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Abstract

Realized covariance matrices (RCs) are an important input to asses the
risks involved in different investment allocations and it is thus useful to model
and forecast them. To this end generalized autoregressive score (GAS) mod-
els are employed in this paper. These models are ideal for comparing different
probability distributions in terms of their ability to model and forecast RCs,
since the dynamic parameters of the conditional observation density are up-
dated by incorporating the shape of the distribution itself (via the scaled
score of the log-likelihood). All probability distributions so far applied to
time series of RCs in the literature are compared and it is shown how they
are related to each other. Furthermore a novel family of probability distribu-
tion, which has a property called “tail homogeneity”, is derived and added
to the comparison. The necessary inputs for the GAS models (Fisher infor-
mation matrix and score) are derived for all distributions. An in-sample fit
comparison confirms previous results that “fat-tailed” distributions outper-
form others and shows that the novel distribution family achieves very good
fit. Out-of-sample forecasting comparisons further corroborate the excellent

performance of the novel distribution family.
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1 Introduction

In recent years there has been a lot of focus on the modeling and forecasting of time-series
of realized covariance measures. In this strand of the literature the realized covariance
measures are typically treated as “observed” measures of asset price variability, that can
be modeled directly (see e.g. |Chiriac and Voev 2011}, Golosnoy, Gribisch, and Liesenfeld
2012, |Opschoor et al. 2018, |Gribisch and Stollenwerk 2020). The approach to treat real-

ized measures created from high-frequency price observations as observations of volatility

has been pioneered by |Andersen et al.|2001) and can be likened to the macroeconomic lit-

erature where measurement-error prone variables of interest (e.g. GDP) are also treated
as observables and directly modeledEl This view allows disregarding any distributional
properties of the realized measures that might be inherited from an underlying assump-
tion on the price processes (e.g. semi-martingale) and enables researchers to assume
probability distributions on the realized measures directly.

Many different probability distributions with support on realized covariance measures
(i.e. symmetric positive semi-definite matrices) have been proposed in the literature.
These are the (non-central)-Wishart (Golosnoy, Gribisch, and Liesenfeld 2012, (Gorgi et|
lal. 2019} [Yu, Li, and Ng 2017)), inverse Wishart (Gourieroux, Jasiak, and Sufana 2009}
[Asai and So [2013), matrix-F (Opschoor et al. [2018|, [Zhou et al. [2019)), Riesz
land Hartkopf 2022), inverse Riesz and F-Riesz (both |Blasques et al.[2021) distributions.

All mentioned distributions are related to each other. The inverse Wishart, inverse

Riesz, F and F-Riesz distributions accommodate the loosely defined stylized fact of “fat-

tailedness” of realized measures. The recently proposed F-Riesz by |[Blasques et al. |2021]

additionally allows for heterogeneous tails, i.e. it assumes that the variances of the
realized variances can differ across assets.

In this paper, we compare, by showing explicitly how they are related to each other,
all hitherto used probability distributions E| in terms of their fit to different data sets
of time series of realized covariance measures and assess their forecasting performance.
Furthermore, we propose a new family of distributions, also related to the other ones
mentioned above and included in the comparison, which in contrast to |Blasques et

al. [2021] assumes tail homogeneity and show that, especially in times of high market

1. See also |Andersen et al. |2003L |Andersen et al. |2006| and |McAleer and Medeiros |2008}

2. Excluding the noncentral Wishart distribution, which gives only slight improvements compared to
the Wishart in terms of fit and forecasting ability and is not applicable to dimensions higher than five
due to computational difficulties involving the matrix-variate hypergeometric function.




volatility, this distribution represents a more realistic assumption to the data. It is also
easier to handle analytically and numerically. It can be rooted in the assumption of a
joint t-distribution on the vectors of intra-day returns, which generate realized covariance
measures.

The rest of this paper is structured as follows. The next section presents all hitherto
used probability distributions and the new family of probability distributions. Section
presents the GAS models for all distributions. Section [] presents the data, Section

contains the empirical application. Section [6] concludes.

2 Probability Distributions

Let R denote a p x p realized covariance matrix. Any hitherto considered probability
distribution can be characterized by its degree of freedom parameter(s), which we denote
by 6 and a real symmetric positive semi-definite p x p parameter matrix €. If its real

symmetric positive semi-definite p x p expected value matrix
E[R] =X =CC' (1)

exists, where C denotes the lower Cholesky factor, the distribution can be equivalently
characterized by 3 and 6. In this paper we assume that 3 always existsﬂ such that we

can write
R~ d(%,0), (2)

where d € (W, iW, tW,itW,F,R,iR,tR,itR, FR, z]—"R)ﬁ indexes the different distri-
butions. The probability density functions,

pd(R’z)? 0)7 (3)

3. Existence depends on the degree of freedom parameter(s), but is not a restrictive assumption since
for all estimated distributions in this paper, the mean exists.
4. See column 1, table [1] for all considered distributions



for all considered probability distributions are given in table The composition of 6

for each distribution also becomes clear in this table. Finally, let us denote
Z=C'RCT (4)
as the standardized realized covariance matrix.

2.1 Stochastic Representations
At the basis of all considered distributions lie the p x p random triangular matrices
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where all random variables inside the matrices are independent of each other |E| For the
distributions to exist it is thus necessary and sufficient that we restrict n; > ¢ — 1 and
Vi >p— ZH We denote the special cases where for all i, n; =n withn >p—1and v; = v
with v > p — 1) as B and B, respectively.

The stochastic representations of and the relationships between the probability distri-
butions are depicted in figure [Il The t-named distributions are novel distributions that
will be explained in more detail in the section Note that the stochastic representa-

tions in figure [I] are for the mean-I distributions, that is, all have expectation equal to

5. We choose to name them with the letter “B” due to their resemblance of the “Barlett” decompo-
sition.

6. Note that this does not imply existence of E [R]. For example the inverse Wishart distribution is
based on (BBT)_l and its mean only exists if in fact v > p + 1.



the identity matrix. They have to be pre-multiplied by C and post-multiplied by CT in
order to arrive at the distributions in table [Il

On the vertical axis of figure [I| we can see the number of parameters of the respective
distributions. All have p(p + 1)/2 distinct parameters in the symmetric positive semi-
definite matrix 3 plus the number of degree of freedom parameters. FEvery Wishart-
based distribution is a special case of its Riesz-named counterpart and is obtained by
setting the entries in the degree of freedom parameter vector all equal to each other.
Furthermore we can see that the (inverse) Riesz and (inverse) Wishart distributions
are limiting cases of the other distributions, that have relatively more probability mass
on extremely “large” RCs and are thus labeled “fat-tailed”, if we let the parameters
governing the “fat-tailedness” go to infinity. Note that the dashed arrows indicate that
the distribution at the end of the arrow is not nested by but merely related to the one
at the beginning of the arrow.

For each Riesz-named distribution the ordering of the assets in the RCs matters.
That is, given an initial ordering, applying a different one to the rows and columns of
the RCs and the expected value matrix, as well as to the degree of freedom parameter
vectors, changes the probability distribution. This implies that in maximum likelihood
estimation, we also have to optimize over the order of the assets, as suggested in [Blasques
et_al. 12021l

Furthermore for all Riesz-named distributions there are two types, one based on B,
the other on B. For example the Riesz type 11 distribution has stochastic representation
BB as opposed to BB' for the Riesz type I distribution. It can however be shown
that a Riesz type I distribution is the same as a Riesz type II distribution, where the
order of assets in the data matrix and in 3 and in the entries of the parameter vectors
are reversed. The same holds for the standardized versions of all distributions[l Thus
when optimizing over the asset order, only one of the two types needs to be considered.
Finally, note that an inverse F distribution is again an F distributionﬂ but an inverse

F-Riesz distribution is not again an F-Riesz distribution.

7. See Theorem in the appendix.
8. With the degrees of freedom parameters switched and the expected value matrix inverted, as is
easy to see from their stochastic representations.



2.2 The t-Riesz Distribution Family
Recall the stochastic representation for the t-Riesz and the inverse t-Riesz distribution,
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respectively. Note that, given B (B), a tail realization of the inverse gamma (gamma)
distribution yields a tail realization of the t-Riesz (inverse t-Riesz) distribution. This
in stark contrast to the F-Riesz and inverse F-Riesz distribution, which have stochastic

representations
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respectively. Here, given B (B), a tail realization of one of the entries on the main
diagonal of B (B), while the other diagonal entries do not lie in the tail, yields a tail
realization in some of the entries the (inverse) F-Riesz matrix, but has a decreasing
effect on the other entries the further away they are from the index where the tail
observation occurred. Blasques et al. |2021] call this property of the F-Riesz distribution
“tail heterogeneity”, which leads us to calling the t-Riesz distribution family being “tail
homogeneous”. The natural conjecture would be that the t-Riesz distribution family
might work better in times of market-wide crises, while the F-Riesz distribution has
advantages when one asset or subsections of the market are in distress.

The t-Riesz, inverse t-Riesz, inverse t-Wishart and inverse F-Riesz distributions are
to the best of my knowledge novel distributions that we derive in the appendix. The
t-Wishart distribution is a standardized version of the distribution introduced in [Sutrad-
har and Ali [1989. They prove an interesting result that can be readily applied to the
realized covariance estimator, namely that if we assume a joint t-distribution with block
diagonal scale matrix, where the blocks are all equal, on all intraday-return vectors, then
the realized covariance follows a t-Wishart distribution where the degree of freedom n
equals the number of intraday-return vectors. The Wishart distribution can be based on
a similar assumption, but with a Normal distribution instead of a t-distribution. As such,
the Wishart and t-Wishart distributions are the only ones of the considered distribu-
tions for R, which can be grounded in an assumption on the underlying intraday-return
vectors, but it is common knowledge, that the t-distribution assumption is much more

realistic that the Normal distribution assumption for return vectors. This is mirrored



in the much superior performance of the t-Wishart compared to the Wishart as will be
visible in the empirical part of this paper.

Other advantages of the novel distributions are that they have less parameters than
the F(-Riesz) and that their evaluation is numerically more stable as their pdfs depend

on the trace, rather than the (power weighted) determinant of Z.

2.3 Static Estimation

Now lets add subscripts for the days in our sample, t = 1,...,T. In a first step we will

assume a static distribution on the time series of RCs, that is

where 3 in theory is allowed to differ across distributions. In practice, however, we
choose to estimate 3 with the obvious method of moments estimator to avoiding the

curse of dimensionality for large cross-sections,

. 1 E
2=T;Rt, (8)

which of course is the same across distributions. Then, in a second step we estimate the
degrees of freedom parameters via standard numerical maximum likelihood estimation,
conditional on our estimate for 3. I follow the algorithm proposed in[Blasques et al.[2021
to optimize over the asset ordering. The seed for the random generation of permutations

to try, is the same for all Riesz-named distributions.

3 GAS Models

In the literature on time series of RCs it is standard to assume time-variation in the
mean, i.e. in the ¥ matrix of the underlying distribution, while leaving the degree of

freedom parameters fixed over time, that is
Ry|Fy 1 ~ d(34,0), (9)

where F;_; represents all information up to time ¢ — 1. There are different proposals

for the updating mechanism of ¥; in the literature. For example one could simply



assume a multivariate GARCH(1,1)-type recursion, 3; = & + aRy—1 + 34,1, where
=2 is a symmetric positive semi-definite p x p parameter matrix. A natural choice for
the updating mechanism in order to compare different probability distributions is the
Generalized Autoregressive Score (GAS) framework introduced by |Creal, Koopman,
and Lucas [2013| and |Creal, Koopman, and Lucas 2011, because it incorporates directly
information about the shape of the distributions into the updating process. The first
example of such a model applied to time-series of RCs is given by |Gorgi et al. [2019, who
apply the GAS framework to a Wishart distribution on a set of two-dimensional time

series of RCs. The standard recursion in a GAS framework is
= (1 — b)E +aSg—1+ X1, (10)
where S; is the scaled score of the assumed probability distribution d at time t. One

popular choice for the scaling of the score,

_ OIngd(ztve)
Vi= dvech (2;) (11)

is the inverse of the Fisher information matrix,

0 logpd(ztv 0) alogpd(2t7 0)

I —— 7
t Ovech (2¢)  dvech ()"

such that
Si = ivech (Z; 'V,) (13)

where pg represents the probability density function of distribution ¢. In this paper
we derive the scores V; and Fisher information matrices Z; for all probability distribu-
tiong?] considered above. These can be found, omitting the subscripts, in table 2] and
respectively.

Unfortunately, the Fisher information matrices of Riesz-named distributions involve
matrix multiplications and inversions of p? x p? matrices, which causes computation
of the scaled scores in equation to be prohibitively slow for estimation of GAS

models of dimension say p > 10. Luckily, the most important part of the scaled scores

9. Except for the Fisher information matrix of the (inverse) F-Riesz distribution.



are the scores themselves, which at time ¢ define the steepest ascend direction of the
log-likelihood, in which the parameters should be updated. The scaling is of secondary
importance. If we scale the Riesz-named distribution scores with the Fisher information
matrices of their Wishart-based counterparts, i.e. we set all parameters in a degree
of freedom parameter vector equal to the average, then theorem shows that the

computation of S; reduces to p X p matrix operations for all distributionsm

Theorem 3.1. Consider, omitting the subscript t,
S =ivech (Z7'V), (14)

as defined in equation . For any Riesz-named distribution use I of its Wishart-based
counterpart instead of its own, by setting the degree(s) of freedom equal to the average

of the corresponding degree of freedom parameter vector(s). Then

S = %2 <A+AT> 3+ Botr (SA)E, (15)

where A is the score matriz w.r.t. X, ignoring symmetrym and o and B depend only

on the degree of freedom parameters of the respective distribution.

Proof. Note that Z of all Wishart-based have the form
I=GT (ag (2 ® 5) + cg vee () vec (z)T) G, (16)

where the scalars ag and cg only depend on the degree of freedom parameter(s) of the

respective distribution. Thus, using Theorem we have

-1
I =y (GT {(2 ® X) + ap ' cg vee (X) vec (E)T} G) (17)
04_109 T
=apGT [ ex ™+ Gi_lvec (E Hvec (=) | GT (18)
1+ ay cop
=G7 (QQE_I ou 4 200 e (2_1) vec (Z_I)T) GT. (19)
ag + cop

10. Apart from making the GAS models applicable to high dimensions this also circumvents the diffi-
culties of obtaining the F-Riesz Fisher information matrix as its Wishart-based nested version has been
derived in this paper.

_ Ologp(x,0) Ovec(EZ) T o dlogp(x,0) | __ 9dlogp(x,0)
1LV = avfclz):)—r dvech(=) T VeC(A) G=A= IVGC( BVSCZEE)T ) - ngE
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G+ (ag (2 %) + Bp vec () vec (z)T) (GT) " GTvec (L) (20)
Gt (ag (2@ %) + g vec () vec (2)T> vec (A)
= ap GT (T ® ) vec (A) + Bo GTvec () vee () vee (A)
= ag Gtvec (ZAX) + Bo tr (BA) GHvec ()
- % vech (E(A + N)z) + Bo tr (SA) vech ()

— vech (% S(A+ AT + B tr (TA) 2) . (25

Now simply apply the tvech operator. O

Using Theorem in the standard GAS recursion and we arrive at
Si=(1-bE+al (80+ A7) S+ afotr (BA) S +bT0. (26)
From here it is a small cost to further generalize the model to
S=(1-c)E+aS, (At + AZ) 3+ btr (BA) By + ¢ By, (27)

where a, b and ¢ are now stand-alone parameters, independent of the degree of freedom
parameters. Equation is the recursion we choose in all our empirical applications.

For “fat-tailed” distributions GAS models down-weight the impact of extreme real-
izations of Ry on the updating process of X, since extreme realizations of R; are less
unexpected by a model with a “fat-tailed” distribution and thus yield less extreme scaled
score realizations S;. This type of modeling behavior has also been advocated for in the
literature by e.g. [Bollerslev, Patton, and Quaedvlieg 2018, whos “Dynamic Attenua-
tion Model” down-weights the impact of extreme realizations by incorporating the fact
that they are relatively more inaccurate estimates of integrated covariance, “endoge-
nously shrinking the influence of past realized covariances based on dynamically varying
weights determined by an estimate of the reliability of the realized covariances”.

As a final interesting point it holds that when we scale the (inverse) Riesz or Wishart

distributions by their inverse Fisher information matrix, we obtain simple the GARCH-

10



type dynamics mentioned beforeH

3.1 Mixture Model

As mentioned before, an important difference between the F-Riesz distribution and
the (inverse) t-Riesz distribution is the tail behavior, i.e. tail-homogeneity versus tail-
heterogeneity. To shed some light onto this issue we introduce a GAS mixture model
between the F-Riesz and inverse t-Riesz distribution[l%| where the weights are allowed to
vary over time. The conjecture is that during times of crises, a higher weight is estimated
in the tail-homogeneous inverse t-Riesz distribution, while in calm time the weight on
the tail-heterogeneous F-Riesz distribution is relatively higher.

