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Abstract

We study discrete-time predictable forward processes when trading times do not co-

incide with performance evaluation times in the binomial tree model for the financial

market. The key step in the construction of these processes is to solve a linear func-

tional equation of higher order associated with the inverse problem driving the evolution

of the predictable forward process. We provide sufficient conditions for the existence

and uniqueness and an explicit construction of the predictable forward process under

these conditions. Furthermore, we show that these processes are time-monotone in the

evaluation period. Finally, we argue that predictable forward preferences are a viable

framework to model preferences for robo-advising applications and determine an optimal

interaction schedule between client and robo-advisor that balances a tradeoff between in-

creasing uncertainty about the client’s beliefs on the financial market and an interaction

cost.
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1 Introduction

Classical expected utility maximization requires to determine ex ante three basic elements: the

investment horizon, the market model, and the performance criterion in terms of a utility func-

tion applying at the chosen terminal time. This fundamental setup has, however, two important

limitations. First, the investor must pre-specify her future risk preference for evaluating the

performance of investment strategies and the market model for describing asset dynamics for

the entire investment horizon. As a consequence, the risk preference and the market model

cannot be adjusted to new market observations over time. This is problematic, especially when

the investment horizon lies in the distant future. Second, the investment horizon needs to be

set before the investor enters the market.

Forward performance processes are an alternative performance criterion that can address

these issues. Their continuous-time version was introduced by Musiela and Zariphopoulou in

Musiela and Zariphopoulou (2006, 2008, 2009, 2010), and further developed in, for example,

Chong (2019); He et al. (2021); Henderson and Hobson (2007); Hu et al. (2020); Källblad

(2020); Källblad et al. (2018); Liang and Zariphopoulou (2017); Nadtochiy and Tehranchi

(2017); Shkolnikov et al. (2016); Žitković (2009). In contrast, the discrete-time case is less

well understood. To the best of our knowledge, the only two studies so far concerned with the

analysis thereof are Angoshtari et al. (2020), where the framework was first introduced, and

Strub and Zhou (2021) who extend some of the key results therein to more general models for

the financial market and investigate the associated dynamcis of risk preferences. An advantage

of the discrete-time formulation of forward performance processes is that those are predictable

instead of just adapted. This leads to a more intuitive relation of the utility functions at two

consecutive time points. We herein build on the work of Angoshtari et al. (2020), and aim to

extend their key results to the multi-period binomial tree model for the financial market. A

key feature, both conceptually and technically, of this extension is that performance evaluation

times generally do not coincide with trading times, but occur at a lower frequency. This setting

is of particular relevance for wealth management, where interaction with the client often occurs
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at a lower frequency than trading.

According to the general scheme developed in Angoshtari et al. (2020), the key step in

the construction of a predictable forward process is to solve an associated inverse investment

problem, where one is given an initial utility function and model for the market and seeks

to determine a utility function applying at terminal time such that the initial utility function

becomes the value function of the resulting expected utility maximization problem. Whereas

this is a single-period problem in the binomial case studied in Angoshtari et al. (2020), we herein

face a multi-period inverse investment problem. Because the financial market is complete, the

results of Strub and Zhou (2021) apply and a solution to the multi-period inverse investment

problem can be obtained by solving an associated generalized integral equation. In the binomial

tree model considered herein, the associated generalized integral equation is a linear function

equation of higher order. Our main technical contributions are sufficient conditions for existence

and uniqueness for the associated equation as well as an explicit construction of a solution

under those conditions. An overview of the general theory of functional equations can be found

for example in Kuczma et al. (1990), Kress et al. (1989), Polyanin and Manzhirov (2008), or

Zemyan (2012). There are interesting applications of this theory in fields as diverse as geometry,

probability theory, financial management, or information theory.

We provide a separate treatment of the associated linear functional equation of higher

order for the cases where market parameters are homogeneous and heterogeneous throughout

a performance evaluation period in Sections 3 and 4 respectively. For the case of homogeneous

market parameters, we adapt the techniques of Kuczma et al. (1990) to reduce the original

higher-order equation to a system of linear equations of order one. This technique cannot be

directly extended to the more complex case of heterogeneous market parameters. We approach

this case by first deriving a relation between a sequence of single-period inverse investment

problems and the multi-period counterpart. Based on this connection, we then establish an

equivalence between the original functional equation of higher order and a system of equations of

order one related to the construction of an auxiliary single-period forward process. In addition
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to the explicit construction, we also show that discrete-time predictable forward performance

processes are decreasing in the evaluation period. In continuous time, forward performance

processes are not necessarily monotone in time. However, continuous-time forward performance

processes that are time-monotone often allow for more explicit results, see, e.g., Musiela and

Zariphopoulou (2009) and Berrier et al. (2009).

The second major contribution of this paper is an application of multi-period discrete-time

predictable forward processes as a framework to model preferences for robo-advising. To the

best of our knowledge, this is the first application of the forward theory to the asset allocation

problem faced by a robo-advisor. Robo-advisors constitute a class of wealth management

advisors that offer asset allocation recommendations and implementations based on algorithms

automated by software (see, for example, Beketov et al. (2018), Capponi et al. (2021), Cui et al.

(2019), Alsabah et al. (2021), or Dai et al. (2021b)). Forward processes have three important

features making them expedient for robo-advising applications.

First, the construction of forward processes assures that optimal investment strategies are

time-consistent. This is in stark contrast to the dynamic mean-variance objective. Whenever

preferences are time-inconsistent, one has to decide on whether to work with pre-committed

or equilibrium strategies, and there does not seem to be a canonic choice for robo-advising

applications. Capponi et al. (2021) and Dai et al. (2021a) work with equilibrium strategies

while Cui et al. (2019) introduce a mean-variance induced utility functions to avoid the issue

altogether. However, it seems also plausible to work with pre-committed strategies and regard

the robo-advisor as a pre-committment device. Working with forward processes avoids this

discussion and leads to strategies that are globally optimal.

Second, forward processes accommodate dynamically changing investment horizons. While

this feature is an advantage for portfolio selection in general, it is of particular relevance for

robo-advising applications. Imagine a situation where the investment horizon of a client is

reached, but the client does not withdraw her funds. How should the robo-advisor act in this

situation if it aims to continue investing in the best interest of the client? Forward preferences
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provide an elegant solution to this problem: Continue investing in a manner that is consistent

with previous preferences and decisions by updating preferences according to the martingale

optimality principle.

Third, forward preferences allow for a dynamic updating of the model for the financial

market. In the context of robo-advising, this allows us to integrate changing beliefs of the client

into the dynamic asset allocation process. Integrating personal beliefs about the distributional

characteristics of the risky assets into the portfolio optimization process has a long tradition

starting from the seminal work of Black and Litterman (1991, 1992).

In addition to these general advantages of forward performance processes, the specific class

we investigate herein allow for the additional feature that trading times do not necessarily

coincide with performance evaluation times. This is of practical relevance for robo-advising

applications where trading typically occurs at a a higher frequency than interaction with the

client. We thus consider a client of a robo-advisor whose preferences are described by a discrete-

time predictable performance process. On the one hand, the client has time-varying beliefs

about the financial market and communicates these at infrequently occurring interactions with

the robo-advisor. On the other hand, the robo-advisor manages the portfolio on behalf of the

client period-by-period based on the assessment of the market the client communicated at the

last interaction time. The client seeks to determine an optimal schedule for interacting with the

robo-advisor that balances a tradeoff between accuracy about the current beliefs of the client

about the market parameters and an interaction cost reflecting the time and effort required

to interact with the robo-advisor. This problem is inspired by Capponi et al. (2021), who

analyze a different tradeoff, namely between uncertainty about the risk preferences of the agent

and behavioral biases the in the preferences communicated by the agent. Different from their

setting, we do not consider uncertainty over preferences and behavioral biases the client might

have when communicating her preferences. Instead, we consider uncertainty about the client’s

beliefs about the financial market.

We study the problem of determining an optimal interaction schedule for an investor whose
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initial preferences are described by a CRRA utility function under two alternative criteria: a

robust approach over a set of possible evolutions of beliefs and an explicit updating rule where

the probability of an upward movement of the stock is a maximum likelihood estimator. For

the robust criterion, we characterize the optimal interaction schedule and find that it balances a

tradeoff between interaction cost and expected loss in performance due to the inaccuracy about

the market parameters. As one could intuitively expect, the optimal interaction schedule is

increasing in the interaction cost and decreasing in a uniform increase of uncertainty about

the market parameters. However, the effect of a non-uniform increase in the uncertainty is

more intricate, and it can indeed happen that the optimal interaction schedule increases when

uncertainty about the market parameters in the near future increases. This occurs because

an increase in the uncertainty about market parameters in the near future harms performance

after each interaction time. Interacting more frequently therefore does not necessarily lead

to better performance. We also numerically investigate how the optimal interaction schedule

depends on the risk-aversion of the client. Typically, a more risk-averse client is interacting more

frequently with the robo-advisor than a less risk-averse client. However, when the interaction

cost is large and either the expected return of the risky asset is close to the risk-free return or

the risk-aversion is already large, then an increase in risk-aversion can lead to an increase of

the optimal interaction schedule. In this case, the investment in the risky asset is very small,

and the updating of the probability for a positive outcome does not lead to a significant change

in optimal investment strategies. Numerical studies under the criteria where the probability

for an upward movement of the stock is updated according to a maximum likelihood criterion

largely conform with the above findings.

