. Berkowitz test is in absolute terms and refers to
the conditional PITs described in Section 5: PITs of GDP given inflation, central part (c) and tails
(t); PITs of inflation given GDP, central part and tails. A p-value smaller than 0.10 indicates that the
null hypothesis of good calibration can be rejected at the 10 percent confidence level; i.e. the density
is not well calibrated.
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Figure 1: Densities of one-year-ahead forecasts from combinations and SPF, real GDP growth.
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Figure 2: PITs of one-year-ahead forecasts from combinations and SPF, real GDP growth.
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Figure 3: Densities of one-year-ahead forecasts from combinations and SPF, HICP inflation.
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Figure 4: PITs of one-year-ahead forecasts from combinations and SPF, HICP inflation.
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Figure 5: Cumulative relative scores of one-year-ahead forecasts, real GDP growth (left) and
HICP inflation (right).
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Figure 6: Unconditional and conditional PITs for one-year-ahead real GDP growth, for two
combination methods.
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Figure 7: Unconditional and conditional PITs for one-year-ahead HICP inflation, for two combi-
nation methods.
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Figure 8: Weights from univariate and bivariate optimal pools, one-year-ahead.
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Figure 9: Weights from ex-ante mean-tilted univariate and bivariate optimal pools, one-year-
ahead.
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Figure 10: Weights from univariate and bivariate optimal pools including SPF, one-year-ahead.
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Appendix

A Data Set

Table A.1: Data set

Variable Small Model Medium Model Transformation

GDP, real x x log-differences
Private consumption, real x log-differences
Total investment, real x log-differences
Exports XA, real x log-differences
Imports XE, real x log-differences
GDP deflator x log-differences
Total employment x log-differences
Short-term interest rate x x levels
Long-term interest rate x levels
Lending rate x levels
Compensation per employee x log-differences
Headline HICP x x log-differences
HICP excluding energy and food x log-differences
ESI x levels
Foreign demand x log-differences
Price of oil in EUR x log-differences
Nominal effective exchange rate x levels
US short-term interest rate x levels
US long-term interest rate x levels

Note: For the model specification “in levels”, we use the “log-levels” instead of the “log-
differences” transformation.
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B Point performance of forecast combinations and SPF

Table B.1: Relative RMSFE

Optimal
Pool

SPF Optimal
Pool
with
SPF

Mean-
tilted
ex-ante

Mean-
tilted
ex-post

Mean
and
variance-
tilted
ex-ante

Mean
and
variance-
tilted
ex-post

Univariate
GDP 4-q 1.069 0.972 0.999 0.989 0.955 0.953 0.959
GDP 8-q 1.281 1.044 1.008 1.092 1.028 1.050 1.046
HICP 4-q 0.689 0.964 1.013 0.975 0.998 0.973 0.976
HICP 8-q 0.823 0.894 1.001 0.898 0.919 0.906 0.904

Bivariate
GDP 4-q 0.944 - 1.167 0.990 0.942 0.959 0.959
GDP 8-q 0.996 - 1.008 1.068 1.023 1.050 1.045
HICP 4-q 1.069 - 1.152 0.974 1.008 0.972 0.975
HICP 8-q 1.004 - 1.001 0.908 0.912 0.899 0.902

Note: The relative RMSFE is calculated as the ratio between each model RMFSEs and
those of the univariate optimal pool (in absolute values in the first column of the upper
panel). A number smaller than one indicates a preference for the combination over the
optimal pool.

C Results of two-year-ahead forecasts
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Figure C.1: Densities of two-year-ahead forecasts from combinations and SPF, real GDP growth.
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Figure C.2: PITs of two-year-ahead forecasts from combinations and SPF, real GDP growth.
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Figure C.3: Densities of two-year-ahead forecasts from combinations and SPF, HICP inflation.
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Figure C.4: PITs of two-year-ahead forecasts from combinations and SPF, HICP inflation.
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Figure C.5: Cumulative relative scores of two-year-ahead forecasts, real GDP growth (left) and
HICP inflation (right).
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Figure C.6: Unconditional and conditional PITs for two-year-ahead real GDP growth, for two
combination methods.
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Figure C.7: Unconditional and conditional PITs for two-year-ahead HICP inflation, for two com-
bination methods.
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Figure C.8: Weights from univariate and bivariate optimal pools, two-year-ahead.
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Figure C.9: Weights from ex-ante mean-tilted univariate and bivariate optimal pools, two-year-
ahead.
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Figure C.10: Weights from univariate and bivariate optimal pools including SPF, two-year-ahead.
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D Performance of individual models included in the pool

In this section, we present results for the individual BVAR models described in Section 2 of the
main part. The first two Tables show accuracy scores (RMSFE, CRPS and LPS) of individual
models with respect to optimal pool for the non-tilted and the mean-tilted case, for GDP and
HICP, respectively. The successive Graphs D.1-D.8 show forecast distributions and PITs of each
individual models for real GDP growth and HICP inflation forecasts at one- and two-year horizons.
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Figure D.1: Densities of one-year-ahead forecasts from individual models, real GDP growth.
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Figure D.2: PITs of one-year-ahead forecasts from individual models, real GDP growth.
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Figure D.3: Densities of one-year-ahead forecasts from individual models, HICP inflation.
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Figure D.4: PITs of one-year-ahead forecasts from individual models, HICP inflation.
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Figure D.5: Densities of two-year-ahead forecasts from individual models, real GDP growth.
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Figure D.6: PITs of two-year-ahead forecasts from individual models, real GDP growth.
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Figure D.7: Densities of two-year-ahead forecasts from individual models, HICP inflation.
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Figure D.8: PITs of two-year-ahead forecasts from individual models, HICP inflation.
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