In particular, the probability density function of the mixture distribution obtains as
Pmiz(Re| 2, m1, 11,02, v2) = A pirr(Re| B, m1, v1) + (1 — A\t) prr(Re| e, n2, va). (28)

A further advantage of the GAS model framework is that it provides a generic method
to make any distributional parameter time-varying, which is especially valuable in cases
where an obvious intuitive updating mechanism is not available, like for the weights of

a mixture distribution@ which has been proposed by [Catania 2021, We assume
At+1 = (1 = ba)§ + ax st + baks, (29)

where s; is the scaled score of the mixture distribution w.r.t. A;. The score w.r.t. the
weight of a mixture distribution provides a very intuitive way of updating the weights

since it equals

Ot ~ Mpar() + (1= N) prr(Y) Prmiz(*)

01og pmia () pitr(-) — prr(*) _ par(") — prr(") (30)
That is whenever the inverse t-Riesz distribution obtained a higher likelihood value in
time ¢ than the F-Riesz distribution, its weight increases in ¢ + 1 and vice-versa. When

pitk (PFR) goes to zero or infinity, %gapiﬁ””(') goesto lor1/(1—X;) (=1 or 1/);), which

12. See appendix.

13. The F-Riesz and inverse t-Riesz distributions turn out to be close competitors in terms of fit, the
t-Riesz does not provide an as good fit.

14. As opposed to the updating equation of 3; , where an immediately obvious alternative might
be to replace the score with R¢_;.
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implies that

. 1 < 810gpmz’z(') < i
11— O .Y

(31)

In order to stabilize the score, we want to ensure that it always lies on an interval of

length one, thus we multiply with the inverse of the interval length

1 1 \!
S ) = = M 32
<At+1_>\t> t t ( )

to obtain the scaled score

91og pmia(*)

st = (A = A7) o, (33)

with
A< s <1\, (34)

thus
—1<s <1 (35)

The score and especially the Fisher information matrix of the mixture model w.r.t. 3
are much more complicated, which is why in order to nest the GAS models based on
the FRiesz and inverse t-Riesz distribution we choose to base our GAS dynamics on the

scaled scores of the FRiesz and inverse t-Riesz model

Si=(1-0)E+aS, [)\t (vitR,t n vZTtht) (1- ) (VFR,t n v;th)} S (36)

+ btr (E(Atvit}{t + (1 — )\t)vFR,t)) Si+eXiq. (37)

3.2 Estimation of the GAS Models

Since E[S;] = 0, it is easy to show that for equation it holds that

E[R = E. (38)

12
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We thus choose the well established two step estimation method where we “target” = in

the first step, that is we simply apply the obvious method of moments estimator for it

[

= % tzl Ry, (39)
and we estimate a, b and the degree of freedom parameters in a second step via standard
numerical maximum likelihood estimation, conditional on our estimate for = in the first
step. Again, we follow the algorithm proposed in [Blasques et al. [2021] to optimize over
the asset ordering, where the two-step maximum likelihood estimation described above,
goes into step 2 of their 4-step estimation algorithm. In the mixture model of subsection

[3.1] we include &, ay, by and A; in the second step maximum likelihood estimation.

4 Data

Our original data are one-minute close prices from all trading days from 1 January 1998
to 13 March 2020 for every stock that was a constituent of the S&P 500 index during
the sample period. A close price is defined as the latest observed trade price of the
respective one-minute interval and as such is we have previous tick interpolation on a
fixed one-minute grid. We acquired the data from Quantquotelfl, who combine, clean
and process data directly obtained different exchanges, where the biggest are NYSE,
NASDAQ and AMEXIE The data include observations from official trading hours as
well as before- and after hour trading observations.

The aim is to produce the longest possible time series of accurately estimated daily
integrated covariance estimators. We exclude dates before 1 January 2002, because the
NYSE fully implemented decimal pricing in 200]@ and there are numerous other trading
irregularities during this yeaﬂ This leaves 4808 trading days. To be consistent across
trading days we only keep observations from official trading hours. We then exclude all

stocks that on at least one of the remaining trading days have missing observations on

15. The company is recommended by the Caltech Quantitative Finance Group, see http://quant.
caltech.edu/historical-stock-data.html.

16. AMEX was bought by NYSE in 2008, and handled only 10% of trades at its height

17. On 29 January 2001 to be precise.

18. e.g. the days surrounding the terrorist attacks on 11 September 2001 and ”computer systems
connectivity problems” on 8 June 2001.
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more than 25% minutes. From an initial sample of 983 stocks this leaves 99 stocks/”]
Excluding illiquid stocks is common practice in creating time-series of integrated covari-
ance estimators (see e.g. [Lunde, Shephard, and Sheppard [2016)). While this procedure
biases the sample towards stocks which where very liquid over the entire sample pe-
riod@ it does ensure that for those stocks included the integrated covariance estimates
are accurate.

I follow |Opschoor et al. 2018 and [Blasques et al. 2021 and construct realized co-
variance matrices of the 99 assets using five-minute returns with subsamplin@ Then
we randomly choose two 5- and 10-dimensional principal submatrices and one 25- and

50-dimensional principal submatrix for a total of six datasets.

5 Empirical Application

In this section we estimate the static distributions and GAS models based all distribu-

tions to the data described above.

5.1 In-Sample Fit

Notice, as is easily seen from the stochastic representations, that for ¢ > 0,
R~ d(X,0) < cR ~ d(cX,0). (40)

From table[1]it is however obvious that, since Z is unaffected, the scaling with ¢ changes
the probability density functions of all distributions by the same amount through the
term |R|~(P+1)/2, That is, for a different scaling of the RC the overall log-likelihoods
of all distributions differ by a factor of Tp(p+1)/21og(c), which obviously has an impact
on relative comparisons between log-likelihood and information criterion values. For this
reason the part ofh the log-likelihoods and information criteria that are due to |R|~(#+1)/2
are displayed separately in tables [4] and [6]

It is no surprise that distributions that are nested by other@ obtain a lower log-

19. 465 are left after excluding those that do not have an observation at all on at least one trading day.

20. Relatively young firms (e.g. Facebook or Tesla) are excluded.

21. The subsampling estimator was first proposed by |Zhang, Mykland, and Ait-Sahalia [2005

22. For example some researches like to scale in terms of annualized volatility in percentage terms, i.e.
c =252 %100 * 100 relative to trading-daily volatility.

23. see again figure

14



likelihood value than the nesting ones. It is however not clear how big the differences are
and how non-nested distributions, e.g. the (inverse) F-Riezs and the (inverse) t-Riesz dis-
tributions compare. In table we see the log-likelihood (Bayes information criterion)
values of the estimated static distributions, table |§| displays the log-likelihood (Bayes
information criterion) values of the estimated GAS models for the different datasets.
Note that the Bayes information criterion (BIC) rankings and distances are very close
to those of the log-likelihood, since the BIC penalty term for the number of parameters
is dominated by the number of parameters in 3, which is common to all distributions
and are of order n?.

In the static setting we see a clear pattern in favor of the t-named distributions and the
(inverse) F-Riesz distribution. The best fit is achieved by the tail homogeneous inverse
t-Riesz distribution for all datasets.

In the dynamic GAS setting the picture is less clear. It is apparent that the mean
shifting achieved by time-variation in 3; drastically improves the fit as compared to the
static setting for all distributions. It stands out that the inverse t-Riesz and F-Riesz
distributions achieve the best fit and are very close to each other. The former achieves
the best fit for four datasets and the latter for one dataset. Thus, once we have accounted
for the time-varying mean, it seems that the difference between “tail homogeneity” and

“tail heterogeneity” are slim.

5.1.1 Tail Homogeneity vs Tail Heterogeneity

Now we investigate a bit further the differences in fit between the inverse t-Riesz and
the F-Riesz distribution. Figure [2] shows the difference in log-likelihood contributions
between the two distributions depending on the log determinant of the RDs for the first
five-dimensional dataset. We clearly see, that the inverse t-Riesz distribution gains its
advantage in static fit mainly from the “larger” RCs. This is in line with our expectation
that tail heterogeneity is disadvantageous for crises periods. Surprisingly, it also fits
better for very small RCs.

As we see in figure |3 as soon as we introduce dynamics in X, the clear advantage of
the inverse t-Riesz disappears although there still seems to be a relationship between
bigger RCs being better captured by the inverse t-Riesz distribution, especially for the
largest RCs. It seems that mean shifting dynamics of the GAS models do a very good
job at .

15



Finally a look at our estimated mixture model weights in figure 4| for e.g. the first
five-dimensional dataset reveals that, when we allow the model to choose the weights
between the inverse t-Riesz and the F-Riesz distribution, it tends to put a higher weight

on the inverse t-Riesz distribution in times of large RCs, as we expected.

5.2 Out-of-Sample Forecasting Ability

I use the 10-dimensional dataset and starting from 2007 re-estimate the GAS models
for the different distributions daily with a moving window of 1250 (roughly 5 years)
trailing observations, make one-day ahead forecasts and evaluate the forecasting ability
with thre different loss functions. For the Riezs-named distributions we do not optimize
over the ordering of the assets, but simply take the optimal ordering of the full-sample
estimations in table @ Note that the forecasted it_i'_l is easy to get by simply plugging
R; and f)t, which is obtained from the estimation, into equation l)

The first loss function is the simple mean squared error. The second one is the log-

score, where Ryy1 is plugged into the time-t forecasted log probability density function,
log pa(Riy1|Xey1,0; Fr).

For the third loss-function we want to minimize portfolio variance, which is an economi-
cally relevant objective as is seen by a quick search through Morningstar listed US equity
funds, which yields a total of 14 volatility related funds, see table For this we take
the interpretation that §t+1 is the predicted RC and we want to minimize the predicted

portfolio variance
pred T
RV, | =w, 1 X1 Wiy

To do so an investor must set optimal portfolio weights

o\l
<2t+1) 1

~ —1 :
17 (zm) 1

* _
Wiyl =

The actually realized portfolio variance

(W:H)T Riy1 Wiy (41)
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is then the loss for ¢t + 112_1-]

We evaluate the predictive ability by constructing model confidence sets as proposed in
Hansen, Lunde, and Nason [2011. These sets contain the model with the best predictive
ability for a given confidence level.

Table shows the results of this forecasting exercise. First of all it is striking to
see that the inverse t-Riesz distribution has the lowest loss for all loss-function-dataset
combinations except one. Furthermore, it is contained in the 90% model confidence set in
all loss-function-dataset combinations except two. Finally, if we restrict the forecasting
sample to the volatile market window from 01 January 2007 to 31 December 2010, then
table reveals that it is clearly preferred in terms of forecasting performance to the

benchmark model, the F-Riesz distribution.

6 Conclusion

In this paper all probability distributions so far applied to time series of RCs in the
literature are compared and it is shown how they are related to each other. A novel family
of probability distribution, which has an intuitive property called “tail homogeneity”, is
derived and added to the comparison. Generalized autoregressive score (GAS) models
are derived for all distributions. The empirical application shows a similar fit of some
of the novel distributions to the so-far best competitor distribution, the F-Riesz. The
finding of Blasques et al. |2021| that there is “strong heterogeneity of tail behavior of
realized covariance matrices” cannot be confirmed, as the “tail-homogeneous” inverse t-
Riesz distribution has similar fit and forecasting performance to the F-Riesz distribution.
In a portfolio risk minimizing the novel distribution family performs significantly better

than all other distributions.
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Table 1: Probability density functions of all considered distributions. Recall that Z =
C'RC~ T, where C is the lower Cholesky factor of . The degrees of freedom
parameters: n = (ny,na,...,n,) and v = (v1,va,...,1,) " are real parameter
vectors, n and v are scalars. A bar on top of a vector denotes the average
of its entries, e.g. n = p~* b, ni, left arrow on top of a vector denotes the
original vector in reverse order, e.g. i = (np,Np—1,---,n1)". The well known
gamma function I'(-), the multivariate gamma function I',(-) and I'y(-) with
scalar argument are defined in equations (5.2.1), (35.3.5) and (35.3.6) of the
NIST Digital Library of Mathematical Functions, respectively. The determi-
nant with subscript, e.g. |Z]%, denotes the power weighted determinant as in
Blasques et al. 2021} also know as highest weight vector or generalized power
function. For the definition of m*®', m™ and m”*" see equations , and
, respectively. See the appendix for further information and derivations.
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Figure 1: Stochastic representations and the relationships between the considered probability distributions. Every arrow
indicates a generalization, where the distribution further down is a nested by the one further up. The dashed
arrows indicate a relation, where the distribution at the end of the arrow is related to but not nested by the other
one. Note that the stochastic representations are for the distributions with expectation equal to the identity matrix.
They have to be pre-multiplied by C and post-multiplied by CT in order to arrive at the general standardized

distributions as in table
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Table 2: Scores w.r.t. X of all considered distributions. The subscripts are omitted for

readability. G denotes the duplication matrix. Cg denotes the lower Cholesky
factor of B = Cdg(m™)~!C" + R. Cg, denotes the lower Cholesky factor
of By = (C~Tdg(m™)~!C~! + R_l)fl. The tril(X) function returns a lower
triangluar matrix by setting all elements of X above the main diagonal equal to
zero, the ®(X) function is defined in It returns a lower triangluar matrix
by setting all elements of X above the main diagonal equal to zero and halving
the entries on the main diagonal. See the appendix for the derivations.
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Wishart 2GT(xTex )G

Inverse Wishart ~ —4GT (Z7'@ X ') G

t-Wishart nGT (Vi:§12 (Z1 @) - s vec (B71) vec (2—1)T) G

Inverse t-Wishart  —5GT (2422 (271 @B - (L vee (B vee (7)) G

F en) <(1/ +(n+v)(es + 1) (B @E7Y) + (n + v)eavee (B71) vec (z—l)T) G

Table 3: Fisher information matrices of all considered Wishart-based distributions. The

subscripts ¢ and ¢ are omitted for readability. G denotes the duplication matrix.
For the derivations and the definitions of ¢3 and ¢4 see equations (H68) and (567 -,
respectively. The Fisher information matrices of the (inverse) Rlesz and t-Riesz
distributions are derived in the appendix as well.
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# Assets: 5 5 10 10 25 25

—2HL ST log|Re = -23825 + -21055 + 32476 + 42134 + 29571 +

Wishart -78548 -77402  -229019  -189898  -634572
Riesz -66259 -63468 -169237 -143186 -325345
iWishart -128888 -99982

iRiesz

tWishart -38774 -35641 -64340 -56199

tRiesz -30551 -29581 -36222 -32247 178615
itWishart -36261 -32226 -41612 -21886 309817
itRiesz -29247 -28467 -20331 -4094 375739
F

FRiesz -34377 -30180 -43343 -24965 287955
iFRiesz -39018 -34944 -60301 -39011 231719

Table 4: Log-likelihood values for the estimated static distributions and different
datasets. The background shades are to be read column-wise, with the low-
est log-likelihood value being shaded black and the highest one being shaded
white, with a linear scaling in between.
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40 50

Iogdet(RCt)

Figure 2: Difference in log likelihood contributions between the fitted static inverse t-
Riesz and F-Riesz distributions, depending on the log-determinant of the re-
alized covariance matrices.
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# Assets: 5 5 10 10 25 25

(p+1)X o R = 47651 + 42109 + -64952 4+ -84267 + -59142 +

Wishart SYPRY 154940 458512 380271

Riesz 32687 127106 339025 286922

iWishart 258251 200440

iRiesz

tWishart 71426 129163 112881

tRiesz 61280 59340 73004 65053  -354255
itWishart 72666 64596 83708 44256 -616862
itRiesz 58673 57112 41222 8748 -748501
F

FRiesz 68965 60573 87322 50565 -572730
iFRiesz 78248 70101 121237 78658  -460259

Table 5: BIC values for the estimated static distributions and different datasets. The
background shades are to be read column-wise, with the lowest BIC value being
shaded white and the highest one being shaded black, with a linear scaling in
between.

300 -

= = N N
a1 o a o a1
o o o o o

T T T

logpdfpies, (RC)) - logpdfpgie o, (RC)

o

-50

40 50

Iogdet(RCt)

Figure 3: Difference in log likelihood contributions between the fitted GAS models
using the inverse t-Riesz and F-Riesz distributions, depending on the log-
determinant of the realized covariance matrices.
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# Assets: 5 5 10 10 25 25

—pELS T og iRy = -23825 4+ -21055 + 32476 + 42134 + 29571 +

Wishart -29555 -25819 -34377 -38397

Riesz -24713 -22815 -18507 -20851

iWishart -10729 -10588 34724 30197 608212
iRiesz -8850 -9246 39021 35790 632471
tWishart 4047 -2067 273354
tRiesz -13401 -12252 352243
itWishart -6691 -6162 49386 44115 659591
itRiesz -5181 -4954 53406 48993 680302
F -10409 -10418 34904 30626 611107
FRiesz -4778 -4516 52417 50165 683462
iFRiesz -6596 -6527 46209 45236 663824

Table 6: Log-likelihood values for the estimated GAS models and different datasets. The
background shades are to be read column-wise, with the lowest log-likelihood
value being shaded black and the highest one being shaded white, with a linear
scaling in between. NalN values are caused by prohibitively long computing
times.
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# Assets:

10

10 25

25

(p+1) X7, log |Re| =

47651 + 42109 +

-64952 +

-84267 +

-59142 +

Wishart
Riesz
iWishart
iRiesz
tWishart
tRiesz
itWishart
itRiesz

F

FRiesz
iFRiesz

59306 51832
45892
21370

18755

69288
37701
-68914
-T7355

49689
21654
17963

13594 12536 -98221
10641 10188  -106109
21029 21048 -69257

9904 9379  -103977
13539 13401 -91562

77329
42390
-59861
-70893

-278990
-487121
-1213602
-1261711
-543867

-701239
-87678 -1316341
-97283  -1357356
-60700 -1219373
-99473  -1363270
-89615 -1323993

Table 7: BIC values for the estimated GAS models and different datasets.
ground shades are to be read column-wise, with the lowest BIC value being
shaded white and the highest one being shaded black, with a linear scaling in
between. NaN values are caused by prohibitively long computing times.