The remainder of this paper is organized as follows. In Section 2, we introduce the model

for the financial market and review the definition and preliminary results for discrete-time pre-

dictable performance processes. We provide sufficient conditions for existence and uniqueness

and an explicit construction of the discrete-time predictable forward process for homogeneous

market parameters in Section 3 and for heterogeneous market parameters in Section 4. In
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Section 5, we discuss discrete-time predictable forward processes as a potential framework to

model preferences for robo-advising applications. Section 6 concludes the paper.

2 Discrete-time predictable forward performance pro-

cesses: Model and definition

In this section, we introduce the notion of discrete-time predictable forward performance pro-

cess with evaluation period larger than one in the binomial tree model which was originally

presented in Cox et al. (1979) for option pricing. Discrete-time predictable forward performance

processes were introduced in Angoshtari et al. (2020) for general models of the financial market.

However, their analysis is limited to the single-period binomial model where trading dates and

performance evaluation dates coincide. The complete semimartingale model in Strub and Zhou

(2021) is more general than the setup of this paper, but they do not provide conditions for

existence and do not explicitly construct discrete-time predictable forward processes as we will

herein.

The investor starts at time t0 = 0 with preferences over wealth represented by a utility

function U0. We herein assume that any utility function U : R+ → R is twice continuously

differentiable, strictly increasing, strictly concave and satisfies the Inada conditions. We fix a

probability space (Ω,F ,P), where P denotes the real (historical) probability measure on (Ω,F).

Throughout the paper, N denotes the set of positive integers and N0 is the set of nonnegative

integers. The probability space is endowed with a filtration F = (Fn)n∈N0
. We suppose that

the investor trades between a risk-free bond and a single stock at discrete times tn, n ∈ N0, and

evaluates her portfolio at performance evaluation times (τk)k∈N0 , which is a stochastic process

taking values in {tn, n ∈ N0} such that τ0 = 0, τk+1 > τk and τk is Fτk−1
measurable. This

measurability requirement implies that the length of each evaluation period is known at the

beginning of the respective period. Unless mentioned otherwise, we consider a fixed evaluation

period length m,m ∈ N, i.e., τk = tkm, k ∈ N0. This assumption is not crucial and made
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primarily for safe notation. Additionally, for a simplified notation, we will from now on assume

that tk = k.

When m = 1, trading times and performance evaluation times coincide and the model

reduces to the one extensively studied in Angoshtari et al. (2020). However, in general, the

evaluation period length is strictly larger than one and trading thus occurs at a higher fre-

quency than performance evaluation. This separation between trading times and performance

evaluation times is a key feature of our model and will be at the heart of our analysis and

application. We remark that we make an implicit assumption that trading is more frequent

than performance evaluation and the investor trades simultaneously whenever evaluating her

performance. This is natural. Performance evaluation without concurrent trading would not

be observable.

Let Rn denote the total return of the stock over period [n − 1, n). The risk-free bond

does not offer any interest. The return process R = (Rn)n∈N is adapted and Rn takes on two

possible values, un and dn, with probabilities pn := P[Rn = un|Fn−1] and 1 − pn = P[Rn =

dn|Fn−1] respectively. The market parameters (dn)n∈N, (un)n∈N, and (pn)n∈N are allowed to be

random processes. We assume that u(k−1)m+j, d(k−1)m+j, and p(k−1)m+j are F(k−1)m-measurable

for every k ∈ N and j ∈ {1, 2, . . . ,m}. This assures that all market parameters are known

at the beginning of each (performance) evaluation period [(k − 1)m, km]. The measurability

assumptions on the market parameters are critical for the results presented herein and relaxing

them would present a significant challenge. In order to assure absence of arbitrage, we further

assume that 0 < dn < 1 < un and that 0 < pn < 1. Under these assumptions, the risk-

neutral probability measure Q with qn = Q [Rn = un|Fn−1] = 1 − Q[Rn = dn|Fn−1] given by

qn = 1−dn
un−dn

∈ (0, 1), n ∈ N, is equivalent to P and qn is the unique risk-neutral probability for

an upward movement of the stock in the period [n− 1, n].

Trading strategies are described by means of predictable processes π = (πn)n∈N, where πn

denotes the dollar amount invested in the risky asset over trading period [n− 1, n). A portfolio

is constructed by following the trading strategy on the stock while investing all the remaining
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wealth in the risk-free bond. Given an initial wealth x > 0 and self-financing trading strategy

π, the wealth process Xπ = (Xπ
n )n∈N evolves according to Xπ

n = x +
∑n

i=1 πi(Ri − 1). A

trading strategy π as well as the associated wealth process Xπ are called admissible if Xπ is

nonnegative. We denote by A(n, x) the set of admissible trading strategies (πk)k⩾n and by

X (n, x) the associated wealth processes (Xπ
k )k⩾n starting from Xπ

n = x, n ∈ N, and abbreviate

A(0, x), X (0, x) by A(x), X (x). We often drop the explicit dependence of a wealth process on

the trading strategy and write X ∈ X (n, x).

We next present the definition of discrete-time predictable forward performance processes

with evaluation period length m.

Definition 1. A family of random functions {Ukm : R+ × Ω → R|k ∈ N0} is called a discrete-

time predictable forward performance process with evaluation period length m ∈ N (a m-forward

process in short) if the following conditions hold:

(i) U0(x, ·) is constant and Ukm(x, ·) is F(k−1)m-measurable for each x ∈ R+ and k ∈ N.

(ii) Ukm(·, ω) is a utility function for almost all ω ∈ Ω and all k ∈ N0.

(iii) For any initial wealth x > 0 and admissible wealth process X ∈ X (x),

U(k−1)m

(
X(k−1)m

)
⩾ E

[
Ukm (Xkm)

∣∣F(k−1)m

]
, k ∈ N.

(iv) For any initial wealth x > 0, there exists an admissible wealth process X∗ ∈ X (x) such

that

U(k−1)m

(
X∗

(k−1)m

)
= E

[
Ukm (X∗

km)
∣∣F(k−1)m

]
, k ∈ N.

Definition 1 is analogous to its single-period counterpart, but we are now interested in

the case where trading occurs more often than performance evaluation. See Angoshtari et al.

(2020) for a detailed discussion of the definition and a theoretical framework of discrete-time
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predictable forward performance processes. Considering discrete-time predictable forward per-

formance process with evaluation period larger than one is more general mathematically and

also relevant for applications. It is increasingly the case that trading is automated and executed

by machines at a higher frequency than monitoring and analyzing of the investment portfolio

by a human agent. Modelling a framework where trading occurs at a higher frequency than

performance evaluation and preference updating is thus important for investment practice.

Property (i) requires that preferences applying at the end of an evaluation period are known

at the beginning of that period. This reflects the predictability of discrete-time predictable

forward processes adapted to multi-period evaluation of the performance. Properties (iii) and

(iv) demand that an m-forward process evolves under the guidance of Martingale Optimality

Principle and ensure time-consistency of optimal strategies. In addition, properties (iii) and

(iv) imply that

U(k−1)m

(
X∗

(k−1)m

)
= ess sup

Xkm∈X
(
(k−1)m,X∗

(k−1)m

)E
[
Ukm (Xkm)

∣∣∣∣F(k−1)m

]
. (1)

Iteratively solving (1) leads to the construction of the m-forward process, see Angoshtari et al.

(2020) for a detailed exposition. The crucial step is to solve the following inverse investment

problem: Given an initial utility function U0, we seek for a forward utility function Um such

that for any x > 0,

U0(x) = ess sup
Xm∈X (x)

E [Um (Xm)] = sup
π∈A(x)

E
[
Um

(
x+

∑m

i=1
πi(Ri − 1)

)]
. (2)

One can then construct U2m, U3m, ... by repeatedly solving problem of the form (2) condition-

ally on updated information available at next evaluation point and arguing that this solution

satisfies the required measurability conditions. We emphasize that obtaining a solution that

is measurable as a function of the market parameters is necessary for the construction of a

predictable forward process, cf. Strub and Zhou (2021, Remark 2.2) for details.

Remark 1. When deriving the solution to this inverse investment problem (2), we argue that

10



Liang, Strub, and Wang: Predictable Forward Performance Processes

the constructed forward utility function depends in a measurable way on all market parameters

at the previous evaluation time, and that this will allow us to obtain a predictable process.

Therefore, the dynamic version of the sequence of random problems (1) can be reduced to the

deterministic version (2).

In analogy to the terminology in Strub and Zhou (2021), we will refer to an initial utility

function U0 and a utility function Um solving (2) as an m-forward pair (U0, Um). Note that our

assumptions imply that the model input is known at the beginning for the evaluation period

as a deterministic triplet ((pi)i=1,...,m, (ui)i=1,...,m, (di)i=1,...,m). With slight abuse of notation,

we denote the unique equivalent probability measure on this truncated model only for single

evaluation period again by Q.

A key result for the theory of discrete-time predictable forward processes is the equivalence

between the inverse investment problem (2) and a generalized integral equation for the inverse

marginal or the conjugate corresponding to the involved forward pair. This was shown for the

binomial market in Angoshtari et al. (2020) and generalized to complete semimartingale models

in Strub and Zhou (2021). To state this result, we recall the definition of an inverse marginal

function. An inverse marginal function I(y) : R+ → R+ is continuously differentiable, strictly

decreasing and satisfies limy→+∞ I(y) = 0 and limy→0+ I(y) = ∞. For a given utility function

U(x), x ∈ R+, I(y) = (U
′
)−1(y) is the inverse marginal function corresponding to U(x). We

denote the set of utility functions by U , the set of inverse marginal functions by I. According

to Therem 2.4 in Strub and Zhou (2021), see also Theorems 5.1 and 5.2 in Angoshtari et al.

(2020) for an earlier version in the single-period binomial setting, solving the inverse investment

problem (2) in the space U of utility functions is equivalent to finding a solution to

I0(ŷ) = EQ

[
Im

(
ŷ
dQ
dP

)]
, ŷ > 0, (3)

in the space I of inverse marginal functions in the following sense: If (U0, Um) is an m-forward

pair solving (2), then the associated inverse marginal functions (I0, Im) solve (3). Vice versa, if
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(I0, Im) is a pair of inverse marginal functions satisfying (3), then the associated utility functions

satisfy (2) up to a constant, i.e., there is a constant c ∈ R, which can be expressed explicitly in

terms of U0, Im, and the market parameters, such that Ũm(x) := Um(x)+c satisfies (2). Because

it is often the case that finding a solution to the generalized integral equation (3) is considerably

easier than solving the inverse investment problem (2), the generalized integral equation (3)

plays an important role in the theory of discrete-time predictable forward processes. Our main

technical contribution is to provide a solution to (3) for the binomial market when trading

times do not coincide with performance evaluation times, and thus (3) reduces to a linear

functional equation as in Angoshtari et al. (2020) but of higher order. Solving (3), together

with a thorough analysis of the result, will be the content of the following Sections 3 and 4 for

the case of time-homogeneous and time-heterogeneous market parameters respectively.

3 The case of time-homogeneous market parameters

We first develop an iterative method to solve the linear functional equation (3) associated with

the inverse investment problem (2) for the setting of time-homogeneous market parameters.

Specifically, we suppose for this section that the deterministic triplet ((pi)i=1,...,m, (ui)i=1,...,m,

(di)i=1,...,m) of the multi-period binomial tree remains constant for different trading periods

within one evaluation period, pi = p, ui = u, and di = d for i = 1, . . .m. Thus, while market

parameters are still updated at the beginning of each evaluation period, we assume for this

section that they are constant throughout each evaluation period. This slight loss of generality

allows us to derive more explicit and interpretable results.

Following Angoshtari et al. (2020), we set a = 1−p
p

q
1−q

, b = 1−q
q

, c = 1−p
1−q

. When trading

occurs more frequently than performance evaluation, the price process of the risky asset in a

given evaluation period corresponds to an m-period binomial tree with homogeneous coeffi-

cients: There are m + 1 possible outcomes which, when ordered from the lowest price level to

the highest, occur with the probabilities
(
m
i

)
pi(1 − p)m−i, i = 0, 1, ...,m, where the transition

probability is denoted by p and
(
m
i

)
= m!

i!(m−i)!
are binomial coefficients. Therefore, (3) can be
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written as

I0(ŷ) =
∑m

i=0

(
m

i

)
qi(1− q)m−iIm

(
ŷ
qi(1− q)m−i

pi(1− p)m−i

)
, ŷ > 0. (4)

The main technical contribution of this section will be a characterization of solutions to the

linear functional equation (4) in the class of inverse marginal functions including conditions for

uniqueness.

For a given initial utility function U0 ∈ U and associated inverse marginal function I0 ∈ I

we define the following auxiliary functions,

Φ0
0(y) = I0(ac

my)− bI0(c
my) and Ψ0

0(y) = y−logabI0(c
my), y > 0, (5)

and

Φj
i (y) =

(1 + b)m

bj

( ∞∑
n1=0,...,ni=0

(−1)p(n1,...ni)bqj;(n1,...ni)I0
(
arj;(n1,...ni)

+1cmy
)

− b
∞∑

n1=0,...,ni=0

(−1)p(n1,...,ni)bqj;(n1,...,ni)I0 (a
rj;(n1,...,ni)cmy)

)
,

Ψj
i (y) = y−logab (1 + b)m

bj

∑∞

n1=0,...,ni=0
(−1)p(n1,...,ni)bqj;(n1,...,ni)I0 (a

rj;(n1,...,ni)cmy) ,

(6)

for y > 0, i = 1, . . . ,m − 1 and j = 0, 1, . . . , i, where the exponents are defined as p(n1,...,ni) =∑i
k=1 nk, qj;(n1,...,ni) = −

∑j
k=1 nk +

∑i
k=j+1 nk, and rj;(n1,...,ni) =

∑j
k=1 nk −

∑i
k=j+1(nk + 1).

For a given pair of functions (Φ,Ψ), we say that the pair satisfies condition (C1) if

Φ
′
(y) > 0 and either a > 1 and lim

y→∞
Ψ(y) = 0 or a < 1 and lim

y→0+
Ψ(y) = 0.

We say that the pair of functions (Φ,Ψ) satisfies condition (C2) if

Φ
′
(y) < 0 and either a > 1 and lim

y→0+
Ψ(y) = 0 or a < 1 and lim

y→∞
Ψ(y) = 0.
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Next, we iteratively define the sequence (Ai)i=0,...,m starting with A0 = 0 by setting

Ai+1 =

 Ai + 1 if
(
ΦAi

i ,Ψ
Ai
i

)
satisfies (C1),

Ai if
(
ΦAi

i ,Ψ
Ai
i

)
satisfies (C2),

for i = 0, . . .m− 1.

The sequence (Ai)i=0,...,m is typically well defined for CRRA utility functions U0(x) = logx,

x > 0 and U0(x) = (1 − 1
θ
)−1x1−

1
θ , x > 0, where 1 6= θ > 0. Exceptions are the cases where

p = 1
2

or θ = − loga b. In these cases, (Φj
i ,Ψ

j
i ) satisfy neither (C1) nor (C2) for any i, j, but

one can still provide a natural candidate for the forward process within the family of power

and log utilities and show that this is indeed a forward process. However, uniqueness generally

does not hold in this case, (Angoshtari et al., 2020, Example 6.1). Therefore, we emphasize

that the condition that (Ai)i=0,...,m exists is sufficient, but not necessary for the existence and

uniqueness of the forward process. How to solve the corresponding functional equation and

construct the forward performance process when (Ai)i=0,...,m does not exist remains an open

problem for future research.

We now state the main result of this section which yields a construction method for an

m-forward pair and presents an explicit relationship between the associated inverse marginal

functions, I0 and Im. This theorem is the multi-period analogue to the single-period result in

(Angoshtari et al., 2020, Theorem 7.1).

Theorem 1. Let U0 ∈ U be a utility function with associated inverse marginal function I0 and

suppose that (Ai)i=0,...,m exists. Define Im : (0,∞) → (0,∞) by

Im(y) :=
(1 + b)m

bAm

∑∞

n1=0,...,nm=0
(−1)p(n1,...,nm)bqAm;(n1,...,nm)I0(a

rAm;(n1,...,nm)cmy), y > 0, (7)

and Um : (0,∞) → (0,∞) by

Um(x) := U0(1) + EP

[∫ x

Im( dQ
dPU

′
0(1))

I−1
m (t)dt

]
, x > 0.
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Then Um is the unique utility function solving the inverse investment problem (2) and Im is

the unique inverse marginal function solving the linear functional equation (4). Moreover, the

optimal wealth solving (2) is given by

X∗
m(x) = Im

(
U ′
0(x)

dQ
dP

)
.

From the explicit construction of an m-forward pair in Theorem 1, we obtain the following

corollary showing that the forward utility Um depends in a measurable manner on the param-

eters of the financial market. This measurable dependence is crucial because it allows us to

extend all results derived for an m-forward pair back to the level of a discrete-time predictable

forward performance process with evaluation period length m.

Corollary 1. Let U0 ∈ U be a utility function and let

M :=
{
(p, u, d) ∈ R3

∣∣0 < p < 1, 0 < d < 1 < u, (Ai)i=0,...,m exists
}

be the set of market parameters under which (Ai)i=0,...,m exists. The mapping M → R defined

by (p, u, d) 7→ Um(x), where Um(x) is defined as in Theorem 1, is Borel-measurable for any

x > 0.

Having established an explicit construction of an m-forward pair in Theorem 1, we next

present the comparison between the discrete-time predictable forward performance process with

evaluation period length m and the single-period discrete-time forward process after m-periods

of updating when the market parameters are homogeneous. We denote the latter process by

Ũ = (Ũk)k=∈N0 and are interested in comparing Ũm with Um. Given an initial performance

criterion U0 and the homogeneous market parameters (p, u, d), the process {Ũ1, Ũ2, . . . , Ũm} is

constructed according to the general scheme outlined in Section 7 of Angoshtari et al. (2020).

Proposition 1. Assume that the model input parameters (p, u, d) are deterministic and remain

constant for m consecutive periods. If (Ai)i=0,...,m exists, then the single-period forward process
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Ũi exists for i = 1, . . . ,m, and satisfies Um(x) = Ũm(x) for all x > 0.

Furthermore, the optimal wealth processes corresponding to the m-forward and period-by-

period forward coincide as well. Indeed, denoting the optimal wealth process corresponding to

Ũ by X̃, Theorem 2.0 in Kramkov and Schachermayer (1999) yields that

X̃∗
m(x) = Ĩm

(
ρmŨ

′

m−1

(
X̃∗

m−1(x)
))

= Ĩm

(
ρmŨ

′

m−1

(
Ĩm−1

(
ρm−1Ũ

′

m−2

(
X̃∗

m−2(x)
))))

= Ĩm

(
ρmρm−1Ũ

′

m−2

(
X̃∗

m−2(x)
))

= Ĩm

(
ρmρm−1 × · · · × ρ1U

′

0(x)
)

= Im

(
dQ
dP

U
′

0(x)

)
,

where for i = 1, 2, ...,m, ρi = q
p
1{Ri=u} +

1−q
1−p

1{Ri=d} by assumption of homogeneous market

parameters.