# Assets: 5 5 10 10 25 25
1072x

Wishart 1.446 1.105 0.600 0.609 0.106
Riesz 0.740 0.938 0.346 0.315 0.079
iWishart  0.443 0.611 0.336 0.342 0.127
iRiesz 0.472 0.541 0.293 0.293 0.113
tWishart 0.699 0.719 0.375 0.426 0.115
tRiesz 0.549 0.607 0.264 0.270 0.085
itWishart 0.594 0.639 0.351 0.371 0.138
itRiesz 0.517 0.557 0.314 0.320 0.122
F 0.644 0.715 0.365 0.393 0.146
FRiesz 0.367 0.330 0.211 0.232 0.103
iFRiesz 0.501 0.459 0.272 0.261 0.113

Table 8: Score parameter 1.
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# Assets: 5 5 10 10 25 25
1072x
Wishart  0.554 0.690 0.332 0.279 0.073
Riesz 0.753 0.810 0.438 0.325 0.089
iWishart  0.534 0.518 0.250 0.229 0.068
iRiesz 0.644 0.577 0.275 0.253 0.077
tWishart 5.090 4.796 4.516 4.693 4.479
tRiesz 4.977 4.956 4.657 4.411 4.321
itWishart 2.942 3.357 2.727 2.427 1.606
itRiesz 3.049 3.579 2919 2.537 1.669
F 0.605 0.604 0.262 0.249 0.076
FRiesz 1.080 1.175 0.472 0.449 0.127
iFRiesz 1.012 1.101 0414 0410 0.112
Table 9: Score parameter 2.
# Assets: 5 5 10 10 25 25
Wishart  0.9832 0.9880 0.9926 0.9848 0.9969
Riesz 0.9926 0.9882 0.9957 0.9924 0.9980
iWishart  0.9969 0.9945 0.9968 0.9939 0.9974
iRiesz 0.9969 0.9956 0.9974 0.9952 0.9980
tWishart  0.9946 0.9940 0.9966 0.9915 0.9972
tRiesz 0.9967 0.9950 0.9978 0.9953 0.9982
itWishart 0.9956 0.9942 0.9968 0.9932 0.9972
itRiesz 0.9969 0.9958 0.9975 0.9948 0.9980
F 0.9955 0.9938 0.9966 0.9931 0.9971
FRiesz 0.9982 0.9984 0.9989 0.9968 0.9987
iFRiesz 0.9973 0.9977 0.9986 0.9966 0.9984

Table 10: Garch Parameter.
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Figure 4: Log-determinants over time of the first five-dimensional dataset and weights
over time of the fitted Mixture GAS model using the inverse t-Riesz and F-
Riesz distributions.

Mean Squared Error - Log-Score GMVP Variances

# Assetss 5 5 10 10 5 5 10 10 5 5 10 10
Wishart 92 85 92 -11.8

Riesz 80 7.9 -124 -146 0.903 0.598  0.627
iWishart 53 53 -236 -246 0.950 1.154 0597 0.623
iRiesz 48 51 -245 -256 0907 1.158 0.607 0.630
F 52 -23.7 -24.7 0901 1.143 0.595 0.619
FRiesz -27.5 =288 0915 1.167 0.607 0.637
iFRiesz -26.2  -28.0 0.900 1.150 0.611 0.636
tWishart -18.7  -19.8 [ 0.893 1125 0.585| 0.615
tRiesz -20.6 -21.9 0.900 1.135 0.612 0.626
itWishart 271 -27.9 0.591  0.616
itRiesz 0.593  0.623

Table 11: Forecasting performance for the entire forecasting window using one-step
ahead forecasts, where each model is re-estimated every 10 trading days. 90%
model confidence sets in gray.
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- Log-Score

# Assets: 5 5 10 10
Wishart ~ 18.0 18.0 30.7 15.6
Riesz 173 176 266 12.7
iWishart 155 153 154 2.7
iRiesz 147 151 147 1.6
F 150 153 153 25
FRiesz 138 (139 112 -1.2
iFRiesz 141 144 126 -0.3
tWishart 153 154 19.0 6.7
tRiesz 149 152 177 5.0
itWishart 138 141 111 -1.1

Table 12: Log-score forecasting performance from 01 January 2007 until 31 December
2010 using one-step ahead forecasts, where each model is reestimated every 10

trading days. 90% model confidence sets in gray.

Mean Squared Error - Log-Score GMVP Variances
# Assets: 5 5 10 10 5 5 10 10 5 5 10 10
Wishart 119 11.2 -0.1 -4.20.923 0.643
Riesz 10.1 10.6 -3.7 -8.8 0.926 1.175 0.619 0.646
iWishart 71 74 -16.7 -180 0966 1.171 0.612 0.641
iRiesz 66 7.1 -17.8 -19.5 0925 1.176 0.616 0.647
F 70 74 -168 -18.2 0.920
FRiesz 52 [ 53 -235 -251 0930 1.184 0.619 0.651
iFRiesz 57 59 -21.6 -24.0 1.170  0.614  0.648
tWishart 69 70 -155 -16.7
tRiesz 6.3 6.5 -18.2 -19.8 0.632 0.642
itWishart 5.5 -23.7

itRiesz

Table 13: Forecasting performance for the entire forecasting window, where each model
is reestimated every 10 trading days, using the resulting one- to ten-step ahead

forecasts. 90% model confidence sets in gray.
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- Log-Score

# Assets: 5 5 10 10
Wishart 20.1 203 40.0 21.2
Riesz 19.1  20.2 375 17.2
iWishart 175 174 224 7.8
iRiesz 16.6 17.2 21.5 6.5
F 16.9 173 22.2 7.6
FRiesz 15.2 | 162 157 2.2

iFRiesz 15.7 158 176 34
tWishart 16.1 163 214 83

tRiesz 156 16.0 19.9 6.4
itWishart 14.9 15.2 14.0 1.1
itRiesz 14.5 15.1 132 0.1

Table 14: Log-score forecasting performance from 01 January 2007 until 31 December
2010, where each model is reestimated every 10 trading days, using the result-
ing one- to ten-step ahead forecasts. 90% model confidence sets in gray.

Name Symbol
Voya US High Dividend Low Volatility VHDIX
Wells Fargo Low Volatility US Eq R6 WLVJX
SEI Tax-Managed Mgd Volatility F (SIMT) TMMAX
SEI US Managed Volatility A (SIIT) SVYAX
SEI US Managed Volatility F (SIMT) SVOAX

Janus Henderson US Managed Volatility 1 JRSIX
LSV US Managed Volatility Institutional LSVMX

MFS Low Volatility Equity R6 MLVTX
Invesco Low Volatility Equity Yield R5 SCIUX

Invesco US Managed Volatility R6 USMVX
Fidelity® SAI US LowVolatility Idx FSUVX
Fidelity® US Low Volatility Equity FULVX
BMO Low Volatility Equity 1 MLVEX

Table 15: Non-exhaustive list of [Morningstar listed US equity funds.
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7 Appendix
7.1 Feedback
Anne Opschoor:

e Clearer Motivation, clearer view of contributions, more advertising. More clear
empirical contribution, maybe more focus on differences between t-named and

FRiesz.
e Maybe Calm/Volatile period split of sample to clearer see t-named advantage.
e Likes weight idea, more focus on it.
Timo Dimitriadis:
e Diagonal GAS structure

e MSE als Loss anschauen. Eigentlich, meint er, mache ich keine Verteilungsvorher-
sagen, sondern nur mean vorhersagen X1, da ware MSE angemessener. Wenn
t-basiert nicht besser ist, kann ich sagen, hey aber wir machen doch bessere
Verteilungsvorhersagen, wenn besser ist, kann ich sagen, hey on top machen wir

auch noch Verteilungsvorhersagen.
HKMetrics participant:

e Compare distribution of largest and smallest eigenvalues in 7data? with the ones

(simulated, if not available) from the different distributions, for some reason.
Christian Conrad:

e [st es so, dass fir grofler werdendes p, die Kovarianzen immer wichtiger werden
fiir die logdeterminant (der Daten)? -; Implikation muss ich mir noch Gedanken

machen.

e Percentage decreases in realized volatility in last table to make more prominent

the improvement.

e MCS anschauen
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7.2 To-Do

e Get this document to be a submittable paper.

e The inverse of a covariance matrix is sometimes called concentration matriz or
precision matriz. It is directly related to the partial correlations. See Section 2 in

Barigozzi, Brownlees and Lugosi (2018).

e For my portfolio application idea, see Moreira and Muir (2017) for volatility man-
aged portfolios article in JoF. Portfolio selection with higher moments (Jondeau
and Rockinger 2006])

e Write s in front of every standardized distribution. For example in the proof for
the inverse FRiesz2 if you dont make it explicitly clear that you are working with

non-standardized distributions it is maybe confusing.
e For the pdf, whenever 2 is in the arguments it is the non-standardized version.

e Show that dg(m)~/?Rdg(m)~/? converges to a constant matrix. Same for cR,
which is easier. Maybe if inverse matrix converges to some matrix it holds that

matrix converges to inverse(some matrix)?
e Rigorously prove convergences in tikz picture.

e Should I name the dof for the inverse (t-)Riesz(Wishart) v to stay consistent with

the stochastic representation notation?
e Should I explicitly name all distributions ”standardized”...?
e Im forecasting Experiment die Zeitvariation der Parameter plotten.
e Zeitvariation in forecasting performance?

e Note to self: The relation e.g. R ~ RI(Q,0) = R~ ~ iRI(Q71,0) for the

Riezs-named only holds for the non-standardized versions.
e standardized, inverse klein schreiben.
e Add Q expression to “The expected value E [R] obtains as ...”

e Name subscripts for pdfs p either everywhere or nowhere.
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e Name it distribution of type ... or type-distribuiotn or distribution roman numeral,

but not all three versions!
e “generalized power function” everywhere
e “p X p” matrix everywhere
e Put all “commented out” stuff into a legacy document.
e In tidying up the code, switch v and n for inverse type I distributions as well.

e Add the |Gribisch and Hartkopf[2022] interpretation of “missing trades” and the

Wishart and t-Wishart interpretations in one spot.

e Thank Anne Opschoor, André Lucas, Timo Dimitriadis, Christian Conrad, Kris
Boudt, Nestor Parolya, Jacques Faraut, Stephan Laurent (SE), Greg (SE), Michael
Rockinger, (Eric Jondeau). Internal Seminar, CFE, HKMetrics Seminar, QFFE

Seminar.

e Look at multi-step ahead forecasts at specific times, plotting them in terms of

logdet, for several intersting distribution comparisons.
e Look at the behavior of Z.
e Same order of distributions in all tables and figures.
e Update fig:StaticFitFRieszvsitRiesz.
e Add the GARCH special cases.
e logdet expectations.

e Make dfs time-varying.

Ideen (Maybe deprecated)

e Unsere 1-min Daten konnen benutzt werden, um eine tatséchliche Umschichtung
des Portfolios zu simulieren, wobei man annehmen kénnte direkt am néachsten Tag

in den ersten 15 min die Umschichtung durchzunehmen.
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You cannot ground this paper in the multivariate semimartingale process, since the-
orem 7?7 below needs equal integrated covariance matrices over the high-frequency
time window. That these are equal is a strong assumption, rejected by the data.
You can of course start at the distributional assumption of r and go from there,
justifying that HF-returns keeps same covmat over the day. But this might also
not convince. So you should focus on the t-wishart and its generalizations and its

better fit and easy handabliity to covariance matrices.

Diaz-Garcia hat vermutet, dass die Riesz Verteilung aus der Summer &uflerer
Produkte von unabhéngigen Zufallsvektoren enstpringt (siehe conclusion in |Diaz-
Garcla [2013), konnte das aber nicht beweisen und hat stattdessen eine andere
kompilizierte Matrix-variate Verteilung gefunden fiir X, sodass XX’ Riesz-verteilt
ist (siehe Diaz-Garcia 2016)).

Open research, show that the presented distributions do not fit some empirical
patterns (fraction negative covariances, stylized fact that mainly pos covs and in
crisis even more pos covs). Don’t do this. Just before publishing this paper start

your research in this direction.

Djalil Chafai schreiben um pd dist zu finden mit mehr Gewicht auf positiven

Kovarianzen.
invert color in fit table
Relevance: What Jondeau said.

V is for GRADIENT! What you have is (total) derivative. https://en.wikipedia.
org/wiki/Gradient#Gradient_and_the_derivative or_differential

Bei den Momenten und so noch die Bedingungen (bspw. v > 1) dabei schreiben.

Der Kronecker Trick GGT(A ® A) = (A ® A)GG™ funktioniert nur fir das
”Kronecker Quadrat“ von A, nicht fiir generelle Matrizen im Kronecker Produkt!

Korrigiere das!

Change C~ " to something like U. Dann 2 = CYC' definieren und iiberall wo

moglich reinschreiben.
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moglicherwersien kommt man doch noch an die Kovarianzstruktur von inverse

Riesz, wenn man die standardisierte fiir die Herleitung nimmt.

Fit-Table: Only do one order, since the fit ranking is the same across orders
and the fit itself doesn’t improve substantially with orders. Maybe do the HAR

specification of Anne.

Forecasting Plot. Same as for Fit-Table. Ranking doesnt change across steps ahead
and it flattens anyways, only report 1-step and maybe 10-step then you have one

more dof for the plots.

You NEED an economic application, why this is important, ideally one which even

prefers your t-based distributions to the F-based ones. Turnover stuff maybe?

Update this document with tables and figures from both Internal seminar and CFE

presentations.

Build a model with mixture distribution between itRiesz and FRiesz, where weight
is determent by det(R¢—1)""°, (3, Ri—14) 0 and the relative amount of positive

correlations.

7.3 Abbreviations

Throughout the paper we exclusively consider real numbers. p is the cross-sectional

dimension, i.e the number of assets, which we index by ¢ = 1,...,p. If not otherwise

specified, matrices are p X p and vectors are p X 1.

R is a symmetric positive definite random matrix or a realization thereof.
3 and Q are symmetric positive (semi-)definite matrices.

C denotes the lower Cholesky factor of ¥ = CCT.

n and v are column vectors.

W, X, Y, Z generic matrices of any dimension.

® denotes the Kronecker product.

® denotes element-wise multiplication.
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7.4 Special Functions

Definition 7.1. Let X be a real p X p matriz and let Xp; denote the square submatriz
created by taking the first i rows and columns of X. Then the generalized power function,

denoted by |X|n is defined as
[ Xn = Xy ™72 Xy [*2772 [ X g [P X (42)

Note: The determinant with subscript notation was introduced by |Blasques et al. |2021
to make immediately visible the close relation to the determinant raised to the power n,
as it is easily seen that for ny = ng = ... = n, = n we have |X|, = |X|*. They name

|X|n power weighted determinant. It is also known as highest weight vector.

Definition 7.2. Let X be a p x p matriz, then the function ®(X) takes the lower-

triangular part of a matriz and halves its diagonal,

Xij fOTi > 7,
@ (X) = 1Xy; fori=j and (43)

0 fori < j.

Lemma 7.1. Let ¥ = TDT' be the unique decomposition into lower triangular square
matriz with ones on the main diagonal, T and diagonal matriz with positive entries on

the diagonal D. Then we can rewrite

p p
1|, = HDZ — H c?i"i, (44)
i=1 i=1

Proof. The equivalence between the two different representation is proofed in[Maaf3{1971)

pp- 69-70. This proof is closely based on it. If
> =TDT' =CC', (45)
then

T T
2y = CyCpy = Ty Dy T (46)
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. So

J
By = [ D
=1
and thus
|2[1]| = Dj; and for 7 > 1 we have |2[j]’/|z[j—1]| = Djj.

Finally

p

P
[0 = 1=l TS/ 1Sy = [ 2 Sy 1275 Sy
=1

=2

Lemma 7.2.

p

=1 1=l

=1

)Cdg(n)cT

v

Proof.