Proposition 1 allows us to establish the following result showing that the m-forward utility

Um is monotone in the duration of the evaluation period.

Proposition 2. Let U0 be an initial utility function and suppose that (Ai)i=1,...,m exists for any

m ∈ N. Then the m-forward Um(x) is non-increasing for any fixed x ∈ R+ in the length of

evaluation period m ∈ N, and strictly decreasing if the expected excess return of the risky asset

is non-zero.

This result is consistent with investors’ intuition that the utility which can be derived from

a fixed monetary amount decreases over time. An example with power utility function in which

the forward performance can be computed explicitly is given below as an illustration conforming

with Proposition 2.

Example 1. Let U0(x) = (1 − 1
θ
)−1x1−

1
θ , x > 0, and assume that 1 6= θ > 0, θ 6= −logab. By
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applying Theorem 1,

Im(x) =

(
1 + b

cθ(a−θ + b)

)m

y−θ,

Um(x) =

(
1 + b

cθ(a−θ + b)

)m/θ

U0(x),

Um+1(x) =

(
1 + b

cθ(a−θ + b)

)(m+1)/θ

U0(x) =

(
1 + b

cθ(a−θ + b)

)1/θ

Um(x)

We now discuss the value of
(

1+b
cθ(a−θ+b)

)1/θ
and show through direct computation that Um+1(x) ≤

Um(x). Recalling that a = 1−p
p

q
1−q

, b = 1−q
q
, c = 1−p

1−q
we have 1+b

cθ(a−θ+b)
= 1

q( p
q
)θ+(1−q)( 1−p

1−q
)θ

. Define

f(t) = q(p
q
)t + (1 − q)(1−p

1−q
)t − 1. Clearly, f(t) is strictly convex, f(0) = 0, t1 = 0 is one root

of f(t) = 0. According to Jensen’s inequality, we have f
′
(0) = qlog(p

q
) + (1 − q)log(1−p

1−q
) <

log(q p
q
+ (1 − q)1−p

1−q
) = 0. Hence, there is another strictly positive root t2 = 1 of f(t) = 0.

Therefore, f(θ) < 0, if 0 < θ < 1 and f(θ) > 0, if θ > 1. When 0 < θ < 1, f(θ) < 0,(
1+b

cθ(a−θ+b)

)1/θ
> 1 and Um(x) < 0, then Um+1(x) < Um(x). Analogously, when θ > 1, f(θ) > 0,(

1+b
cθ(a−θ+b)

)1/θ
< 1 and Um(x) > 0, then we still have Um+1(x) < Um(x). This example with

power utility functions illustrates Proposition 2 showing that the forward performance process

is strictly decreasing as the frequency of evaluation decreases, or equivalently, m increases.

We close this example by investigating which combinations of the market parameters lead to

the largest decreases of the forward performance process. We first consider the case when θ > 1,

and thus Um(x) > 0, and define the auxiliary function g(p) = 1

q( p
q
)θ+(1−q)( 1−p

1−q
)θ

. Straightforward

computations show that g(p) will first increase, attain its maximum at p = q and then decrease,

and that g(0) = (1− q)θ−1, g(1) = qθ−1. Therefore, we conclude that when q < 1
2
, p tending to

1 yields the largest decrease, while when q > 1
2
, p tending to 0 yields the largest decrease. An

analogous analysis holds for θ < 1. We thus conclude that the combinations of (p, q) approaching

(1, 0) or (0, 1) maximise the decrease of the forward utility Um(x),m ∈ N. Generally speaking,

when the risk-neutral probabilities deviate to the highest level from the historical real-world

measure, the forward performance process decreases fastest.
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4 The case of time-heterogeneous market parameters

In this section, we generalize the previous results to allow for an agent with heterogeneous

beliefs on future price movements across the trading periods constituting a given evaluation

period. Specifically, we consider the case where the deterministic triplet ((pi)i=1,...,m, (ui)i=1,...,m,

(di)i=1,...,m) characterizing the multi-period binomial tree is heterogeneous in time. We accord-

ingly set ai = 1−pi
pi

qi
1−qi

, bi = 1−qi
qi

, ci = 1−pi
1−qi

for i = 1, 2, ...,m. Observe that there are 2m possible

outcomes for the m-period binomial tree with heterogeneous market parameters. When ordered

from the lowest price level to the highest, they occur with probabilities
m∏
i=1

p
γj,i
i (1 − pi)

1−γj,i ,

j = 0, 1, ..., 2m − 1, where γj,i is defined as the i′th digit of the binary representation of j, i.e.,

(j)10 = (γj,m...γj,2γj,1)2, where zeros are filled in the front of the binary representation if it

contains less than m digits. In the current setting, the generalized integral equation (3) can

thus be written as the linear functional equation

I0(ŷ) =
∑2m−1

j=0

m∏
i=1

q
γj,i
i (1− qi)

1−γj,iIm


m∏
i=1

q
γj,i
i (1− qi)

1−γj,i

m∏
i=1

p
γj,i
i (1− pi)1−γj,i

ŷ

 . (8)

Analyzing (8) is more challenging than the homogeneous analogue (4) because the argument

of Im can in general not be transformed to an iterative form. However, we are still able

to characterize solutions to (8) within the class of inverse marginal functions and provide

conditions for the uniqueness of such a solution. This will be the main technical contribution

of this section.

For a given initial utility function U0 ∈ U and associated inverse marginal function I0 ∈ I

we define the following auxiliary functions,

Φ0(y) = I0(a1c1y)− b1I0(c1y) and Ψ0(y) = y−loga1 b1I0(c1y), y > 0, (9)
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Φ
(v1,...,vi)
i =

i∏
l=1

(1 + bl)

m∏
j=1

b
vj
j

( ∞∑
n1=0,...,ni=0

(−1)p(n1,...,ni)Q(v1,...,vi);(n1,...,ni)I0
(
R(v1,...,vi);(n1,...,ni)ai+1y

)

− b

∞∑
n1=0,...,ni=0

(−1)p0(i)Q(v1,...,vi);(n1,...,ni)I0
(
R(v1,...,vi);(n1,...,ni)y

))
,

Ψ
(v1,...,vi)
i = y

−(logai+1
bi+1)

i∏
l=1

(1 + bl)

m∏
j=1

b
vj
j

×
∞∑

n1=0,...,ni=0

(−1)p(n1,...,ni)Q(v1,...,vi);(n1,...,ni)I0
(
R(v1,...,vi);(n1,...,ni)y

)
,

(10)

for y > 0, i = 1, . . . ,m − 1, and (v1, . . . , vi) ∈ {0, 1}i, where Q(v1,...,vi);(n1,...,ni) =
i∏

k=1

b
nk(1−2vk)
k ,

R(v1,...,vi);(n1,...,ni) =
i∏

s=1

a
ns(2vs−1)+(vs−1)
s

i+1∏
u=1

cu and p(n1,...,ni) =
∑i

k=1 nk. We next iteratively

define the sequence {(α1, . . . , αi)}i=1,...,m, which will play a similar role as (Ai)i=1,...,m in the

previous Section 3. We start by setting (α1) = (1) if (Φ0,Ψ0) satisfies (C1), or (α1) = (0) if

(Φ0,Ψ0) satisfies (C2), and then iteratively define

(α1, . . . , αi+1) =

 (α1, . . . , αi, 1) if
(
Φ

(α1,...,αi)
i ,Ψ

(α1,...,αi)
i

)
satisfies (C1),

(α1, . . . , αi, 0) if
(
Φ

(α1,...,αi)
i ,Ψ

(α1,...,αi)
i

)
satisfies (C2),

for i = 1, . . .m− 1.

The following theorem constitutes an analogue of Theorem 1 and constitutes the main result

of this section. It provides an explicit expression for Im in terms of I0 with their corresponding

utility functions being an m-forward pair when market inputs are heterogeneous throughout

each evaluation period, and this expression in turn leads to a construction method for the

m-forward pair.

Theorem 2. Let U0 ∈ U be a utility function with associated inverse marginal function I0 and
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suppose that {(α1, . . . , αi)}i=1,...,m exists. Define Im by

Im(y) =

m∏
i=1

(1 + bi)

m∏
j=1

b
αj

j

∞∑
n1=0,...,nm=0

(−1)p(n1,...,nm)

m∏
k=1

b
nk(1−2αk)
k I0

(
m∏
s=1

ans(2αs−1)+(αs−1)
s

m∏
u=1

cuy

)
,

(11)

and

Um(x) := U0(1) + EP

[∫ x

Im( dQ
dPU

′
0(1))

I−1
m (t)dt

]
, x > 0.

Then Um is the unique utility function solving (2) and Im is the unique inverse marginal function

solving the generalized integral equation (8). Moreover, the optimal wealth solving (2) is given

by

X∗
m(x) = Im

(
U ′
0(x)

dQ
dP

)
.

Along the same lines as in the homogeneous case, the explicit construction of an m-forward

pair in Theorem 2 leads to the following corollary showing that Um is measurable in the market

parameters. We stress again the importance of this result because it immediately allows us to

extend the analysis herein on m-forward pairs to the level of discrete-time predictable forward

performance processes with evaluation period length m.

Corollary 2. Let U0 ∈ U be a utility function and let

M :=
{
(p, u, d) ∈ Rm×3

∣∣0 < pi < 1, 0 < di < 1 < ui, {(α1, . . . , αi)}i=1,...,m exists
}

be the set of market parameters under which {(α1, . . . , αi)}i=1,...,m exists and p, u, and d denote

the m×1 vectors (pi)
m
i=1, (ui)

m
i=1, and (di)

m
i=1 respectively. The mapping M → R defined by

(p, u, d) 7→ Um(x), where Um(x) is defined as in Theorem 2, is Borel-measurable for any x > 0.
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The analysis of this section showed that the heterogeneous case is not essentially different

from the homogeneous setting. Allowing for heterogeneous market parameters gives more

flexibility to model the financial market, but this comes at the expense of more complicated

notation and formulas.

5 Robo-advising applications

Personalized robo-advisors provide automatized advice on asset allocation and investment

strategies. They provide wealth management services for large number of clients and at lower

cost than traditional financial advisors. Robo-advising companies constitute a rapidly growing

part of the financial industry and are a prime example of FinTech, the application of technology

to improve financial services. In this section, we propose and discuss discrete-time predictable

forward performance processes as a potential framework for guiding asset allocation decisions

of robo-advisors.

5.1 Preference modelling for robo-advising applications

Although robo-advising has rapidly grown in popularity over the last decade and now consti-

tutes an important segment of modern investment industry, there is surprisingly little existing

research on preference modeling for robo-advising applications and on the quantitative mod-

elling of asset allocation decisions within those systems. Capponi et al. (2021) and Cui et al.

(2019) were the first papers discussing the portfolio optimization part of robo-advisors quanti-

tatively. While Capponi et al. (2021) proposed an adaptive mean-variance control model with

updating of the risk aversion for deriving optimal allocation policies, Cui et al. (2019) consid-

ered the framework of mean-variance induced utility functions and argued that this approach

has several desirable features from the perspective of robo-advisors. A further important study

is Dai et al. (2021b) who consider the mean-variance objective for log returns introduced in

Dai et al. (2021a), and provide an explicit formula for eliciting preferences in this setting. A
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comparison of the key features of asset allocation models for robo-advising is given in Table 1.

Table 1: Comparison of main features with key literature

Performance criterion Investment
horizon

Market
model

Capponi et al. (2021) Mean-variance with exogeneous
updating of risk aversion

finite,
set ex ante

discrete-
time

Cui et al. (2019) Mean-variance induced utility
maximization

finite,
set ex ante

discrete-
time

Dai et al. (2021b) Mean-variance for log returns finite,
set ex ante

continuous-
time

This paper m-forward process, endogeneous
updating of preferences

flexible discrete-
time

The work of Capponi et al. (2021) is most closely related to our paper and inspired many

of the ideas we will subsequently discuss. In their model, the market dynamics depends on

an observable time-homogeneous Markov chain representing economic regimes. Preferences

of the agent are modelled according to a multi-period mean-variance objective with a finite

investment horizon. A key feature of their model is that the risk preferences of the agent are

dynamic and stochastic. However, the robo-advisor cannot observe the risk preferences of the

agent at all times and thus has to construct a proxy risk aversion process which is then used

in the dynamic mean-variance optimziation problem. Only at times when the client and robo-

advisor interact will the later become aware of the idiosyncratic component of the client’s risk

preferences. Since interaction times occur at a slower pace than trading times, the robo-advisor

has to automatically construct a proxy for the risk preferences of the agent and trade on her

behalf between two consecutive interaction times.

The setting where trading occurs at a higher frequency than performance measurement

updating is reminiscent of the framework of m-forward processes we study herein and thus

prompted us to explore possible applications of our results for robo-advising. Different from

the setup in Capponi et al. (2021), we herein do not directly consider an information asymmetry

about time-varying and stochastic risk preferences of the client and also ignore the possibility

of behavioral biases when the client communicates her preferences. Instead of conveying the
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updated idiosyncratic component of the risk preferences, the client has time-varying beliefs

about the financial market and communicates those at infrequently occurring interaction times.

The risk preferences are then updated endogenously in response to the updated beliefs of the

client. For example, if the agent believes that the market is more volatile, then the risk-

preferences adjust to this in a way conforming with Martingale Optimality Principle. Unlike

in the setting of time-varying and stochastic preferences that are exogeneous, this endogeneous

updating of preferences assures time-consistency of optimal investment strategies.

Capponi et al. (2021) introduced a measure of portfolio personalization to analyze the follow-

ing tradeoff between higher and lower interaction frequencies: When the interaction frequency

is low, the robo-advisor has increasingly vague information about the current risk preferences

of the agent, but when the interaction frequency is high the updated risk preferences might be

subject to the behavioral biases of the agent. We herein perform a similar analysis where we

seek to determine an optimal interaction schedule balancing a tradeoff between not knowing

the client’s current beliefs about the market parameters and an updating cost reflecting the

time and effort required of the client to interact with the robo-advisor.

5.2 Optimal interaction schedule

We consider a client of a robo-advisor whose preferences are described by a discrete-time pre-

dictable forward process. At time zero, the client communicates her initial preferences, her

assessment of the market parameters, and her scheduled sequence of discrete-time interaction

times, corresponding to an interaction frequency 1/m, to the robo-advisor. The robo-advisor

then determines the forward utility and invests period-by-period on behalf of the agent until

their next point of contact after m periods. Apparently, the framework of multi-period pre-

dictable forward processes in discrete times we have developed above is applicable because the

robo-advisor receives the initial datum U0, the evaluation period length m, and estimation of

market parameters as the model input from the client.

For the asset allocation problem faced by the robo-advisor, the updating of parameters which
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determines investor’s utility function and investment strategy occurs at a lower frequency than

trading. It is plausible to assume that the client would update her assessment of the market

parameters in each trading period upon careful contemplation, but this only reflects on her

investment when interacting with the robo-advisor. We quantify the loss in performance due

to infrequent interaction with the robo-advisor by comparison with a benchmark in which the

agent manages the investment by herself and incorporates updated beliefs about the market

parameters at each point in time. By further incorporating an updating cost which occurs at

each interaction time, we aim to find the optimal updating frequency which maximizes the

expected performance. The updating cost can be interpreted as the aggregation of the time

and effort required of the client to interact with the robo-advisor.

Consider a client who considers two alternative interaction schedules, say A and B. Under

schedule A, the client updates her assessment of the market parameters period by period, while

under schedule B, the client maintains the same market parameters corresponding to her initial

assessment upon the next interaction time. For simplicity, we will focus on the updating of

p, the probability of an upward movement, and assume that the assessments of the possible

values of the return of the stock, u and d, are constant and the same for both schemes. In

the first period, the implied strategies corresponding to the two schemes are identical because

the forward process looks incrementally into the future. However, in subsequent periods, the

beliefs about the likelihood of an upward movement pi, i = 2, 3, ...,m under schedule A do not

necessarily coincide with the initial assessment maintained under schedule B, and the implied

investment strategies thus differ until the next interaction at time m. A similar analysis holds

for every evaluation period [(k − 1)m, km), k ∈ N.

In order to evaluate the performance of alternative interaction schedules, we consider an

investment horizon T and denote by P1 the probability measure where beliefs are updated in

each period. The operator E1 denotes the expectation under P1 and by U (1) the 1-forward

process. The performance of an interaction schedule corresponding to an evaluation period

length m < T is given by E1

[
U

(1)
T (X

(m)
T )

]
, where optimal wealth X(m) corresponds to the
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m-forward process. In the following, we study two approaches of determining the optimal

interaction schedule m∗: a robust approach and a specific example where the updating rule is

described by a maximum likelihood estimator.

5.2.1 A robust criterion: maximum possible loss

Under the robust approach, we seek to derive bounds on E1

[
U

(1)
T (X

(m)
T )

]
which hold under any

predictable updating rule. In other words, we allow for any predictable process (pi)i=1,...,T which

remains within a reasonable interval specified at the beginning of each evaluation period, and

then compute the performance corresponding to the worst possible specification this distribution

could take.

The transition probability for each trading period is given in reference to the initial prob-

ability p by pi = Dip, where Di is a Fi−1-measurable random variable and can take value in

the interval [Di,d, Di,u]. Di,d and Di,u are some constants satisfying 0 < Di,d ≤ 1 ≤ Di,u and

depending on the choice of interaction schedule m, thus pi is bounded between [Di,dp,Di,up].

To maintain absence of arbitrage, we must have 0 < pi < 1, and it is thus without loss of gen-

erality that Di takes values in a bounded interval. It seems plausible to assume that Di,u−Di,d

increases over time during one evaluation period (km, (k + 1)m], k ∈ N0, and then resets to a

smaller level at the beginning of next period after a new interaction with robo-advisors. Indeed,

this behavior reflects the intuition of increasing possible deviations from the current beliefs to

the original beliefs about the probability of a positive return in the time passed since the orig-

inal beliefs were formed. We model this behavior by assuming periodicity on Di,u and Di,d in

the interaction schedule m, i.e. Di,d = D̃(i mod m),d, Di,u = D̃(i mod m),u, for i = 1, . . . , T , where

mod denotes modulo operator and the sequences (D̃i,d)
T
i=1 and (D̃i,u)

T
i=1 are exogenously given.