‘Cdg(n)CT

v

Lemma 7.3. For n with n; > i — 1 we have,

1 _
|A|npictr ( —=BA | dA = 2P"/°T, (E) IB~!|n
A>0 2 2 2 2
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and for n; < i — p we have,

1 1 i
—1 - - o
/A>0 [A™ nspiretr ( 2BA> dA = oo Ty < 5 ) Bla . (55)

Proof. The proofs can be found in [Faraut and Koranyi 1994 Chapter VHE Throughout,
according to their table on p. 97, for the cone of symmetric positive definite matrices
we have the dimension n = p(p + 1)/2, the rank r = p and d = 1% Furthermore,
throughout their book they use the Euclidean measure on a Euclidean space, which
translated into our notation is dz = [[?_, a;;2P(P—1)/4 HKj aij = 2p(P=1)/4g A Their use
of the FEuclidean measure leads to a slightly different multivariate gamma function. In

particular from their Theorem VII.1.1.
Tqo(n) = 2?P=V/AD (n), (56)

with I',(n) as in |(35.3.5)| of the NIST Digital Library of Mathematical Functions|
Their Proposition VIL.1.2., with x = A, y = %B and s = & translates to

2
1 n
_- p(p—1)/4 _ op(p—1)/4 = -1,
/A>0|A\n_§_16tr< 2BA>2 dA =2 rp(2)12B B (57)
_ n\ o
= op(r=1/4p (5) oP1/2|B a. (58)

Their last equation on page 129 together with Proposition VII.1.5 (ii) and = = A,

Y= %B and s = 3 translates to

/ |A™ nipeetr (—1BA> 2P D/AgA = or=1/AT, (—) ‘IB
A>0 2 2 2

Lemma 7.4. Let the upper generalized multivariate gamma function be defined as in

Blasques et al. |2021) and denote a vector with its elements in reverse order by a super-

25. Further references are |Diaz-Garcia [2014, [Maafl [1971] p. 76, |Gupta and Nagar 2000, Theorem
1.4.7., which is based on Olkin, I. (1959). A class of integral identities with matrix argument. Duke
Mathematical Journal, 26(2), 207-213. doi:10.1215/s0012-7094-59-02621-3, which in turn is based on
the generalized Ingham formula in Bellman, R. (1956) (doi:10.1215/s0012-7094-56-02356-0).

26. For the notation see their Example 2 on p. 8 and p. 9.
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script left arrow, e.g. h= (Np, Np—1, - - - ,n1)' , then

Proof. ToDO. See [Faraut and Koranyi [1994L O

7.5 Matrix Relations

For matrices W, X, Y and Z with appropriate dimensions we have (Magnus and
Neudecker 2019, p.12, p. 35)

vec (XYZ) = (ZT ® X) vec (Y), (62)
tr (XYZ) = tr (YZX) = tr (ZXY), (63)
tr(X'Y) = ( X) " vec(Y) and (64)

tr (WXYZ) = vec (W) vec (XYZ) = vec (W) (X ® Z) vec (Y), (65)

where for the last equality we used and .

7.5.1 Duplication, Elimination and Commutation Matrices

As a reference see Liitkepohl 2005, A.12.2. G, denotes the duplication matriz defined
by

vec (X) = Gpvech (X)), (66)

where X is an arbitrary symmetric p x p matrix.

For symmetric X the duplication matriz G is unique, however the so called elimination
matriz, which converts vec (X) to vech (X) is not unique (since for every lower-diagonal
element of X we can take a fraction c of the corresponding upper- and a fraction 1 — ¢
of the lower-diagonal element of X). One possible choice is the Moore-Penrose inverse
of Gy,

Gy = (G,6,) “al, (67)
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for which obviously
G vec (X) = G, Gpvech (X) = vech (X). (68)

p

Another possible choice is the canonical elimination matrix F, which sets the aforemen-
tioned fraction ¢ = 0.
For lower-triangular p x p matrix Y Magnus and Neudecker 1980 note (Lemma 3.3

(1)) the unique elimination and duplication matrices are given by
vec (Y) = F;)rvech (Y) (69)
and
vech (Y) = Fpvec (Y). (70)
K, denotes the commutation matriz defined by
vec (ZT) =K,vec(Z), (71)

for arbitrary p x ¢ matrix Z. Note that the exact size and structure of G,, F), and K,
depends on the size of X, but for better readability we choose to omit the size-indicating
subscripts in the rest of this paper.

Magnus and Neudecker 2019| show (Theorem 3.12) that

I+K)=2GG". (72)
Furthermore it holds that
T -1 T T -1 T ! T
GG*=G(G'G) G = <G (¢'G) @ > — (GGY) (73)
and
. T
(GHTG Tvee (X) = <<GTG> GT> G T Gvech (X) = Gvech (X) = vec (X). (74)

For nonsingular matrix X it holds that (see |Lutkepohl 2005, p. 664 or [Magnus and
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Neudecker 2019, Theorem 3.13)

(e"xexe) —af(x'ox ) (@) (75)

Lemma 7.5. For scalar o we have

<GT (z: ® 3 + avec () vec (E)T> G)il (76)
=G™" (2_1 x4+ 1 fapvec (2_1) vec (2_1)T> GT. (77)

Proof.

<F (2 ® X + avec (X) vec (Z])T))71 = <G+GF (2 ® X + avec (X) vec (Z)T) G)

(78)
T -1
- (G+GF (2 © 3 + avec () vec () ) G)
(79)
-1
|[Magnus and Neudecker [1980 Lemma 4.4 (i): = (G+ (2 ® 3+ avec (E) vec (Z)T) G)
(80)

= (G,—r (E ® ¥ + avec (X) vec (Z)T) G)_l G'G

(81)

[Magnus and Neudecker [1980| Lemma 4.7 (iv): = F (2_1 Q¥+ 1 —|—aapvec (=71) vee (2_1)T> G
(82)

[Magnus and Neudecker [1980| Lemma 4.4 (i): = G T <E_1 Q3+ T ap " (=71 vee (2_1)T> G.
(83)
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Then
= (84)
& (85)

<GT (E ® X + avec (X) vec (E)T> G)_l (86)

=G+ (21 @2+ vec (£71) vec (zl)T) Gt. (87

14+ ap

7.6 Matrix Derivatives

For properties of the differential “d” see Magnus and Neudecker 2019/ pp. 163-169 and
pp- 434-436. Some rules are

dvec (X) = vec (dX) (88)
dvec (X) = Gvech (dX) (89)
dvech (X) = GTvec (dX) (90)
dX" = (ax)’ (91)

dtr (X) = tr (dX) (92)
dlog |X| = tr (X 'dX) (93)
dX ! = —X~laxx~! (94)

d (XXT) = dXXT 4+ Xdx" (95)

To convert differentials to derivatives see Tables 9.2 and 10.1 in[Magnus and Neudecker
2019.

There is a difference between gradient and derivative of a scalar valued function that
takes multiple input variables. They are transposes of each other, where the gradient is
a column vector. See p. 87 Magnus and Neudecker 1999,

For the definition of a matrix derivative we follow [Magnus[2010l For an m x p matrix

function F = (fs) of an n x ¢ matrix of varibles X = (z;;), they define the a-derivative
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as the mp X ng matrix

dvec (F (X))
dvec (X)T (96)
Note that
Ovech (e)  OGTvec(e) _  Ovec(e)
oe Oe =G* Oe (97)
and
Ovec (o) _ 0Gvech (o) _ Gavech (o) (98)

Oe Oe Oe

Lemma 7.6. (Magnus and Neudecker 1980, Lemma 3.8). Let X be a p X p matrixz of

variables. Then

dvec (X) FT, for lower triangular X,
e T (99)
dvech (X) G, for symmetric X,
Proof. We include a proof for completeness.
dGvech (X) = Gdvech (X), for lower triangular X,
vec (dX) = dvec (X) =
dF Tvech (X) = F'dvech (X), for symmetric X,
(100)

using (66) and (69). O]

Lemma 7.7. (Harville |1997, p. 371). Let X be a non-singular symmetric matriz of

variables. Then

Ovech (X* 1)

=-GT(X'eXx!)aG. 101
dvech (X)" ( ) (101)
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Proof. We include a proof for completeness.

dvech (X7!) = dGTvec (X71) (102)
= —Ghvec (X 1dXX ) (103)
=-G* (X' ®@X™) dvec (X) (104)
= -G (X' ®X!) Gdvech (X), (105)

104
105

using , and . O

7.6.1 Derivative - Trace

Lemma 7.8. Let X be a non-singular symmetric p X p matriz of variables, C its lower

Cholesky factor and X and Y be p X p matriz of constants. Then

rEX) _ex)Ta, (106)
Ovech (%)
otr (271X
LT) — —vec(R'xm ' G, (107)
Ovech (%)
otr (C~TXC™ly T
l . ) — avec (C*TXC*IYC*T) F, (108)
Ovech (C)
and
2
0%tr (£X) _—o, (109)
Ovech (X) dvech (%)
Proof. We have
dtr (2X) = tr (XdS2) (110)
= vee (X) T vec (dQ) (111)
= vec (X)" Gdvech (), (112)
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using (64)) and (66)),

dtr (£7'X) = —tr (Z71dEEIX) (113)
- —tr (TIXT®) (114)
= —vec (E_IXE_ ) vec (dX) (115)
— —vee (27X ) " Gdvech (), (116)

using , and ,
d*tr (£X) = dtr (XdX) = 0. (117)
Furthermore,

dir (C7TXCT'Y) = —ur ((CTlacc™) T XCT Y + €¢TTXCTCCTYY) (118

— —tr <dCTC_TXC_1YC‘T + c—lYC—TXC—ldC) (119)

— otr (c—lYC—TXC—ldC) (120)
1 T 1 T

= —2vec (C_ YC  XC™ ) dvec (C) (121)
T

= —2vec (C*lYC*TXC*l) F ' dvech (C), (122)

O

7.6.2 Derivative - CYC’

Lemma 7.9. Let Y be a diagonal matriz. Then

ovec (CYCT)

-1
=GGT(CYgDF' (Gt (C"Tex ) F') Gf(Zz'gx G
dvech (2) " ( ) ( ( ) ) ( )

GG (CY®IDF' <G+ (CoI) FT)f1 : (123)

ovec (CYCT)

- —qa' (CY s DFT (G* (CoDFT) @' (Bome  (124)
Ovech (Eil)T

= -GGt (CY®IF' (G+ (C—T ® 2‘1) FT) o (125)
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ovec (C_TYC_l)
Ovech (2_1) T

— GGt (C—T ® c—TYC—l) F' (G+ (CoI) FT)_1 G (ZeX)G
(126)
— GGt (C—T ® C‘TYC‘1> F' (G+ (C—T ® 2—1) FT)il
(127)

and

ovec (C*TYCA)

~ -GGt (CTTeCcTYC!)F (6T (CTTen ) F) Tet(zles e

dvech (2)"
(128)
—1
= -GG* (c—T ® C_TYC‘l) F' (G+ (CeI) FT) . (129)
7
Proof. We have
dvec (CYCT> = vec (dCYCT) + vec (CYdCT> (130)
= (I+K,,) vec (dCYCT) (131)
= (I+K,) (CY ®I)vec(dC) (132)
=2GGT (CY ®I)F "dvech (C), (133)
dvec (C—TYC—l) = vec (dC—TYC—l) + vee (C_TYdC_1> (134)
= —Kyvee (C7TYCT1ACC™) — vee (CTTYCMaCC™) (135)
= — (I+K,,) vec (C—TYC—ldcc—l) (136)
=~ (I+K,) (C’T ® C*TYC*) vec (dC) (137)
— _2GG* (C_T ® C—TYc—l) F ' dvech (C), (138)

27. Note that in cases where two expressions are given those have been numerically checked to be the
same. The longer versions make immediately obvious the nesting of the case where Y = cI. |Magnus
and Neudecker |[1980| might offer tools for algebraic derivation of the equalities.
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where we used , and , such that

ovec (CYCT)

— =2GGT (CY®D)F'
Ovech (C)

and

ovec (C*TYCA)
dvech (C)"

— _2GG*+ (C—T ® C—TYc—l) F.

Furthermore, according to Lemma 1 in |Lutkepohl [1989| we have

Ovech (C) 1 \ !
— = = (GT(C®DF ,
dvech ()" 2 ( ( ) )

for which we include the following proof for completeness,

dvech () = G*dvec (CCT>
= GTvec (dCCT> + GTvec (CdCT)
= G" (1+K,,) vec (4CCT)
= G*GGFvec (dCCT)
=2GT (C®I)vec(dC)
=2GT (C®I)F dvech (C).

Finally,

dvech (') = Gtdvee (C7TC7)
— ~G*vec ([CcTldcCc™] €T) - Gtvee (CTCTlacC ™)
= —G* (I+Ky,) vee (C"TClacC™)
~ ~G*GGTvec (CTTCTldCCT)
— oG+ (C’T ® C*TC*) vec (dC)

— oG+ (C—T ® 2—1) F ' dvech (C).
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such that

aiiﬁcécff = (e (cTex)FT)

Then the lemma follows by applying the chain rule,
Ovec (CYCT) _ Ovec (CYCT) dvech (C) 0Ovech (2_1)
Ovech (E)—r Ovech (C)—r Ovech (2—1)T Ovech (2)—r

_ Ovec (CYCT) dvech (C)
dvech (C)" dvech ()"’

dvec (CYCT) _ Ovec (CYCT) dvech(C)  dvech (X)
Ovech (23_1)T ~ 9vech (C)" dvech (2)" gvech (E_I)T
_ Ovec (CYCT)  dvech (C)
"~ Ovech (C)" dvech (E_I)T

)

dvec (CTTYC™)  dvec (C"TYC™) Ovech (C)  dvech (%)

dvech (2_1)T dvech (C)T dvech (2)" dvech (Z)_l)T
_ Ovec (CTTYC™!)  9vech (C)
Ovech (C)T Ovech (2—1)7’

dvec (C_TYC_l) _ Ovec (C_TYC_l) dvech (C) Ovech (271)
ovech (£)"  Ovech(C)'  dvech (1) dvech (X)'
~_ Ovec (CTYC™!) dvech (C)

a dvech (C)"  dvech ()"

7.6.3 Derivative - Lower Power Weighted Determinant
Lemma 7.10.

dlog |X|,

.
—vec (C "dg(n)C~!) G
dvech ()" ¥ ( g (n) )

o1

(154)

(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)



and

dlog |X|,,
dvech (X) vech (2) "

-1
- -G (cTecTagmc ) FT (6T (¢ ez FT)
xG' (= 'ex )G (164)
-1
—_Gg7 (C—T ® C—ng(n)c—l) F' (G+ (CoT) FT) (165)
Proof. Decompose ¥ = TDT', where T is a lower triangular matrix with diagonal

elements being 1 and D is a diagonal matrix with positive diagonal elements, such that

C = TD?= is the lower Cholesky factor. Note that

P . g =2
oy r ) gblog (Dii) _ D2 — D 3dg(n) D3, (166)
p
- DPP-
such that
O3 Y nilog (Dy) _1 i\ T
= =vec (D 2dg(n)D™ 2 167
)T (D~%dg (n) D7) (167)
and
dvec () = dvec (TDTT) = (T ® T) dvec (D), (168)
such that
aVL(D)T —(TeT) . (169)
Ovec (X)
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Then

dlog |X|,, 0" | nilog (Dy;) dvec(D) Ovec(X)
T~ T T (170)

Ovech (%) dvec (D) dvee ()" dvech (X) "
— vec <D*%dg(n)D*2) (TeT)'G (171)

T T
= vec <D 3dg (n —%) (T—T®T—T) G (172)

T
= vec (T TD~3dg (n) —%T—l) G (173)
T

zvec< ~Tdg(n 1) G, (174)

where we used .
Now application of Lemma (7.9)) and using Theorem 3.13 (c¢) of Magnus and Neudecker
2019/ on

Jlog|X|, _aT dvec (C~Tdg(n)C™1) (175)
dvech () vech (£)" dvech (2) "
gives
810g ‘2’n — = _GT (CfT ® Cdeg(n)Cfl) FT
Ovech (X) vech (%)

x (Gt{c T )FT en > lex G,
(& ( LI )
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with

-1

Gr(cTex!)F') GH(='exz )G

&
|

Nelfeles (z'e=)G

4|

IFT

_|
&
M

G (C

Gg'(c T

®
M
=

4‘

4
N 7N N N

Gg'(c T

&®

)
)
)
)

=) FT) (¢t (zex) (G*)T>_1

)
)

Bl Tz leza
)

-1

GH(Z®X)(GGY) (C— ®2_)FT)

G'GG' (oY) (c 3 >FT>_1

Gt(Zex) (C 3 )FT> -

(
(
(
(
(¢*mez) (@) 6 (cT oz )FT>71
(
(
(
(

1
Gt (C®I) FT) .

O
Lemma 7.11. Let Q@ = Cdg(n)"'C". Then

N T 1
(aer) s ™
_ (_G+ (c— EXoulh'alont ) F' (G+ (CeI) FT) _1>T (177)
% GT (Cqdgn) @ I)F' (G+ (05T ® 9*1) FT>_1 (178)
X (—G+ (C*T ® C’TY*10*1> F' (G+ (CoT) FT)_l) (179)
_ <_G+ (c—T ® C—TY—10—1> F' (G+ (CaI) FT) _1>T (180)
x GT (c dgn)? @ I) F' (G+ (C;f ® n*l) FT) o (181)
X <—G+ (C*T ® C*TY’10’1> F' (G+ (CoT) FT) _1) (182)
(183)

Another important related relation rewriting the derivative of the Cholesky factor
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w.r.t. its “square matrix” (see equation (141))) derived in Murray 2016|/based on|(https://mathoverflow.net/t

pav) is given in the following Lemma.