Under the infrequent interaction schedule B, the agent updates her beliefs about transition

probability with robo-advisors at time point 0,m, 2m, ..., km, k ∈ N0, km < T , and in these

periods, the robo-advisor knows the up-to-date market parameters exactly and loss through

asymmetric information can thus be avoided, i.e., D̃1,u = D̃1,d = 1. In our analysis, price levels
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u and d of return Ri, i = 1, 2, ...,m remain unchanged and are estimated at the beginning of

the investment process. Let ai = 1−pi
pi

q
1−q

, b = 1−q
q
, ci =

1−pi
1−q

, i = 1, 2, . . . , T , and δ = 1+b

cθ1(a
−θ
1 +b)

.

We integrate an interaction cost into our analysis which reflects the time and effort needed

to interact with the robo-advisor. We suppose that this cost is proportional to the agent’s

current wealth in the following sense: Whenever the agent interacts with the robo-advisor, her

wealth is reduced from x to αx for some 0 < α ≤ 1.

The following results are derived under the further assumption that, whenever clients inter-

acts with the robo-advisor, the transition probability is set back to the original value p. This

assumption is made to obtain a more parsimonious setting and for tractability when deriving

bounds on the expected performance value under any predictable updating of beliefs.

Proposition 3. Suppose that the initial datum is of the form U0(x) = (1− 1
θ
)−1x1−

1
θ , x > 0, for

some 1 6= θ > 0, θ 6= −logab, and let T ∈ N be an evaluation horizon. Let m be an interaction

schedule that is a divisor of T , i.e., m ∈ N and T/m ∈ N, and let (Di)i=1,...,T be a predictable

process taking values in [Di,d, Di,u], where Di,d and Di,u satisfy the assumption of periodicity

in the interaction schedule m and are such that absence of arbitrage is maintained. Then, the

optimal expected performance value E1

[
U

(1)
T (X

(m)
T )

]
is bounded between

α( T
m
−1)(1− 1

θ
)

(
m∏
j=1

fj

) T
m

δT (1− 1
θ
)U0(x), α

( T
m
−1)(1− 1

θ
)U0(x)

 ,
where 1 − α denotes the proportional interaction cost and fj are given by f1 = δ

1
θ
−1 and

fj = min{fDj,u
, fDj,d

} if θ > 1, respectively fj = max{fDj,u
, fDj,d

} if θ < 1, with

fDj,u
=

C1(
C1 +

(
Dj,u(1−p)

1−Dj,up

)−θ

C2

) 1
θ

+
C2((

Dj,u(1−p)

1−Dj,up

)θ
C1 + C2

) 1
θ

,

fDj,d
=

C1(
C1 +

(
Dj,d(1−p)

1−Dj,dp

)−θ

C2

) 1
θ

+
C2((

Dj,d(1−p)

1−Dj,dp

)θ
C1 + C2

) 1
θ

,
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where C1 = pθq1−θ, C2 = (1−p)θ(1−q)1−θ, and j = 2, . . . ,m. Furthermore, fj is non-increasing

in Dj,u and non-decreasing in Dj,d.

The following proposition shows that the optimal interaction schedule m∗ is independent of

the evaluation horizon T when the agent takes a robust approach of maximizing the minimal

expected performance and the sequence of intervals [Di,d, Di,u], i = 1, 2, ..., T is set to repeat

itself after every updating as assumed above. This finding highlights the flexibility offered by

forward performance processes to model preferences of clients of robo-advisors.

Proposition 4. Let (Di,d)
∞
i=1 and (Di,u)

∞
i=1 be periodic in the interaction schedule and such that

absence of arbitrage is maintained. There exists an optimal updating schedule m∗ maximising

the minimal expected performance for any T which is a multiple of m∗. Moreover, the optimal

interaction schedule m∗ can be determined by maximising the function N → R given by

m 7→

(
α1− 1

θ

m∏
j=1

(fjδ
1− 1

θ )

) 1
m

. (12)

According to Proposition 4, the optimal interaction schedule m∗ depends on the market

parameters p, u, and d, the (constant) Arrow-Pratt measure of relative risk aversion 1/θ of the

initial datum of an agent, and the uncertainty about the evolution of future beliefs captured

in the sequences Di,d and Di,u, but not on the evaluation horizon T . In practice, at time

zero, we choose m∗ based on our current understanding of the market. At the subsequent

interaction time, we update the market parameters, and then choose a new optimal interaction

schedule. Therefore, market parameters, updating frequencies, preferences and investment

strategies move together forward in time.

Suppose for the following discussion that θ > 1, the case where θ < 1 can be treated

similarly. Since fjδ1−
1
θ ∈ (0, 1], the term

m∏
j=1

(fjδ
1− 1

θ ) is decreasing in m. On the other hand,

the base which belongs to (0, 1] raised to the power 1/m is increasing in m. Hence, there

are two extreme cases: First, when the rate of decline in α1− 1
θ

m∏
j=1

(fjδ
1− 1

θ ) is very slow, i.e.,

when the probability for a positive return hardly varies over different periods, then (12) is
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strictly increasing in m. In this case, the strategy of never interacting with the robo-advisor is

optimal, m∗ tends to +∞. Second, when the rate of decline in α1− 1
θ

m∏
j=1

(fjδ
1− 1

θ ) is very fast,

i.e., when pi changes substantially across periods and the updating cost is small, then (12) is

strictly decreasing in m. In this case, the strategy of period-by-period updating is optimal,

i.e., m∗ = 1. As we discussed earlier, the rate of decline is typically slow at first and then

increases as more and more time elapsed since the last interaction time as a consequence of the

increasing width Di,u−Di,d. Also, the rate of decline in 1/m is strictly decreasing, which means

the degree of growth resulted from the decreasing exponent is weakening as m increases. If this

is the case, we are typically able to determine a unique optimal interaction time m∗ which is

larger than one.

Intuitively, m∗ is increasing in the interaction cost and decreasing in the uncertainty about

parameters. These are the two competing forces in our model, and m∗ attempts to find an

ideal balance between them. In the following, we will confirm this intuition. We retain the

assumption that the sequence of intervals [Di,d, Di,u] is periodic and consider the case where

θ > 1.

First, from the above analysis one can directly infer that m∗ is increasing in the interaction

cost. Indeed, when α decreases, the rate of decline in α1− 1
θ

m∏
j=1

(fjδ
1− 1

θ ) is slower and the optimal

m∗ that maximises (12) will thus be larger. This implies that communication between the agent

and robo-advisors should be reduced if it comes at a high cost.

Second, m∗ is typically decreasing in the uncertainty about parameters. In other words, one

should update more frequently when there is a larger range of possible values for the transition

probability, while it is better to update less frequently when the parameter is stable and we can

estimate it with more confidence. To substantiate this intuition, we consider a uniform increase

of uncertainty and approximate it by the case where all factors fj, j = 2, . . . ,m simultaneously

decrease to f ′
j = Cfj, j = 2, . . . ,m, with the same constant C < 1, but f ′

1 = f1. The rate of

decline in α1− 1
θ

m∏
j=1

(f
′
jδ

1− 1
θ ) becomes quicker than α1− 1

θ

m∏
j=1

(fjδ
1− 1

θ ), hence m∗ that maximises

(12) will be smaller. Moreover, for any two alternative interaction schedules m1 < m2 and m1
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outperforms m2, it then holds that

(
α1− 1

θ

m1∏
j=1

(fjδ
1− 1

θ )

) 1
m1

>

(
α1− 1

θ

m2∏
j=1

(fjδ
1− 1

θ )

) 1
m2

. (13)

Since 1
m1

> 1
m2

and C
1− 1

m1 > C
1− 1

m2 , we have

(
α1− 1

θCm1−1

m1∏
j=1

(fjδ
1− 1

θ )

) 1
m1

= C
1− 1

m1

(
α1− 1

θ

m1∏
j=1

(fjδ
1− 1

θ )

) 1
m1

> C
1− 1

m2

(
α1− 1

θ

m2∏
j=1

(fjδ
1− 1

θ )

) 1
m2

=

(
α1− 1

θCm2−1

m2∏
j=1

(fjδ
1− 1

θ )

) 1
m2

,

which means that an infrequent schedule m2 cannot perform better than m1 when uncertainty

increases uniformly.

However, one needs to be more careful when the increase of uncertainty is not uniform. For

example, suppose that only the k’th interval after every updating becomes wider, D′
k,u−D′

k,d >

Dk,u −Dk,d, and all other parameters remain constant. The original fk is reduced to a smaller

f
′

k by the last statement of Proposition 3. We investigate whether m2 can outperform m1 after

the increase in three distinct cases: First, when k > m2, (13) is not affected. Second, when

m1 < k ≤ m2, the performance of schedule m1 does not change, while the the performance of

schedule m2 decreases, and thus m1 still leads to a better performance. However, in the third

case: k ≤ m1, we might have the opposite inequality, i.e., m2 outperforms m1. This happens

because with lower interaction frequency, we can have less updating cost when its effect on

the minimal expected performance is significant. More importantly, if D′

k,u becomes closer to

Dk+1,u such that the benefit one can get from the updating is small, then there is no need to

update immediately. Therefore, we should not only just focus on the increasing loss incurred

from deviation from the actual parameter, but also take the updating frequency and cost into
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consideration.

We close this section with two numerical examples. The market parameters of the first

example for below table are given by p = 0.6, u = 1.2, d = 0.8, the constant relative risk aversion

of the initial datum is θ = 5, the updating cost is 0.2%, and the bounds for the updating of

future probabilities are given by Di,d = D
mod (i−1,m)

d , Di,u = D
mod (i−1,m)

u , i ∈ {1, 2, . . . , T},

where Dd = 0.99, Du = 1.01.

Table 2: Minimal expected performance at time T for different interaction schedules

T = 12
m 1 2 3 4 6 12

MEP 0.98 0.991 0.993 0.991 0.98 0.93

T = 24
m 1 2 3 4 6 8 12 24

MEP 0.96 0.981 0.984 0.981 0.96 0.94 0.85 0.48

T = 48
m 1 2 3 4 6 8 12 16 24 48

MEP 0.93 0.96 0.97 0.96 0.93 0.88 0.73 0.55 0.23 0.003

Notes. The MEP (minimal expected performance) presented above is re-scaled by dividing it by U0(x). We

only update at frequencies 1/m where m is a divisor of T .

Conforming with Proposition 4, Table 2 shows that the optimal interaction frequencies are

independent of the evaluation horizon T . While the minimal expected performance, MEP in

the table, is decreasing over T because losses in expected performance from both interaction

and not updating timely are accumulating as time elapses, the optimal interaction schedule m∗

exists and is universal for any evaluation horizon T . We can also infer that the minimal expected

performance is first increasing and then decreasing with respect to m. This demonstrates the

tradeoff between updating cost and deviation from actual parameter due to not interacting

with robo-advisors in time.

In the second example, we investigate the impact of increasing risk aversion on the optimal

interaction schedule m∗. There are two distinct cases. Figure below visualizes how the opti-

mal interaction schedule m∗ depends on the client’s risk preference parameter θ > 1 and the

difference between p and q when Dd = 0.99, Du = 1.01.
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Figure 1: Optimal interaction schedule m∗ computed with different market parameters

In the first case, when |p− q| or θ is large enough, we observe that a more risk-averse agent

is interacting more frequently with the robo-advisor than a less risk-averse agent.

However, in the second case where p is close to q, or when the agent is already extremely

risk-averse, we make the opposite observation that the agent decreases her interaction frequency

as she becomes more risk-averse. This is because, in this case, the investment in the risky asset

is very small, and the updating of the probability for a positive outcome does not lead to a

significant change in optimal investment strategies. This situation is especially likely to occur

when, at the same time, the updating cost plays a relevantly important role in determining the

optimal interaction schedule. Furthermore, we observe from all the first three heat maps that,

as θ increases, or equivalently risk aversion decreases, the region where the optimal interaction

schedule increases as the agent becomes more risk averse becomes narrower around the region
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where p = q. The influence of the interaction cost on the width of this region depends on

two competing forces. First, since the agent prefers interacting less frequently when faced with

higher interaction cost as argued above, the set of (θ, p)-combinations leading to an optimal

interaction schedule m∗ that is smaller than the evaluation horizon (the areas of a color other

than yellow in the heat map) are reduced to an increasingly narrow band around the value p = q

as interaction cost increases. However, the width might also become larger as the interaction

cost grows in situations where the loss from each interaction outweighs the benefit of accurate

knowledge about the model parameters. Therefore, the region where the optimal interaction

schedule increases as the agent becomes more risk averse does not grow monotonically in the

interaction cost as shown in Figure 1.

5.2.2 An explicit updating rule: Maximum likelihood estimator for positive return

probability

We study an explicit example where the probabilities for a positive return of the stock pi, i ∈ N

are the maximum likelihood estimators given past information. Specifically, suppose that there

are N observations about the performances of risky asset at time zero, and that the stock

achieved a positive return Nu times. The maximum likelihood estimator for an upward move

of the stock in the first period [0, 1) is thus given by p1 = Nu

N
, in the second period [1, 2) by

p2 =
Np1 + 1

N + 1
1{R1=u} +

Np1
N + 1

1{R1=d} (14)

and so forth. Let Nu
t represent the process of total number of positive returns of the stock from

time 0 until time t starting from Nu
0 = 0. We then have for t = 1, 2, 3, ...,m− 1,

pt+1 =
Np1 +Nu

t

N + t
, 1− pt+1 =

N(1− p1) + t−Nu
t

N + t
. (15)

As in the previous section, we seek to determine an interaction schedule that represents

an optimal trade-off between loss in performance value due to the deviation from the actual
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Figure 2: Numerical example of finding optimal updating frequency for terminal expected
utility E1[U

(1)
T (X

(m)
T )] at T = 12

assessment of the market and the updating cost occurring when interacting with the robo-

advisor. We limit our analysis on a numerical example where we compare two settings where

the initial assessments of the p1 are identical, but one is based on more observations than the

other. The parameter values for this example are u = 1.3, d = 0.8, θ = 3, m ∈ {1, 2, 3, 4, 6, 12}

which are the factors of T = 12. We again consider an initial utility function of the form

U0(x) = (1 − 1
θ
)−1x1−

1
θ , x > 0, a proportional interaction cost set to α = 0.4%, and suppose

that the initial wealth is X0 = 9960 corresponding to an initial wealth of 10000 minus the

interaction cost. We perform 108 simulations to compute all involved expected values.

Figure 2 shows the optimal interaction schedule m∗ at which the expected performance is

maximal. We observe that the expected performance is first increasing and then decreasing

as a function of the interaction schedule m. This is what we expect: On the one hand, if

the client interacts with the robo-advisor too frequently, the loss due to the interaction cost

dominates, but, on the other hand, if there are too few interactions and updates in beliefs are
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not communicated to the robo-advisor in a timely manner, the loss due to inaccurate model

parameters dominates.

The blue and red scenarios correspond to settings where we have more (blue), respectively

less (red), prior observations of the stock performance. When we have a large number of prior

observations, our assessment of the probability of an upward movement is less susceptible to a

single new information than when we have fewer observations. This translates to a larger inter-

action schedule m being optimal, since it becomes less important to immediately communicate

the updated assesment of the market to the robo-advisor.

6 Conclusions

We have studied discrete-time predictable forward processes when trading dates do not coincide

with performance evaluation dates in a binomial tree model for the financial market. Our main

technical contributions are conditions for existence and explicit solutions for the functional

equations associated with the construction of predictable forward processes. We have then

applied the obtained results to study the asset allocation problem faced by robo-advisors, an

application where performance evaluation naturally occurs at a lower frequency than trading.

Our findings and discussions show that predictable forward performance processes constitute

a viable framework to model preferences of agents of robo-advisors and can provide valuable

insights when determining an optimal interaction schedule between the robo-advisor and its

human clients.

Appendix. Proofs

A Proof of Theorem 1

In order to prove Theorem 1, we start by first presenting a result which shows how to reduce

the functional equation (4) associated with the inverse optimization problem (2) to a system
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of linear functional equations of order one. These simpler equations can then be solved using

existing techniques.

Theorem 3. Let I0 and Im be related by (4) and suppose that the market is homogeneous. Then

there exist functions (ψi)
m−1
i=0 solving the system of linear functional equations of order one

ψm−1(ay) + bψm−1(y) = (1 + b)mI0(c
my), (16)

ψi−1(ay) + bψi−1(y) = ψi(y), i = m− 1,m− 2, ..., 1, (17)

with ψ0 = Im. On the other hand, if (ψi)
m−1
i=0 is a family of functions satisfying (16) and (17)

for a given I0, then, by defining Im = ψ0, the pair (I0, Im) satisfies (4).

Proof. When p = q, we obviously have Im(y) = I0(y) as the unique solution to (4). Since in

this case a = c = 1, the functions ψi(y) = (1 + b)iI0(y), i = 0, 1, ...,m − 1 solve the system

(16) and (17) with ψ0(y) = I0(y) = Im(y). On the other hand, any (ψi)
m−1
i=0 satisfying (16) and

(17) must also satisfy ψi(y) = (1 + b)iI0(y), i = 0, 1, ...,m− 1 for a given I0, and Im(y) = ψ0(y)

solves (4).

Henceforth, we assume that p 6= q. After making change of variable ŷ = cmy, multiplying

both sides with q−m, and recalling that a = 1−p
p

q
1−q

, b = 1−q
q

, and c = 1−p
1−q

, (4) becomes

(1 + b)mI0 (c
my) =

m∑
i=0

(
m

i

)
bm−iIm

(
aiy
)
. (18)

This is a linear functional equation of order m. We follow the method of reduction of order, see,

e.g., (Kuczma et al., 1990, Section 6.7), to reduce this equation to a system of linear functional

equations of order one. To this end, we let

ψ1(y) := Im(ay)− λ0Im(y)
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where λ0 is to be determined. We get by induction for i = 1, ...,m that

Im(a
iy) = ψ1(a

i−1y) +
i−1∑
k=1

λi−k
0 ψ1(a

k−1y) + λi0Im(y).

Inserting this expression into (18), we obtain

(1 + b)mI0 (c
my) =

m∑
i=1

(
m

i

)
bm−i

(
ψ1(a

i−1y) +
i−1∑
k=1

λi−k
0 ψ1(a

k−1y)

)

+
m∑
i=0

(
m

i

)
bm−iλi0Im(y).