Lemma 7.12.
~1

dvech (CCT) Liitkepohl[ 19891 <G+ Cel FT> -1 (184)

dvech (C)" 2
WP 1o C)Z(C e CY) G (185)

comment on mo]- — —

o ;F(I®0) (GF)"(GF) (C'eCc™))G  (186)

no TOVE € 1
toroved y %F (I C)(GF)T (C'aC™)G, (187)
where Z = 3(GF)T(GF) (see comments in mathoverflow post) is a diagonal matriz

defined such that for any square matriz A, Zvec(A) = vec(®(A)), where P(A) =
tril (A — %I ® A) returns A with its upper triangular part set to 0’s and its diagonals
halved.

The next important one is

Lemma 7.13.

F ' Fvec (A) = vec (tril (A)) and (188)

1
5(GF)" (GF)vec (A) = vec (® (A)), (189)
Proof. The first one is obvious, since F eliminates those elements from vec(A) which are
on A’s upper triangular part and then F' we know from equation 1@) is the matrix
which maps vecha to vec.

The second one we know from the aforementioned comment on mathoverflow. For

symmetric A it obviously reduces to 3(GF)"vec (A). O

Finally this helps us with rewriting the scores in a format that is quick to evaluate,

since it avoids Kronecker product products or inversions. To see this, consider

Lemma 7.14. Let X be a matriz, Y a diagonal matriz, C a lower triangular, G, GT

and F the duplication, its Moore-Penrose inverse and the canonical elimination matrix,
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as defined above. Then

vec (X)

Proof.

vec (X)

Note that

Ovech (CYCT)
dvech (CCT)

= 2 vec (C_T<I> (CTtrﬂ(XC)Y) (3—1)T G.

Ovech (CYCT)

dvech (CCT)

—1
L2 vee )T GGT (CY D FT (G+ (C®I) FT>

IS

vee (%) (CY @ DFT (G* (ConET)

= vec (XCY) FT (G+ (C®I) FT) o

vec(XCY) ' F'F(I®C)(GF)'(GF) (C'eCc™)G
88)

(=

vee (tril(XC)Y) " (I® C) (GF)"(GF) (C'@C™1) G
T

— vec (cTtrﬂ(XC)Y) (GF)T(GF) (C'®C)G

(189))

= 2vec (@ ((:Ttrﬂ(xcw))T (c'ec)a

= 2vec (C—ch (CTtrﬂ(XC)Y) c—1>T G.

c o (CTtril(C_ng(n))) cl=cTo (Cng(c—T)dg(n)> c!

—C Tdg (CT) dg(C~T)dg(n)C?

= C Tdg(n)Cc™L.

7.7 Distributions

(190)

(191)

(192)
(193)
(194)
(195)
(196)
(197)
(198)

(199)

(200)
(201)

(202)

In the distribution-specific subsections below we omit subscripts 4 for indication of the

respective distribution. For all distributions, R denotes the symmetric positive definite
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random matrix and
¥ =CC' :=E[R] (203)

denotes the respective expected value, where C denotes the lower Cholesky factor of X.
As described in section 2.1 EXPLAIN RESTRICTIONS ON DOFS AND DISTRIBU-
TTIONS SPECIFIC DEFINITION OF OMEGA HERE. For the non-inverse Riesz type
I named distributions and for the inverse Riesz type /1 named distributions we have to
pre- and post multiply the random elements of the stochastic representations with the
lower Cholesky factor of 3, whereas for the non-inverse Riesz type I1 named and for
the inverse Riesz type I named distributions one has to use the upper Cholesky factor.
To stay consistent and since we want to work only with one type of Cholesky decom-
position, we choose type I distibutions for the non-inverted Riesz named and type I1
distributions for the inverted ones.

For application in the GAS framework it is instructive to standardize all distributions
(rewrite the pdfs in terms of ¥ rather than their usual parameter matrix ) and de-
rive the scores, Fisher information matrices and covariance matrices of the standardized
distributions.

In the following we note the stochastic representation, pdf and expected value of the
non-standardized distributions, then derive their standardized pdfs, covariance matri-
ces, scores and fisher information matrices. All distributions we consider in this paper
are matrix-variate distributions which have exactly one real symmetric positive definite
parameter matrix (which we always denote by ©) and one or more real scalar degree
of freedom parameter (stacked in the vector @) and whos expected value X is also a

symmetric positive definite matrix. We denote the score with respect to 3 as

-
Vv — 8107g£T 7 (204)
Ovech (%)

the Fisher information matrix with respect to 3 as

.
I:E[ dlog L < 8log£)>

Ovech (X) \ Ovech (¥ ) (205)

_ =z 0?log L
dvech () dvech ()
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and our two versions of the standardized score as
S = ivech (Z7'V) (206)

and

S = ivech (Cov (vech(R)) V). (207)

Theorem 7.1. Let p! denote a type-I distribution and p'! denote the corresponding a

type-11 distribution. Then

P (2.0)=p"(02.9) (208)
and

P (2,0)=p""(5,9), (200)
where,

if0=n, then 8 = %,
if0=uv, then 8 = and
if@=m", v, then b = 2R

Theorem 7.2. Let pj denote a standardized type-I distribution and p7; denote the

corresponding standardized type-Ildistribution. Then
%
p(,0)=p"(%,9), (210)

with 8 = (1, [7)).
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e

AN Ff((l )P@Zw)
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Jae
‘ % . eve
.
roof. ]

Theorem 7.3 (Expectation of BB'). Let (By;)1<j<i<p be independent with By; ~
X%i—i'i‘l’ ni >1i—1, and B;; ~ N(0,1), i.e.

A /X7211—1+1 0 .. 0
N(0,1 0 :
B = (, ) _ (211)
: N(0,1) - 0
/.2
L N(07 1) ce N<07 1) anprrl_
Then
E|BB| = dg(n), (212)
with n = (nq,ne, ... ,np)T.
Proof. We have
P P
(BBT> =) Bq (BT>k, => BuBj. (213)
Y k=1 T k=1
For the off-diagonal elements, i.e. i # j, we have
P
E [(BB ) ] ZE Bi.Bji] ZE [Bix] E [Bj;] =0, (214)
k=1
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where we have used independence of the elements in B and the fact that at least one of
the elements in each summand above is a mean zero normal random variable. For the
diagonal elements, i.e. i = j, we have

i

p
(BBT) =>"Bi=) B (215)
k=1 k=1

which is the sum of a X%i—i +1 and (i — 1) independent A(0,1)? random variables, which

implies that

%

BY, ~ X, (216)
k=1
with expectation n;. Thus
E [(BBT) } = . (217)
O

Theorem 7.4 (Expectation of BB'"). Let (Byj)1<i<j<p be independent with By; ~
xgi_pﬂ., v; >p—1, and Bij ~ N(0,1), i.e.

W NO L NO
5 0 N(0,1 :
B= 01 : (218)
: 0 - N(0,1)
Then
__ .\ 1
E [(BBT) ] = dg (m) (219)
where the entries of the vector m = (my, ... ,mp)T are given by
1 .
) ori=1
mi=q " ! (220)

9 .
m (1 + Z;:l m]> f07“ 7> 1.
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Proof. ToDo O

7.7.1 Riesz

Theorem 7.5. Let
R = Cdg(n)" /BB dg(n)"/2CT, (221)

then R s said to follow a standardized Riesz distribution of type Idenoted by R ~
RI(XZ,n). The probability density function of R is

P ni/2
: . 1 p+1 1
¥, n) = L=l % |Znetr (- Z). 222
iz = o i o (G wz). e
The expected value E [R] obtains as
ER] =X, (223)

the score w.r.t. 3 is
V = G vec (C*ch (CTml (C*ng(n)CflRC*T —C Tdg (n))) C*l) (224)
and the Fisher Information Matriz w.r.t. 3 is given by
7= %GTG (F(cT ® I)G>_1 F (c—l ® C_ng(n)C_l) G. (225)

Proof. For the probability density function of Cdg(n)~'/?BB ' dg(n)~'/2CT see Blasques
et al. 2021, theorem 4, with X pjasques = Cdg(n)1CT, i.e. Cplasques = Cdg(n)*l/2

28. See also [Kessentini, Tounsi, and Zine [2020
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Using Lemma ([7.1)) of this paper and Lemma 3 (v) of Blasques et al.|[2021| we have

_ 1 et [P -1
(226)
ez 2
_Ie? R|npes [S] nctr (—~dg (n)C'RCT (227)
2pni/2 Pp (n/2) 2 2 2
P n;/2
i1 T 1 _pfl 1
- R Z|netr [ —=d Z|. 22
Sty R 2l e (e ) 2) (229)

For the expected value simply apply thereom

E |Cdg(n)~"/?BB" dg(n)/2CT| = Cdg(n)""/?E |[BB" | dgn)/2CT  (229)

= Cdg(n)~Y2dg(n)dg(n)"Y2CT = =.  (230)

Now, define for better readability 2 = Xpj4sques- For the score w.r.t. X start from
equation ([226)), such that

logp(R|3,n) logp(R|X,n) dvech (£2)

231
dvech (2) " dvech () dvech ()" (231)
_ (01oglQ 2 19t (Q7'R) ) Ovech () (232)
~ \ Ovech Q)" 2 dvech(Q)" ) dvech (X)"
1 T h (Q
(7.8).(7-10) = - vec (—C;Jdg (n) Cg! + Q—an—l) GaVL()T (233)
2 Ovech (%)
.
(T99) = vec (C—T@ (CTtril (9_1R9_1C — Cg"dg (n) c;,lc) dg(n)—l) c—l) G.
(234)
Now, using the definition of  and Cgq = Cdg(n)~/? this reduces to
-
vec (C—ch <CTtril (Q—an—lc — Cgdg (n) c;;c) dg(n)_l) c—l) G (235)

= vec (C*T@ (CTtril (C’ng(n)C’lRC’ng(n) —CcTdg (n)2> dg(n)*l) C*1>T G

(236)

= vec (C*ch (CTtril (C*ng(n)(flR(fT ~Cc Tdg (n))) C*l)T G. (237)
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For the Fisher information matrix with respect to 3 we first derive the Fisher information

matrix with respect to 2. Using Lemma 77,

EN 2 -1
dvech (1) 9% logp(R|X, n) dvech (1)
Ig=—|(———v| E - L (238)
Ovech (€2) dvech (271) dvech (1) ' | dvech ()
where the expectation, using Lemma and Lemma boils down to
2] 3
E 9" logp(R|%, n) _ (239)
Ovech (Q_l) Odvech (Q_l)
0% log [ _n 2@ 'R)
—E 2 — - 2 - (240)
Odvech (Q_l) dvech (Q_l) dvech (Q_l) Odvech (Q_l)
~1
- —%GT (Cadsm) e DF' (G (CaoDF) G (Q00)G. (241)
Then, using Lemma ([7.7)), we have
Io=G' ('e0!) (G (242)
1 ~1
x 3G (Cadgm) @ DF' (GT (Cq 1) FT> G QoG (243)
xGH (@ 'eQ )G (244)
~1
_ %GT (@'®0 ") (GG") (Cadzm) o DFT (G* (CawDF) (245)
1 -1
= GT (2927 GG (Cadg(m) S DF' (G+ (Ca®I) FT> (246)
~1
- %GT (222 ) (Codgm) @) F' (G+ (Ca®T) FT> (247)
~1
- %GT (Cadgm)® ) FT (G (CooDFT) . (248)
Using again Lemma 77
_ dvech(€2) \ ' A Ovech(Q2) 7 (249)
dvech(X)T dvech(X)T

rewrite in terms of C and X, on the right multiplication you can use equation (??) on

the left hand side standard arguments to arrive at

%GTG (F(CT ® I)G) i: (C’l ® C*ng(n)C*l) G. (250)
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Later on, for the derivation of the Fisher information matrix of the t-Riesz distribution

we will need the covariance matrix of vech(R), which can be derived as follows. First,

see §2.1.2 of Kollo and Rosen 2005/ for the characteristic function of a patterned (in

our case symmetric) matrix variate distribution. Note there are two approaches here.

Either we ignore symmetry and get the characteristic function of vec(R) or we take it

into account by getting the characteristic function of e.g. vech (R). In consistency with

the rest of this paper we take symmetry into account. |Diaz-Garcia [2013) and |Gribisch
and Hartkopf [2022| don’t. |Gupta and Nagar |2000| and [Kollo and Rosen 2005 do. The

characteristic function of vech (A) where A = BB is given by

$(Z) =E [eivech(Z)Tvech(A)}

1
=E {etr <z’2 (Z+7Z) A>] p. 244 [Kollo and Rosen 2005

1 1 1
e Alnspe i~ (Z+7)A —_IA
iy 73 oo Mgt e (i -2 ) er (1)

(I—z‘(Z+Z))A>

~ 8/°T, (n/2) /A>o

1

1
|A] nopo1 etr <—2

e 73 e (/2 Sa-i@ra)”
ﬁ?ﬁﬂ a—izvz)?,

)

‘(I—i(z+2))—1

nls

11

(251)

(252)
(253)
(254)
(255)

(256)

(257)

where Z is a diagonal matrix with elements dg(Z) and where we used Lemma ((7.3]). See

also |Diaz-Garcia [2013, Lemma 1.
Denote E=1-14i(Z + Z), then

Ovech (E)
dvech (Z)"

— 2 (GTG)_1 — 2 (GTG> -

(258)

Commented out is an alternative way using the characteristic function to derive the

expectation.
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Then

9*$(Z) 0
dvech (Z) dvech (Z)" = "Ovech (Z)
,8’5_1‘2 . TNy, Ovec (Cg dg(n)(jgT

= zmvech <C§ dg (n) C¢ ) +1i|=2 |% dvech (Z)

(260)

|E27"| 4 vech (Cg dg (n) C§T>T (259)

n
2

) (")’

=42 ‘E_l}g vech (CE dg (n) CST) vech (Cg dg (n) CgT)T (261)
2
)

=2 ‘Efl}ﬂ vech (C'g dg (n) C§T> vech (Cg dg (n) CgT)T (263)
2

ri22)27y (@6 (Ceastm) o 1) F7 (67 (T 0=)FT) T (6Te)

(264)

=42 ‘Efl}ﬂ vech (CE dg (n) C§T> vech (Cg dg (n) CgT)T (265)
2

ri2)2y (676) " (G6* (Coasm 0 1) P (6 (¢ o) FT) )

(266)
where Cg is the lower Cholesky factor of 2!, such that
2
Z
E [vech (A)vech (A)T} - I¢(2Z) . (267)
i?0vech (Z) dvech (Z) ' |z=o0
= vech (dg (n)) vech (dg (n)) " (268)

T

1 ~1\ "
+2 (GTG) <GG+ (dgn) @ T)FT (G+ I®1) FT) ) (G™)
(269)
— vech (dg (n)) vech (dg (n)) T + 2G+ <(dg(n) ©I)GGHF ' (G+FT)_1> : (G+)
(270)

— vech (dg (n)) vech (dg (n)) " +2G™ (dg(n) ® T) (G*) .
(271)
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and consequently
Cov (vech (A)) = 2G™ (dg(n) @ I) (G;Jr)T : (272)
Finally

Cov (vech (R)) = Cov (vech (CQACZ,)) 273)

(

— G* (Cq ® Cq) GCov ((vech (A))) (GT (Ca ®Ca)G)'
—2G" (Cq ® Cq) GG (dg(n) ® 1) (G*) " (GF (Cq® Cq)G) '

(

(

(

=2GT (Cq ® Cq) (dgn) ® 1) (Cst ® Cg) (6")'
—2G+ (2 ® Cdg(n)_ICT> (61"

Commented out is the proof that the scaling of the score by the inverse Fisherinfo yields
standard GARCH dynamics in the standard GAS model using the Riesz distribution.
O
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7.7.2 Wishart Distribution

Theorem 7.6. Let
1
R = ECBZ_STCT, (278)

then R is said to follow a standardized Wishart distribution denoted by R ~ W(X, n).
The probability density function of R is

p(R|S,n) = Z::ZW R~ |Z)% et <—;nz> . (279)
The expected value E [R] obtains as
E[R] = 3, (280)
the score w.r.t. X is
V= %GTvec (n='RE—nx ) (281)

and the Fisher Information Matrix w.r.t. X is given by
I-2GT (506 (282)

Proof. Remember that the Wishart distribution is just a special case of the Riesz dis-

tribution, with all degree of freedom parameters being equal,
Ni,...,Np =Mn. (283)

Using this, the probability density function[z_g] is easily obtained from (222)). The expected
value remains the same as for the Riesz. For the score, start from (233]), observe that

for ni,...,np, =n, 3 = n to arrive at

1 11
5G.Tvec (-n?= '+ S 'RETY) = = 5GTvec (nE=TIRET -3 (284)
n

29. See also [Muirhead 1982, Theorem 3.2.1.
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For the Fisher information matrix start from (247) to arrive at

Ta = gGT Qo) (CoaD)FT <G+ (Ca®I) FT)_1

_ gGTG(ﬁ Qo) (CoaD)F' (G+ (Ca®TI) FT>_1
_ gGT (R '202 ) GG (CqaT)FT (G+ (Ca 1) FT)A
_"aT -1 -1

-G (@ 'en) G

Then again using 3 = n{) we have
[ Ovech(R2) T Bvech(f)
~ \Ovech(%)T 2 dvech()T
N AT (y—1 -1
=— b b)) .
5 G (='ex )G

(285)
(286)
(287)

(288)

(289)

(290)

Commented out here are the covariance structure and the proof that when scaling the

score with the inverse Fisher info we arrive at a standard GARCH structure from the

standard GAS dynamics.
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7.7.3 Inverse Riesz

Theorem 7.7. Let
R = Cdg(m™)" V2B "B 'dg(m™~) /2 CT, (291)

then R is said to follow a standardized Riesz distribution of type Il denoted by R ~

RI(S,v), with m* = (mj",...,m5)7,

1 .
——7> fori=1
m,;u — V;—p 1 (292)

1 j—1 iRIT y
priD (1 + Z§:1 m; ) fori>1.

The probability density function of R is

P (mp)v
RIS — =1 b
p( | al/) 2py/2 Fp ($/2)

\R]_pTH \ZL% etr <—;dg (m™)~* Z_1> .
(293)
The expected value E [R)] obtains as
ER] =X (294)
the score w.r.t. 3 is
V = —Gvec (C_T<I> <CTtrﬂ (R—lc dg(m™)~1 — C_ng(u))) c—l) (295)
and the Fisher Information Matrix w.r.t. X is given by

Ovech (©
Ovech (%)

Ovech (€2) ! 9?logp(R|Z, v)
()

)
Ovech (%) dvech (£2) dvech ()" T (296)

with

. [ 9 logp(R|Z,v) (297)

dvech (€2) dvech ()

— 167 (¢ Tagm ) @ O dgv)dem™)C ) BT (G (Clglm™) 20 1) BT

(298)
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and

Ovech (©

) oy — -1
Svecn ()T " G (Cdg(m™) ' 1) F' (G+ (CoI) FT> . (299)

Proof. For the probability density function of Cdg (m‘””)_l/2 B~ "B ldg (m”z”)_l/2 ol
see [Blasques et al. [2021. According to their, theorem 4 (ii) and definition 6 (ii),
U- "B~ "B~'U"!, where U is the upper Cholesky factor of Eg}asques and consequently
U T = CBiasques: Where Cpjgsques is the lower Cholesky factor of X pjqsques, follows an
inverse Riesz distribution of type II. Now set X pjasques = Cdg(m*)~'CT and use their

theorem 7 to obtain

_ 1 -7 wry (v—1 -1 1 ey =1~ T—1
f(R|Q,v) = 2p'7/2UFp (V/2)U|C dg(m™)C ‘,%U|R |u+g+1etr( QCdg(m )7 C' R
(300)
= ! |Cdg(m™)"1CT|u|R|_viprietr —ECdg(nﬂ“)*lchr1
2v7/2T, (¥ /2) 2= 2
(301)
_ [T, (my) ™7 1 wry—1rz—1
= g, ($/2) ]2|%]R]_u+g+1etr —idg(m ) Z (302)
P RIT —V,'/Q
izt (m7") 1 -2l 1 an—1rp—1
= — R Z|_vetr|—=d Z
opv/2 Fp ($/2) ‘ ‘ 2 ’ |—§e I‘( 92 g(m ) )
(303)

where we used Lemma (7.1)) of this paper and Lemma 3 (v) of Blasques et al. 2021, For
the expected value see Blasques et al. 2021, Theorem 26, (iv). Now define for better
readability @ = 3 pjgsques- For the score w.r.t. 3 start from (301)),

logp(R|X,v) logp(R|X,v) Ovech ()

= 304
dvech ()" dvech ()" dvech ()" (304
[ Ologly  10tr (QRTY) Ovech () (305)
~ \ Ovech Q)" 2 9vech(Q)" ) dvech (X)"
T
T8),(T10) = vec (C;Jdg (v)Cql — R_1> GM (306)
2 Ovech (%)

(T99) = vec (C—Tob (CTtril (C;Jdg (v) Cq'C — R_10> dg(m"*”)_l) c—l)T G.
(307)
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Now, using the definition of  and Cq = Cdg(m™)~!/2 this reduces to

.
vec (C*ch (CTml (C;,ng (v) CglC — R*lc) dg(mﬂ“)*l) C*l) G (308)
-
= vec (C—ch (CTtrﬂ (C_ng(m’””)l/ng (v) dg(m*)/2 — R—lc) dg(m"”‘”)_l) C—l) G
(309)
-
= vec (C—ch (cTtrﬂ (C—ng (v) — R_lcdg(m“”)_l)) C_1> G (310)
T
= —vec (c—ch (CTtril <R_1C dg(m*)~ — C_ng(u)>> c—l) G (311)
For the Fisher information matrix with respect to 3 we use Lemma 77,
T
I— Ovech () E 0?1log p(R|Z, v) Ovech () 319
—— (=2 - L e
Ovech (%) Ovech (Q2) Ovech () ' | dvech (%)
where the expectation, using Lemma and Lemma boils down to
?log p(R|Z
Ovech () dvech ()
8210g || 82tr( )
_ 2 — - (314)
Ovech (£2) Ovech () Ovech () 6vech )’
-1
- —fGT (c ® Cq' dg(v) ) (G+ Co®I)F ) (315)
—1
_lgT (C—ng( “V1/2 o ¢~ Tdg(v)dg(m™)C™ ) (G+ (Cdg( “)=1/2 g I) FT)
2
(316)
and
Ovech (€2) _ -1
————— =G (Cdgm™)'@I)F' (G"(CeDF") . 317
e (z)T ~ & (Cdem™) 9D FT (G (CoDFT) (317)
O

Commented out are the inverse Riesz type I distribution with attempts to derive its

expected value theoretically.
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7.7.4 Inverse Wishart

Theorem 7.8. Let
R=(n—p—1)CBB'CT, (318)

then R is said to follow a standardized inverse Wishart distribution denoted by R ~
iW(X,n). The probability density function of R is
(n—p—1)""2 1

pt1 n 1
3, n) = T |z 2 —~(n-p-1Z7'). (31
Iz = UL R e (- 12 (319)

The expected value E [R] obtains as
ER| =X, (320)
the score w.r.t. 3 is
V= —%GTvec (n—p—-1DR ! —nx=1) (321)
and the Fisher Information Matriz w.r.t. 3 is given by

I--3GT(z'ex)G. (322)

Proof. Remember that the Inverse Wishart distribution is just a special case of the

Inverse Riesz distribution, with all degree of freedom parameters being equal,
Ni,...,Np =M. (323)

Using this, the probability density function is easily obtained from (293) @ The expected
value remains the same as for the Inverse Riesz type 11 ﬂ For the score, start from (306)),

30. See also Kollo and Rosen 2005, Corollary 2.4.6.1.
31. See also |Kollo and Rosen 2005, Corollary 2.4.14.
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observe that for ni,...,n, =n, Q@ = (n—p—1)X to arrive at

-
lgp(RIZ.n) _ 1 (ng—l _ R_1> G Pech @) gy

dvech () 2 n—p-—1 dvech (X)
= %Vec (nz_l —(n—p-— I)R_l)T G (325)

For the Fisher information matrix simply start from the equation above to obtain

O logp(R|X,n) ﬁ@GTvec (=1 (326)
dvech () dvech (B)T 2 dvech (X) "
dvech (21)"
= EGTGM (327)
2 Ovech (%)
Lemma[[ = -5 G GGY (2o 27) G (328)
_ _NaT (w1 -1
=—5G (X exT)G. (329)
(330)

Commented out are the derivation of the dispersion matriz and the score scaled by the
inverse Fisher Information Matriz and by the Dispersion Matriz (which do not reduce
to simple GARCH dynamics as for the Riesz and Wishart).

O
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7.7.5 t-Riesz

Theorem 7.9. Let

Cdg(n) 2BBdg(n)"V/2CT, (331)

then R is said to follow a standardized t-Riesz distribution of type I denoted by R ~
tRI(2,n). The probability density function of R is

Rimm) = e D p)/2) oo (0 ~vipn
PRSI = Z a2 T (n/2)T (v/2) 3 y g s
(332)
The expected value E [R] obtains as
ER]=3% (333)

the score w.r.t. 3 is

e (e (e e )

(334)
and the Fisher Information Matrix w.r.t. X is given by
T
g (Ovech (@7 9 log p(R|2, ) Ovech (07) oz
dvech ()" dvech (1) dvech (1) " | dvech (2) "

with

) N2
g Ples®Qm) ] _ 1y 2) G' (Cdgn)2 1) F'
Ovech (Q_l) dvech (Q_l) 2

v—2\? 1 T 1T Y
< ) V—I—pﬁ+2G (2(E®Cdg(n) C )+vec(2)vec(‘
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and

Ovech (Qfl) (336)
dvech ()"

_ v + (=T -7 N7 (a+ (-T N\ T ot (-l -1
— -G (T eC TdgmC ) FT (6F (cTTes ) FT) G (= ez)G.

(337)

Proof. Define Q = (v — 2)/v Cdg(n)"'CT, A = CoBB'C{, which implies that A ~
RI(£2,n), and let w ~ F(

NN

) Then we can rewrite R = w™! A with probability density

v
2

function
& 2
peri (RS2, 0, v) :/ pr (w‘;, 1/) pri(WR|Q,n)J(wR — R)dw (338)
0
| | (2 TwR)
0o 1 , L JwR|n—p-1e” 2
:/ S wiled o w B dw  (339)
o T(5) () Q02T (5) 2

v

‘R’n—p—1 fooow%—1—p(p+1)/2+pﬁ/2+p(p+1)/2 exp |:_wg (1 + tr(Q—lR)>:| dw
2

(340)
R n—p— o —1
_ |V|+’ : ] / w21 [_wV (HU(QR))] dw
v 3 n\o2?
T (%) (2)2[QaTy(5)22 Jo 2 v
(341)
_vtpn

Raps T, tr(n—lp.))] :
_ T Py |y R
FE)2)EQaT,ERE [2 ( v

(342)

v+pn

I'((v+pn)/2) tr(Q_lR) 2
= o, By g Rl <1+y> N

where we used https://dlmf.nist.gov/5.9#1. Now substituting € with its definition we

75


https://dlmf.nist.gov/5.9#i

get the standardized probability density function

v—2 1Ty !
T((v+pn)/2) |v—2 T tr ((TCdg(m c') R)
R = _ Cd C Rinp1 |1
et (R|Z, n,v) F(%)FP(%)VPHH v g(n) o ‘ ‘%1 + y
(344)
_ _ -1
T((v+pn)/2) [v—2\ /2 e tr ((Cdg(n)'CT) "1
- : ‘Cdg(n) C ‘ Rlnp |14

F(%)FP(%)M’“/Q v -z 2 v—2

(345)
p ni/2 _ —yipn
iz1n_ T((v+pn)/2) o it ?
= - R Zn |1 tr (dg(n)Z
(v — 2)P/2T,(n/2)0(v)2) RIT= (2l |1+ J—5tr (de(n)Z)
(346)
For the expected value we have
ER]—E |~ |E[A]=E |~ | CoE [BBT} cy (347)
w w T Qo
v
= ECQ dg(n) Cg (348)
-2
= """ Cdg(n)"1/2 dg(n) dg(n)"H/2CT (349)
v—2 v
=3, (350)
where v/(v — 2) is the expectation of the inverse Gamma distribution.
For the score w.r.t. ¥ consider again

logp(R|X,n,v) logp(R|X,n,v) Ovech (Cdg(n)_ICT) (351)

dvech (8)'  dvech (Cdg(n)~1CT)'  dvech(Z)'
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where starting from equation (345]) we have

tr((Cdg(n)~'CT)'R)
log p(R|X, n,v) B dlog |Cdg(n)_lc—r’—g v +pﬁ810g (1 + v—2
dvech (Cdg(n)~1CT)"  dvech(Cdg(n)~1CT)" 2 Ovech(Cdg(n)~!1CT)T
(352)
-
= —%vec (C*ng (n)/2 dg (n) dg (n)"/? Cfl) G (353)
tr((Cdg(n)~1CT)'R)
_v+pn 1 0 (1 * V=2
2 <1 n tr((Cdg(n)—lcT)lR)> Ovech(Cdg(n)~1CT)T
v—2
(354)
_ LT 2~-1_ v tpn 1 1 1T 7!
= vec ( 5C Tdg(m)? €7 4+ 2 i ) (Cagm)'cT) R (
v—2
(355)
_ T 2~-1, Vtpn 1 T -1
= vec ( 2C dg(n)"C™ " + 5 (1 N tr(dg(n)Z)) o 2C dg(n)Zdg(n)C
v—2 /
(356)
1 1% +pﬁ 2 T
_ ! -T -1 _ T -1
= gvec <(1/ — 2+tr(dg(n)Z))C dg(n)Zdg(n)C C 'dg(n)°C ) G.
(357)
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Now, using (199) we have

logp(R|X,n,v) logp(R|X, n) dvech (Cdg(n)~'CT)
dvech ()" dvech (Cdg(n)-1CT)" dvech ()"

(358)

e ( v+pn C~Tdg(n)Zdg(n)C~! — ¢~ Tdg(n)? Cl>T G
=22t ez © 8 :
(359)
 Dvech (Cdg(n)~'CT) (360)

dvech (2) "

— G Tvec (c-% <cTtrﬂ <V —= :;fd‘;(mz) C Tdg(n)Z — C_ng(n)>> c—1> .

(361)

For the Fisher information matrix w.r.t. 3 we will again use {2 as defined above and

note that

0% log (1 + M)

v

< tr(Q'R) > T pu@'R)
1+ —
v Ovech (Q )

Ovech (Q_l) Ovech (Q_l)—r N Ovech (Q_l)—r
362)

V2 v

(

1 tr(Q7'R)\ ° 9tr(Q'R)  9tr(Q'R)
B (1 " > dvech (271) vech (Q_l)T
(363)

1 (1 n tr(Q7'R)

v

-2
) G "vec (R)vec (R)" G. (364)

We will need the expectation of this expression. For better overview denote the normal-

izing constant of the ¢-Riesz distribution by

D tpm)/2) o
T(v/2)T,(n/2)uwn/2" ~5

c(v,n, Q) = (365)
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Then

tr(QIR)\
E <1+ x )> vec (R) vec (R)T] (366)
v
(@ 'R)\ 2 (@ R\
= c(v,n, Q) / (1 + ) vec (R) vee (R) " |R|n-p1 <1 + ) dR
R>0 v 2 v
(367)
a( @R\
= c(v,n, Q)/ vec (R)vee (R) " |R|n-p1 (1 + 2 dR (368)
R>0 2 v
_1 71/+p2ﬁ+4
. T 1 14
_ (v,n, Q) /R>Ovec (R) vee (R)" R]apes <1+ L <<V+4Q> R)) dR
(369)

c(v,n, Q)
c (1/ t4,n, #49)

v+pn+4

1 -1 T2
xc|v+4,n, Y a / vec (R) vec (R) " |R|np-1 | 14+ ——tr e R dR
v+4 R>0 2 v+4 v+4

Q

E[vec(R)vec(R)T] if R follows a t-Riesz distribution with parameters v+4, n and Qnew=
(370)

_ dwnQ)  (v+4)? ( v )2 (371)

2 1
C(V+4,n,#_49) (v+2w \v+

v
v+4

« GG (Cq @ Cq) (2 (dg(n) @ I) + vec (dg(n)) vec (dg(n))T) (cg ® cg) (GahT
(372)

_ T((v+pn)/2) T, (m/2)T((v +4)/2) (v + 4P/ (v+4>‘p"‘/2 22 v
T T,(n/2)T(v/2) T(((v +4) +pn)/2)  vw0/? Q_n v +2

x GG (Cq ® Cq) <2 (dg(n) ® I) 4 vec (dg(n)) vec (dg(n))T> (Cg ® Cg) (GGJF)T
(373)

14

. v (I/ + 2) v
T (wApn) (vt pn+2)v 2 (374)
< GG (Cq © Ca) (2(dg(n) @ 1) + vee (dg(w) vee (dg(m) ) (Ch 0 Cf) (GG*)

(375)

V2

- _ _ (376)
(v+pn)(v+pn+2)
x GG (Cq ® Cq) (2 (dg(n) ® I) + vec (dg(n)) vec (dg(n))T) (cg ® cg) (GeH)"

377

-0 (377)
(378)



with

Cov (vech (R)) = E UQ] Cov (vech(A)) + Var (;) E [vech (A)]E |vech ()" |

(379)
= 2(V_2§§V_4)G+ (Ca ® Cgq) (dg(n) @ I) (C;—z ® CE) (G-i-)T
(380)
+ 2@4)’/;2)2@ (Ca ® Cq) vec (dg(n)) vec (dg(n)) " (c?2 ® cg) (GH)",
(381)
where
v/2)2 12
Var <tlv> ~ (v)2 —(1>/22()v/2 —2) Y22 =49 (382)
and
. {w?] = Var (i) TE LH - <,,i2>2+2(y_2;2(y_® (383)
v \? v \?v-— V2
:<I/—2> <1+I/34>:<V—2> 1/—421:(1/—2)(1/_4) (384)
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Thus

E [vech (R) vech (R)T| = Cov (vech (R)) + E [vech (R)] E [vech (R)T} (385)

12

256 (Cn s o) () 1) (G G (G)

T

(386)

I/2

T Qm(}+ (Ca ® Cq) vec (dg(n)) vec (dg(n)) " (Cg ® Cg) (G’

(387)

2
2 (V . 2) G* (Ca ® Ca) vee (dg(n)) vee (dg(m) " (Ch@ Ch) (G1)

(388)
= 23(2u —5¢" (Ca®Ca) (959
x (2 (dg(n) ®I) + vec (dg(n)) vec (dg(n))T) (cg ® cg) (GH)".
(390)
and consequently
E [Vec (R) vec (R)T} ~ GE [vech (R)vech (R)T| GT (391)
T - 21;; —5¢CG" (Ca®Ca) e
x (2 (dg(n) ® I) + vec (dg(n)) vec (dg(n)f) (CI2 ® cg) (GeH)".
(393)
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Using the results above we have

tr(Q 'R
& log p(R|2, n) _ 9* log 2|2 v +pﬁE 0%log (1 + %)
Ovech (Qfl) Ovech (Qfl)—r ~ dvech(QH)dvech(Q~1)T 2 Ovech(Q2~Hdvech(Q71)
(394)
82 log |2|_n —1 -2
— _1g| -2 ___ yten 1GTE ( M) vec (R) vec (R)T | G
Ovech(Q™)dvech(Q7 )T 2 v
(395)
B 8210g|ﬂ‘_% V+pﬁi V2
~ 9vech(Q2H)dvech(Q~1)T 2 V2 (v+pn)(v+pn+2)
% GT (Cq ® Cq) (2 (dg(n) ® I) + vec (dg(n)) vec (dg(n))T) (c}2 ® cg) G
(396)
0?log 2_n
~ 9vech(Q2H)dvech(Q~1)T
1 1 T T T T
t3y 730 (Ca®Ca) (2 (dg(n) @ I) + vec (dg(n)) vec (dg(n)) ) (CQ ® CQ) G

(397)

_ —%GT (Cadgm) @ DFT (GT (CaaT) FT)_I G' (229G

1 1
2v+pn+2

e

1 v—2 1 T “1T T
2< v ) 1/+pn+2G (2(2®Cdg(n) C )+vec(2)vec(2) )G,

GT <2 (Cndg(n)Cst ® Q) + vec (ngg(n)Cg) vec (ngg(n)Cg)T> G
(398)

> GT Cdg( )12 g I) F' (GT (C dgn) V2 ® I) FT)_l GT (Cdg(n)*lcT ® Cdg|x

(399)

such that using Lemma (??7) we have

_ T _
o (W) E [ 9" log p(RI2, n) ] Ovech (1) 400
dvech (%) dvech (271) dvech (27!) | Ovech (%)
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7.7.6 t-Wishart

Theorem 7.10. Let

r-t, BB", (402)

then R is said to follow a standardized Wishart distribution based on the t-model (Su-
tradhar and Ali|1989), which we simply call t-Wishart distribution and denote by R ~
tW(X,n,v). The probability density function of R is

RIS, v) = (L)W Fl;(((; LB R 2 (1 TR <z>>u+2m
(403)
The expected value E [R] obtains as
ER] =3, (404)
the score w.r.t. 3 is
V= %GTvec <ny - f;flem SIRE ! - n21> , (405)
and the Fisher Information Matriz w.r.t. 3 is given by
I-2GT (% (Elesl) - %Vec (271) vee (21)T> G. (406)

Proof. We base the proof on the standardized t-Riesz I distribution by setting n; = n
for all 7. The probability density function follows easily. The expected value is the same

as for the t-Riesz I distribution since its independent of n. For the score w.r.t. X start
from equation (360]) to get

1 by 1 T
ogp(RIZn,v) _ < v+ pn n2CTzcl—n221> Gn~!  (407)

= —vV - -
dvech ()" 2 v—2+ntr(Z)
1 v+pn T
= “vec ( o 3R - n21> G.  (408)
2 v—2+ntr(E7'R)

For the Fisher information matrix w.r.t. 3 notice that if n; = n for all i equation (401
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reduces to

I_ ( nv )2 Ovech (271) ' E 0?log p(R|2, 1) Ovech (271)
v—2 dvech ()" dvech (271) dvech (1) | dvech (%)"
(409)
with according to equation ([399))
2
E 9% logp(R|2, n) _ (410)
Ovech (Qfl) Ovech (Qfl)

_ _% (V_2>2n1GT (CQIF' (GT (C®I)FT>_1GT (T X)G

2
(V - 2)2GT (_n—l (Zo=)+ u+pln+2 <: (2 ®X) + vec (E)VGC@)T)) “

(412)
and

Ovech (2_1)

=-Gt(z'ex G, 413
dvech ()" ( ) (413)
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such that altogether

teo <_ 2>2 (-G* (= eza) (414)
1 [(v—2\2 _ 1 2

x5 < y ) G’ <—n '(Zex) +m <n (2®2)+VGC(E)VGC(E)T>> G
(415)
x (-Gt (=7'ex ™) G) (416)
= —%MGT =tez ) (eH)'aT (417)
y <—n—1 Ie1) + lem (i (I&T) + vee () vec (2—1)T>> G (418)

= —%GT <—n (271 ® 271) + Pa——) ‘szl 9 <i (271 ® 271) + vec (271) vec (Zl)T)> G
(419)

=—5G' <— (Zrex )+ +p2n — Erex )+ o3 (1) vec (2—1)T> G

(420)
= g i (1/ j_—;npj_ 2 (= lext) - I ‘H;L”L Ve (=71 vee (2_1)T> G. (421)

Commented out are the stand-alone proofs, i.e. not based on the t-Riesz distribution.

O
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7.7.7 Inverse t-Riesz

Theorem 7.11. Let

R =T )Cdg(m’””)_%B_Tﬁ_ldg(m”‘”)_%CT. (422)

n 2
2'n

Then R is said to follow a standardized inverse t-Riesz distribution of type I1, denoted
by R ~ itRY (X, n,v) with m* given in . The probability density function of R is

b (my )2 T (04 pp)/2) (et
PRI n, ) = L=l T2 L R 2l
w T (V /2)0(n/2) :
1 e
X (1 +—tr (dg(m”*”)lzl)> : (423)
The expected value E [R)] obtains as
ER] =X, (424)
the score w.r.t. 3 is
V = G vec (C*Tcp (CTX) C*l) (425)

with

n -+ pv
n+ tr(dg (m=)"'Z-1)

X = tril <C_ng (v) — R 'Cdg (mw)_1> .

Proof. For the probability density function, note that in the stochastic representation

A = Cdg(m’””)_%]_S*T]_B*Idg(m”*”)_%cT ~ iR (2,v) and denote w ~ F(ﬁ 2) such
2'n
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that R = wA. Denote for better readability £ = Cdg (m™)~* CT. Then
o 2
purir(R|2,n,v) = / pr (w‘g n) piri(wR|E, V) J(w 'R — R)dw
0

/oo 1 -1, —wZ
= ——w?2 e Y2
o T ()

n

|3

1 B 1
X W|Q‘%‘w R|7u+§+1etr <—2wQR )

_plpt+1)
X W 2 dw

12y |R|_vipir
2 2

Oowngpﬂfl ol ™ tr (QR_1)>> dw
I (%) (2)% 2721, (¥ /2) /0 ) p( 2 (1 T

n+pv

_ ’Q|%|R|—% n + pv n tr(QR_l)>> 2
“rmmrenea () G0

_ntpv

1 F("zpﬂ) tr (QRA) 2
_npD/ZF(%)Fp ($/2)\Q|5|RL%¢?+1 1+T

_ntpr

Py ()2 T ((n+pp)/2) Lo el -1z-1) )
w2 |R)S Tp(V/2)D(n/2) 12y <1+nt (dg(m™) ™2 )) :

where we used https://dlmf.nist.gov/5.94#1. For the expected value note that when w
follows a gamma distribution with v = v/2 and 8 = 2/v, then E [w] = 1 (Thom [1958).
Furthermore recall that E [A] = X, such that

For the score we have

dlogpyri (RIXE,n,v) 8log|ﬂ|% _ n+pv 1/n otr(QR™1)
dvech ()T ~ Ovech () 2 1+4+1/ntr(QR~1) dvech ()
1 __ _ n + pv 1 _ T
= ~Cq'dg(v)Cg' — R') G
vec (2 0 g (V) Q 2 n 4+ tr(QRfl) )
= 1Vec C 'dglvom™)C™! - %R_1 ! G (426)
2 & n+ tr(QR-1) ’

88


https://dlmf.nist.gov/5.9#i

such that using Lemma |7.14] we have

dlogpyri(R|X,n,v)  0dlogpurii (R|X,n,v) dvech (£2)
dvech ()" dvech ()" dvech (2)"

—vec (CTo (cTX) ) @
(ce(c'x)c)

(427)

with

. _ " _ + pv —_ i\ —1
X =tril( (CTd yo-lo TPV p-1) ) de (m*
t (( g(vom™) n+ tr(QR-1) g(m™)

n + pv
n+ tr(dg (m~)"'Z-1)

= tril (C_ng (v) — R !Cdg (m”‘”)_1> .

For the Fisher information matrix, proceed similarly as for the inverse t-Wishart distri-
bution, where first E {vech (R) vech (R)T} for R ~ tR!! has to be derived similarly to
the expectation in R ~ tR'.

O
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7.7.8 Inverse t-Wishart

Theorem 7.12. Let

R=(v—p-1I )CB—TB—lcT (428)

n 2
2'n

Then R is said to follow a standardized inverse t-Wishart distribution denoted by R ~
itW(X,n,v). Denote Q = (v —p— 1)%. The probability density function of R is

v—p—1\"? T((n+p)/2) . w1 v v—p-1 4
3 = —- Z 1+ ———tr(Z
pRIZnp) = (L2 ) SR iy g8 (1 S )
(429)
_ndpv
_ I'((n+pv)/2) ]Q|%|R]*y+g+l 1+tr(QR_1) 2 (430)
n*P/2T, (v/2)T'(n/2) n ’
the expected value E [R] obtains as
1

the score w.r.t. X s

1 - (n+pr)v—p—-1) __
V= §G.Tvec <1/E 1 o 1)tln(zml)fi 1> (432)

and the Fisher Information Matrix w.r.t. X is given by

v T n + pv -1 -1 v -1 -1\ T
I=—— — (X ¥ - — b P .
2G <n+pu+2( ® ) (n+py+2)vec( )Vec( ) )G

(433)

Proof. We base the proof on the standardized inverse t-Riesz I distribution by setting

v; = v for all i. The probability density function and the expected value follow easily.
For the score w.r.t. 3 use equations (426) and (427)), and

Ovech (Q

) oy
m—( p—1I (434)
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to get

dlogp(R|%, n,v) 1 v 1 ntpy 1 N\
= e >l R Glr—p—1
Ovech (2])T 2v—p—1 2 n+ tr(QRY) (v—p-1)
(435)
1 _ (n+pv)iv—p-—1) . T
= Z > ‘ 4
2" (V nr—p-DuErR Y ) © (436)

The proof of the Fisher information matrix w.r.t X follows closely the proof for the

Fisher information matrix if the t-Wishart distribution. We have

2
g | O logp(R[Z n, 1/)T (437)
Ovech () dvech ()
v 0log || n —|—p1/IE 9?log (1 + 2tr(QR™1)) (438)
2 9vech () dvech () 2 dvech (€2) dvech ()

--3G6T(@'en )G

2
oty <1> G'E

2 n

1 - T
(1 + ntr(QR_l)) vec (R_l) vec (R_l) ] G (439)

_ VAT o1 -1
= 2G @1 QR N )G

n+pv (1 2 n2y? 1
n 440
e <n> (n+pv)(n+pv+2) (1) (440)
I n -+ pv 1 _1 v . AT
=—5G | — 5 (0 eQ7) — o vec (2 Q
2G <n+pl/+2( ® ) (n+py+2)vec( ) vec ( ) )G
(442)
_ 14 T n+pl/ 1 1 _# _1 T
B RN <n+pu+2(2 O - g e () vee (¥ ))G-
(443)
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where

9%log (1 + Ltr(QR™! “1oltr(QR!
0g (1 + ytr( T)) __ 9 _ <1+ 1tr(QR1)> Ontr(R ™)
Ovech () dvech (2) Ovech () n Ovech (£2)

_ (1)2 <1 . itr(QR_l)> 2 9tr(QRY) 9tr(QR 1)

(444)

n dvech (£2) dvech ()"
(445)
= - (:L)Q <1 + ibtr(QR_l)) - G "vec (R71) vec (R—l)T G,
(446)
and, denoting
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1 -2
E <1+ tr(QR1)> vec (R™1) vec (Rl)T] (448)
n
1 -2 T v4ptl 1 R
= c¢(n, v, Q)/ (1 + tr(QR_l)) vec (R™") vec (R71) [R|™ 2 (1 + tr(QR_1)> dR
R>0 n n
(449)
1 7n+p21/+4
= ¢(n,v, Q)/ vec (R™) vee (R™Y) ' [R|=7 2~ <1+ —tr (QR1)> dR,
R>0 n
(450)
n+pr+4
v 1 4 T2
:c(n,y,ﬂ)/ vee (R vee (R™Y) T |RI“F (14 — o (" 2R dR
R>0 n-+4 n
(451)
c(n,v, )
" ol L )
__ ntprv+4

4 vt 1 1
x c<n+4,u,”+ 9)/ vec (R™) vec (R™1) T |R|=72 <1+ tr(n+ QR1>>
n R>0 n+4 n

T .
Expectation of Vec(R_l)vec(R_l) if R follows an inverse t-Wishart distribution with paramters n+4, v and ”THQ or equiva,

if R~ follows a t-Wishart distribution with parameters n + 4, v and nLH971 and that this expectation is given above.

(452)
c(n,v, 2 nv? _ _ _ _
B c(n—ifél,l/,’”)r‘lﬂ)n—i-2 (11/ (T2 Kpp) (27 @71+ vee (@77) vee (9 1)T>
(453)
__ Tln+pv)/2) |Qf1|g(”+4)p"/2fp W/2T((n+4)/2) | n |7 w2
nP/2T, (v/2)T'(n/2) I'((n+4+pv)/2) n+4 n+2

X <V€C (Qfl) vec (Qfl)T + % (Ipz + Kpp) (Qfl ® Ql)> See iphone photo 22.06.2021

(454)

_ T((n+pv)/2) T((n+4)/2) m?
I'((n+4+pv)/2) T'(n/2) n+2

<Vec (@) vee (271" + % (L +Kpp) (7' @ Ql))

(455)
nin nv?
= " +py)((n++2l))y Hniz (vec (Qfl) vec (Q*I)T n % (ng N Kpp) (Qfl o Ql))
(456)
n2v? 1

- (n+pv)(n+pv+2)(1)2 (vec (27) vec (Qil)T + % Lz +Kp) (7' @ Ql)) )

(457)
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Thus, finally

0?logp(R|X, n,n) Ovech (€2)
dvech (€2) dvech ()" | dvech (X) "

E

_ ( dvech (Q (458)

)
dvech (2)"

v(n—p 1) n+ pv - - v _ _\T

2(n— p—l)zGT (n—i—pl/+2(E R 1)—mvec(2 1)Vec(2 1) )G
(459)

vec (2*1) vec (21)T> G.

(460)

__vgT <n+pv (= los ) -

2 n+pv+2 (n+pv+2)

Commented out is the covariance matrix and the standalone derivation of score and

expected value.

O]
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7.7.9 F-Riesz
Theorem 7.13. Let
R = Cdg(m™) 2B~ BB B !dg(m™)":C", (461)

@] then R is said to follow a standardized F-Riesz distribution of type I denoted by

R ~ ./—'.RI(E’ n’ I/), 'U]’Lth mml — (mflnl, méﬁ,’ o 7mg,)—|—’

ni y
. pr— fori=1

mi = . (462)
pris (nz +25 mz) fori=2,....p.

Denote Q = Cdg(m™)~'CT. The probability density function of R. is

o e Do (T4 9)/2) o
) = 0w oy ) 1 2

_ntv

(463)

EE|

The expected value E [R] obtains as
E[R] = X = Cq dg(m™)Cy,, (464)
and the score w.r.t. X is

V =G vee <C*Tc1> (CTml <C’ng(u) — Cql pde(v + n)C;]LRCdg(mW)*l» c*) .
(465)

Proof. Note that our stochastic representation is equivalent to the generation of the

F-Riesz I distribution in |Blasques et al. 2021 with X pj4sques = 2. For the probability

32. See photo 29.03.2021 for stochastic representation.
33. Note that |I, + @ 'R| ... can not be calculated using the Cholesky-based calculation of the
2

generalized power function, since I, + Q'R is not symmetric positive definite.
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density function we thus take their derived probability density function and rewrite

U
p(R|Z,n,v) = Fp’z (5 5 ()//2))]9|V|R|n b1 194 R _a (466)
U n 1 %4
’;(5 )+ 9 Rl [+ 2R (467)
, S v
H —v;/2 ((5/2)+p($)//22))’2|;|R’ngm’Cdg(mm)_lc—r+R|_r142ru
) (468)

«ﬁ+$vw

=1
(469)
p (W +v)/2)

m 1//2
) 2T, (9 2)

Il
~.
I ]
HE

RI-®D/2/2] s dg(m™) " + Z|_ns

(470)
» (0 +v)/2)

p
= [T oy (™[RI 2] U dg(am ) 2o
=1 p

(471)

_ H n /2 ry, EI(Z)+p($$)//22)) ‘R|7(p71)/2lz‘%‘1 + dg(mIRr)l/Qng(mm’)1/2‘7%7

(472)

where we have used Lemma [7.4] and [Blasques et al.[2021| Lemma 3 (v). For the expected
value [Blasques et al. [2021] derive in Theorem 10, that

E [B‘TBBTB‘I] = dg(m™), (473)

such that
E[R] = Cdg(m™) 7E [B‘TBBTB*} dg(m™)"2CT (474)
— Cdg(m™) " 2dg(m™)dg(m™)"2CT = X. (475)
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For the score w.r.t. ¥ we have

Ologp(R|S.n,v) _ Vlog|Qy 0log |2+ R|_ngw (476)
dvech(2) T dvech(2) T dvech(2) T
_ gty 9log [ + R|_ntv gvech(Q + R)
~ Ovech(Q)T  Ovech(Q+R)T  dvech ()"

(477)

1 T 1 T
= gvec (C;)ng (v) Cal) G — 5 vec (CQIRdg (v+mn) CEZi—R) G
(478)

1 T
= jvec (c—ng (vem™)C ' — Cqglpdg (v +n) Cﬁia) G,

(479)
such that using Lemma [7.14
dlogp(R[X, n,v)
480
dvech(X) T (480)
1 T
= vec (C*Tcp (CTtril((C’ng (vom™)C' — Cyl pde (v +n) C;HR) C)dg(mm')*l) C*l) G
(481)
h
—vec (€770 (CThril (C™"dg(v) -~ Cqlpdg(v +n)Cq g Cdg(m™) ') ) C7!) G
(482)
O

Note that it does not hold that R ~ FR(Q2 7!, n,v) = R~ ~ FR(Q, v, n) for either
type@ This is in contrast to the F distribution. Also note that the standardized F-Riesz
type I distribution cannot be obtained by mixing a standardized Riesz type I with a
standardized inverse Riesz type II, but only by mixing the non-standardized versions
and then standardizing the resulting distribution, as done above. This is also in contrast

to the F distribution and can be seen, since

BB B ldg(m™)":CT (483)

Cdg(m™)2B~"
# Cdg(m*) " 2B~ dg(n) BB dg(n) *B~'dg(m™)"2CT.  (484)

Commented out are the Hessian with some propositions for approzimation of the Fisher

34. See the derivation of the inverse F-Riesz type II below. The derivation of the inverse F-Riesz type
I is very similar.
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information matriz, the derivation of the F-Riesz based on the Riesz type I and inverse
Riesz type 11, the derivation of the inverse F-Riesz type I distribution and an attempt
to derive the distribution of Cdg(m’“”)_%B*ng(n)_%BBng(n)_%Bfldg(m“”)_%CT.
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7.7.10 Inverse F-Riesz
Theorem 7.14. Let

R = Cdg(m™) :BB~ "B'B dg(m™)":C", (485)

then R is said to follow a standardized inverse F-Riesz distribution of type Il denoted
by R ~ iFRI(Z, n,v), with m™ = (m{”,... ,m;“”)T given by

. nimy’, fori=1
dimamy A+ (ng i = Dmy, fori > 1,

The probability density function of R is

Tp((v +n)/2) [T, (m[)”l/2

R[S = R~ |Z| v |(dg(m™)+Z71) | .
(487)
The expected value E [R)] obtains as
ER] =3 (488)

the score w.r.t. X is

V= -G vec (C*T@ (cTtrﬂ (C*ng (n) — C~Tdg(m™)C~'Cpdg (n + v) CEC*T)) C*l) ,
(489)

where B = (Q_l + R_l)fl.
Proof. The stochastic representation Y following an F-Riesz distribution of type I[

with scale matrix 27!, and degree of freedom parameter vectors v and n is Y =
Uﬂle_lf’:BTB_lUg_l, where Ug-1 is the upper Cholesky factor of Q_l Thus
the stochastic representation of the inverse F-Riesz distribution of type I is given by

R=Y !'=CoBB "B !B'C, (490)

35. See [Blasques et al. 2021,
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which translate to R ~ iR (Y,v), Y ~ RI(R, n) For the probability density func-

tion we can consequently use

P (R, n,v) = / P (RIY, v)p. (Y|Q,v)dY (491)
Y>0
- / R| Yvetr (—SYR ! (492)
IV 2 r,(V/2)207 /2
1 1
X ‘Y’nfgfl ’Q‘_%etr <—2Q Y) W dY (493)
1 1
= ——R| vpi1|Q]_n Y|opetr [ —=Y(Q'+RY) ) dY
S, Ry [ agmetr (Y0 e m)
(494)
1 T -1
= _ o Lopvtn/2 -1 -1
Theorem [L3 T () gt R 02 rp((u+n)/2)((9 +RY) s
(495)
Ip((v +n)/2) gyl
- R| .+, = |(Q '+ R 4
Fp($/2>rp (H/Q)’ ’_+1| ’ 5 ( + ) v+n ( 96)

Now, it will be shown below that E [BB*TBABT] = dg(m™") is diagonal, such
that £ =: E[R] = Cqdg(m™)C{, and consequently @ = Cdg(m™)~'CT. Finally the
standardized inverse F-Riesz distribution of type 11 probability density function is then

36. Recall that UST, = Cq.
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given by

p(R|Z,n,v) =p,.(R|Cdg(m™)~'CT n,v) (497)
_ (v +n)/2) wiy—1~T =1~ T S\
= 5l T () Rl =g [Cgm ) €Ty (Cdg(m e ) +R .
2
(498)
Ty((v+n)/2) [T}, (m'?z">ni/2 -7 N v—1 A
- =1\ i R| vpi1|®| 0 |[(C Tdg(m™)C '+ R
oAy - By | (O asm o R
(499)
Tp((v +1)/2) T2, (m;)"/* T N 71y 1) !
— = 2 v—p— 2 n ’R Z
Fp(ﬁ/Q)I‘p(n/2) ‘R’_%‘ ’—5 (C (dg(m )+ )C > %
(500)
Lp((v+mn)/2) [T, (my ni/2 -1
-2t T <<:)7//z)>r (Liz) | [R|_vopa [B] g |C (dg(m™) +277)  CT|
b P =
(501)
Dy T, ()™ e w4 g1y
B e T B L K R
(502)
Tp((v+mn)/2) [T, (me)"/? o 131
= A R e U Ry 2l [(asm) +270) 7,
p p 2
(503)
T 2 -1
= p((VjLn)I{ ) ,,./2|R|_pT+I|Z|_g ‘(I+dg (m™) "2 Z"ldg (mﬂ””)—%>
T,(v/2)T, (m/2) [T2_, (my)" vin
(504)
For the expected value we have due to independence
E [BB*TB*11_3T] ~E [Bdg(m’“”)BT , (505)
where m™ is given in (292)). Denote
T =B (m™)"/?, (506)
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i.e.

_\/X%IleW 0 0 0 ]
N(0,1)y/m7" Xpp—2p1V/M5 0 0
T N(0, 1)\/7 N(0, 1)\/7 0 0
NOLIT  NO ) ymg \/ p1)+1\/
| NI N, D A DV \/xnp_pmﬁ
(507)

with elements T;; = B;;,/mj". The (i, j) element of R = TT' is

P P P
Rij=Y Tp(T)y;=> TuTjp=> miBuBj, (508)
k=1 k=1 k=1
which for ¢ # j we have

p p
= mi'E [BuBjx] = > mi'E[BylE [Bj] =0, (509)

k=1 k=1

because of independence of the elements in B and the fact that at least one of the

elements in each summand is mean zero. Furthermore, for i = j we have

p
E[Ri;] =Y mi'E[By] =) mi'E [B}], (510)
k=1 k<i
with
1, for 1 £ k
E[B}] = 7 (511)

n,—k+1 fori=k.
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Thus the elements of E,,, [R] = dg (m™") are given by

E [Rl,l] = (n1 -1+ 1)m‘f",
E[Roo] =mi" + (n2 — 2+ 1)my’,

E[Ro] = mi +mg + (n5 — 3+ Dmy

or
i—1
m; = E mi + (n; +1i— 1)m;
=1
or more precisely
nim;i’, fori=1

22;11 m;" + (nj+i—1)my, fori>1,

n
v—p—1"

which for n; = n and n; = n for all ¢ equals
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(512)
(513)
(514)

(515)

(516)

(517)



For the score w.r.t. 3 start from equation (496)), such that

dlog ‘ Q'+ R !

alogpxm“(R‘Q7 n7 V) . alog ‘Q’_% + # (518)
dvech(2) T ~ Ovech(Q)T dvech(2) T
-1 _1\—1
_ Olog|9_»n N 8log‘(ﬂ +R7) vin Jvech((Q1 + Rfl)_l)
 9vech(R)T T fyech((@1 +R-1) )T dvech (Q)
(519)
_ 1 T 1\ 1 _T 1
= —gvec (CQ dg (n) Cg, ) G+ 5 vec <C(Q_I+R1)_ldg (n+v)C
(520)
| Ovech(2" + R) ™) dvech(! + R™1) (s21)
dvech (7 + R_l)—r dvech ()"
= —lvec (C*ng (n) C*1>T G+ 1vec c ! dg(n+v)C !
2 @ Q@ 2 (@ 1+R-1)7
(522)

T
_1+R1)_1>

e

% (~1)G* ((Q*l +R ) '@+ R*l)‘l) G-NGr(Q 'z )G

(523)
_ 1 -T 1\ " 1 -T
= —gvec (CQ dg (n) Cg ) G+ S vec <C(91+R1)1dg (n+v)C
(524)
xGH((@+RT) TR e (@ +RT) TR G (525)
1 T
= —5ve (ca'dzmcy') G (526)
1 -1 (0-1 —1\"1 ~=T -1
+ 5 vee <Q (@ '+R C(QflJerl)—ldg (n+v) C(Qf1+R71)
(527)
1 T
= —gvec (CEZng (n) C;zl) G (528)
1 -1 T ny
+ g vee Q C(Q_I+R_1)_1dg (n+v) C(971+R71)_1Q G.
(529)
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Thus using Lemma (7.14)) we have

logp(R|X,v)  Ologp,.(R|Q2,n,v) dvech(Cdg(m=)~1CT)

Hvech (E)T N dvech(Q)T dvech(X)T (530)
1 B B B B T
= —5vec (CQng (n)Cq' — Q 1C(Q_I+R_l)71dg (n+v) C(Tﬂ_lm,l)—lﬂ 1> G
(531)
Ovech(Cdg(m~)~1CT) (532)
dvech(X) T
-
— —vec (C*ch (CTml (XC) dg(m‘“”)*l) c*) G (533)
with
XC = Cgq'dg(n) Cq'C — n—lcm,lm,l)fldg (n+v) C(TQ#RA)AQ*C (534)
= Cq'dg (n) dg(m™)* = Q7C g 1y 1dg (n+v) Cla-iim 1)1 € dg(m™),
(535)
such that
tril (XC) dg(m (536)
( o dg (n) dg(m™) =2 - Q‘lc(ﬂ,lJer yy-de (n+v) c( Cmr) Neoul
(537)
— 1< C~ Tdg(m™)"/?dg (n) dg(m™) /2 —C_ng(m’””)C_lc(Q,1+R71)71dg (m+v)C/
(538)
= ( C 'dg(n ng(mw')C—lc(Q,IJFR_l)fl dg(n+v) C(TQ_1+R_1)10—T)
(539)

105



and finally

logp(R|%, v)
dvech ()"

(540)
.
= —vec (C—Tcp <CTtril (C—ng (n) — C~Tdg(m*)C~'Crdg (n + v) cgc—T)> c—l) G,
(541)
where B = (Q_l + Rfl)il. O
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7.7.11 Matrix-F

Theorem 7.15. Let

—p—1_ _ _
- %CB‘TZ_SZ_S’TB”CT (542)
—p—1 o
VTP lops B BTCT, (543)
n
then R is said to follow a standardized matriz-variate F distribution denoted by R ~

F(X,n,v). The probability density function of R is

/2 2 S -5
pRIS ) = () D) gt T siR
v—p-—1 Lp(n/2)p(v/2) v—p—1
(544)
o vn/2 . o —nty
:<V p 1> Fp((n+1/)/2) |2|%’R| 2 L|\V—p 12—|—R 2
n p(n/2)Lp(v/2) n
(545)
Do((n+1)/2) | e mmpt _ape
= QPR 2+ R 2, (546)
Lp(n/2)Ty(v/2)
where 0 = %HE. The expected value E[R] obtains as
ER =S=——Q (547)
I
the score w.r.t. X is
V= tGTvee [vm !l - wt+n)(Z+—" R - (548)
=5 ec n pp—
and the Fisher information matriz w.r.t. 3 is given by
T=. (549)

Proof. Recall that the stochastic representations above are equal to the ones of the
standardized F-Riesz I and standardized inverse F-Riesz II distribution, respectively,
by setting n; = n and v; = v for all . Next we show, that they both yield the same
probability density function for R and are thus equivalent. For the probability density

function of the first stochastic representation start from the standardized F-Riesz I
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probability density function to get

-5
I+ 7
v—p—1

pn/2
n > FP((n+V)/2) |R|7%|Z|%

p(R|Z,n,v) = (V_p_ 1 T,(n/2)T,(v/2)

(550)

Now, starting from the standardized inverse F-Riesz I1 probability density function we

have
v+n
n P2 (v +n)/2) pil n -
R/ S P R =|Z 2| —— +7Z71
p(RIZ,n,v) (u—p—l) m /2t ) 7 <,,_p_1+ )
(551)
n O\ Ty((w4n)/2) oo et v =
‘<u—p—1> T2, (njg) o 2 2 A oy
(552)
n N2 D(wan)/2) o e o] -
:(1/——1) = R|~%|Z|3 __z+1‘ :
P »(/2)T, (n/2) v—p—1
(553)

which is the same probability density function as in (550). Thus both stochastic repre-
sentations are equivalent.

For the score we have start from (479) to get

-
logp (R|S 1 —p—1 B
dlogp (R ,naV):VeC<”V21_(V+n)<”p2+R> ) G,
n

Ovech(Q2) T 2 v—p-—1
(554)
such that
dlogp (R|X,n,v)  9Op(R|X,n,v) dvech(£2) (555)
Ovech(2)T  Ovech(2)T Ovech(X)
1 1 -\’ 1
= e (2 “wen (P2 s 1w ) Glort
2 v—p—1 n n
(556)
SN T
_1 ecc(vETL—(v+n) =+ " R G (557)
9V v—p—1 '
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For the Fisher information matrix we have

9?logp (R|X, n,v)
dvech(X)dvech(X) T

(558)

v—p—1
v 0% log |2 n+ v 0*log |*=F 2+R‘ (559)
2 0vech(X)dvech(Z)T 2 Ovech(X)dvech(X)T

--3GT (= 'ex )@

n+v (v—p-—1 2 v—p—1 -1 v—p—1 -1
+ < P > el ((pZH—R) ® (p2+R> )G
2 n n n

(560)
_gGT (T 'ez G
2

+n—;—u<1/—§—l> GT<(Q+R)_1®(Q+R)_1>G (561)

VAT el -1
2G Q] R )G

+ n+v (1/ —p— 1)2 aT <C;zT 2 CS—2T> ((I X C(_leCﬁT)_l @ (I N CS}IRCS}T)_I) (C;zl .

2 n
(562)

Now, Zgoio = CﬁlRCaT follows a matrix F distribution with scale matrix I as

defined in Theorem 2.4.9. of [Kollo and Rosen 2005 They derive on p. 265,

E [((I + C§1RC§T> e (I + C;fRC;f) _1)} (563)
— <C3I + caKpp + cavec (I) vec (I)T) (564)
= < c3 — ca)l+ ey (T+ Kpp) + cavec (I) vec (I)T> (565)
= ((es — e)T 426G + eavee (T vee (D)) (566)
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with according to their p. 263

e PSS S DR (P S
C4_(”+V_1)(n+u+2) ((n p 2+n+y> 2 <1+ . > 1), (567)
632n;:cl((n—P—2)cz—cl)—(n+u+1)04, (568)

nv—p—2)+n’+n
(v—p)(v—p—1)(v—p—3)
_ n?(v—p—2)+2n
TP —p-D—p-3) (570)

Cy =

(569)

Thus
9?logp (R|X, n,v)
I - 1
[8vech(2)8vech(E)T} (571)
_ VAT (vt -1
-G (e nT)G
_p—_1\2
U ;— v <V Z > G’ (CaT ® C§T> ((03 — )1+ 2¢4GG™T + ¢yvec (I) vec (I)T) (CS_)l ® Cq'

(572)
_ VAT (v-1 -1
= 5G (z'exhG

2
o <U s 1) GT ((e3—ea) (27 @ Q7Y +204GGT (271 @ 27) + eavee (7)) vee (2
(573)
= %GT (= l'ex )G
n+v

2

GT ((C3 —cyq) (271 ® 271) + 2¢4 (271 ® Zfl) + ¢yqvee (271) vec (Zfl)T) G
(574)
L T -1 -1 -1 1\ T
= §G ((1/ —(n+v)(cs+c) (X = (n+v)egvec (1) vec (B71) ) G.
(575)

d

Commented out is the proof that an inverse matriz-F distribution with 2% expectation
s again a matriz-F distribution with 3 expectation and switched degree of freedoms. For

the covariance matriz use|Kollo and Rosen 2005, Theorem 2.4.15. together with (?7.
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