By virtue of the Binomial Theorem,
∑m

i=0

(
m
i

)
bm−iλi0 = (b+ λ0)

m. Setting λ0 = −b thus yields

(1 + b)mI0 (c
my) =

m∑
i=1

(
m

i

)
bm−i

(
ψ1(a

i−1y) +
i−1∑
k=1

(−b)i−kψ1(a
k−1y)

)
, (19)

which is a linear functional equation for ψ1 of order m − 1. Note that the coefficient of any

term ψ1(a
jy), j = 0, ...,m− 1 in (19) is given by bm−1−j

∑m
n=j+1(−1)n−(j+1)

(
m
n

)
. By the recur-

sive formula for binomial coefficients,
(
m
n

)
=
(
m−1
n−1

)
+
(
m−1
n

)
, we further have the relationship∑m

n=j+1(−1)n−(j+1)
(
m
n

)
=
(
m−1
j

)
. Hence, (19) can be simplified to

(1 + b)mI0 (c
my) =

∑m−1

j=0

(
m− 1

j

)
bm−1−jψ1(a

jy).

By sequentially defining ψi(y) = ψi−1(ay) + bψi−1(y), i = 2, ...,m − 1, we can obtain

(1 + b)mI0 (c
my) =

∑m−i+1
j=0

(
m−i+1

j

)
bm−i+1−jψi−1(a

jy) through an exact repetition of the steps

outlined above. Finally we can reduce (19) to (16), an equation for ψm−1 of order 1. To sum-

marize, we obtained a solution to the system of linear functional equations of order one in (16)

and (17) as claimed in the first part of the theorem.

Reversing the above calculations directly shows other direction of the theorem. Indeed,

starting from (16) and sequentially replacing ψi(y) with ψi−1(ay)+bψi−1(y) shows that Im = ψ0

solves (18) and thus also (4).
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Remark 2. Theorem 3 holds for general solutions I0 and Im which are not necessarily inverse

marginal functions. However, in this paper, we will apply the theorem to solutions I0 and Im

of (4) in the class of inverse marginal functions.

Linear functional equations of the form (16) and (17) typically have multiple solutions, even

when one restricts admissible functions to remain within the class of inverse marginal functions,

cf. (Angoshtari et al., 2020, Example 6.1) for an illustrative example. However, it is possible to

obtain a unique solution in a smaller class of functions restricting the behavior as the argument

goes to zero or infinity. The following auxiliary result providing general uniqueness conditions

for linear functional equations of order one is a version of (Angoshtari et al., 2020, Lemma 6.2)

adapted to our notation.

Lemma 1 (Angoshtari et al. (2020)). Let I0 respectively ψi be given. Then, there exists at

most one solution ψi−1 to (16) or (17), satisfying limy→0+ y
−logabψi−1(y) = 0. Similarly, there

exists at most one solution satisfying limy→∞ y−logabψi−1(y) = 0.

We next recall another main result (Angoshtari et al., 2020, Theorem 6.3) providing suf-

ficient conditions for existence and uniqueness of solutions to equations of the form (16) and

(17) in the class of inverse marginal functions.

Lemma 2 (Angoshtari et al. (2020)). Let i ∈ {1, . . . ,m} be fixed and let I0 respectively ψi be

a given inverse marginal function. Define the functions

Φ(y) = I0(ac
my)− bI0(c

my) and Ψ(y) = y−logabI0(c
my), y > 0, when i = m,

Φ(y) = ψi(ay)− bψi(y) and Ψ(y) = y−logabψi(y), y > 0, otherwise.
(20)

The following assertions hold:

(i) If (Φ,Ψ) satisfies condition (C1), then a solution ψi−1 is given by

ψm−1(y) =
(1 + b)m

b

∑∞

n=0
(−1)nb−nI0(a

ncmy), when i = m;

ψi−1(y) =
1

b

∑∞

n=0
(−1)nb−nψi(a

ny), otherwise.
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(ii) If (Φ,Ψ) satisfies condition (C2), then a solution is given by

ψm−1(y) = (1 + b)m
∑∞

n=0
(−1)nbnI0(a

−(n+1)cmy), when i = m;

ψi−1(y) =
∑∞

n=0
(−1)nbnψi(a

−(n+1)y), otherwise.

(iii) In parts (i) and (ii), the corresponding ψi−1 satisfies the uniqueness conditions of Lemma

1 and, moreover, ψi−1 ∈ I.

(iv) The solution ψi−1 given in (i) and (ii), respectively, is the only positive solution and thus

also the only inverse marginal function to the corresponding equation (16) or (17).

We now have all the ingredients required for the proof of Theorem 1.

Proof of Theorem 1. As discussed in Section 2, if two utility functions U0 and Um solve prob-

lem (2), then their associated inverse marginals satisfy (4). Conversely, when a pair of inverse

marginal functions I0 and Im satisfy (4), then the corresponding utility functions satisfy (2)

up to a constant. Theorem 2.4 in Strub and Zhou (2021) together with the subsequent dis-

cussion therein shows that Um defined as in Theorem 1 does indeed solve (2) when Im solves

(4). Moreover, the expression for the optimal wealth X∗
m follows from the existing theory on

classical expected utility maximization once we obtained Um and regard (2) as a classical, back-

ward problem. Therefore, it remains to show that Im given in (7) under the assumption that

(Ai)i=0,...,m exists is the unique solution to (4) in the class of inverse marginal functions.

By Theorem 3, we can reduce (2) to the system of linear functional equations of order one

in (16) and (17). We solve this system by iteratively applying Lemma 2. Specifically, we will

show by induction that the solutions (ψi)
m−1
i=0 to (16) and (17) must be given by

ψm−i(y) =
(1 + b)m

bAi

∑∞

n1=0,...,ni=0
(−1)p(n1,...,ni)bqAi;(n1,...,ni)I0(a

rAi;(n1,...,ni)cmy), (21)

and that the functions Φi and Ψi defined in (20) for deriving ψm−i−1 from ψm−i indeed corre-

spond to ΦAi
i and ΨAi

i given in (6).
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To show the base case, we consider (16) and, according to Lemma 2, have

ψm−1(y) =


(1 + b)m

b

∑∞

n=0
(−1)nb−nI0(a

ncmy), if
(
Φ0

0,Ψ
0
0

)
satisfy (C1),

(1 + b)m
∑∞

n=0
(−1)nbnI0(a

−(n+1)cmy), if
(
Φ0

0,Ψ
0
0

)
satisfy (C2).

(22)

Noticing that in the first case A1 = A0 + 1 = 1 while in the second case A1 = A0 = 0 shows

the claim. As a general inductive step of deriving ψm−j−1 under the assumption that ψm−j is

given by (21) and we have already obtained Aj, we solve equation (17) for i = m− j. Firstly,

we define Φj and Ψj according to (20) which is then consistent with (6) with ψi given by (21),

and apply Lemma 2 to obtain that if (Φj,Ψj) satisfies (C1), ψm−j−1(y) is given by

ψm−j−1(y) =
(1 + b)m

bAj+1

∞∑
n1=0,...,nj+1=0

(−1)
p(n1,...,nj+1)b

qAj ;(n1,...,nj)
−nj+1I0(a

rAj ;(n1,...,nj)
+nj+1cmy),

and if (Φj,Ψj) satisfies (C2), ψm−j−1(y) is given by

ψm−j−1(y) =
(1 + b)m

bAj

∞∑
n1=0,...,nj+1=0

(
(−1)

p(n1,...,nj+1)b
qAj ;(n1,...,nj)

+nj+1

× I0(a
rAj ;(n1,...,nj)

−(nj+1+1)
cmy)

)
.

Therefore, ψm−j−1(y) can be expressed by (21) with Aj+1 = Aj + 1 when (C1) is satisfied

or Aj+1 = Aj when (C2) is satisfied. This shows the claim.

Finally we conclude that the inverse marginal ψ0 = Im can be expressed by (7). Since we

need to ensure that Im is strictly positive as an inverse marginal, by the relationship between

ψi−1 and ψi in (17), ψj, j = 1, 2, . . . ,m−1 must all be strictly positive. These solutions are thus

unique within the class of inverse marginal functions by part (iv) of Lemma 2. We conclude

that Im given in (7) is the unique inverse marginal solving (4) if (Ai)i=0,...,m exists.
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B Proof of Corollary 1

Let x > 0. We first note that a, b, and c are all Borel-measurable functions of the market

parameters (p, u, d) ∈ M. We will drop the classifier Borel- for the remainder of this proof.

Next, we prove the measurability of (Ai)i=0,...,m by induction. The base case, i = 0, is trivial

since A0 = 0 is constant. We then assume that Ai is measurable, and prove measurability of

Ai+1. Recall that Ai+1 can be expressed as

Ai+1 =
i∑

j=0

1{Ai=j}

[
(j + 1)1{(p,u,d)∈M: (Φj

i ,Ψ
j
i ) satisfies (C1)} + j1{(p,u,d)∈M: (Φj

i ,Ψ
j
i ) satisfies (C2)}

]
.

By Lemma 2 and since I0 is continuously differentiable, the infinite series of (Φj
i )

′ and Ψj
i

converge for (p, u, d) ∈ M. Therefore, (Φj
i )

′ and Ψj
i defined in (6) are measurable as point-

wise limits of measurable functions. Hence, the two functions 1{(p,u,d)∈M: (Φj
i ,Ψ

j
i ) satisfies (C1)} and

1{(p,u,d)∈M: (Φj
i ,Ψ

j
i ) satisfies (C2)} are measurable, which in turn shows that Ai+1 is measurable.

Note that the series of Im is derived by sequential application of Lemma 2. Since all

intermediate functions are shown to be convergent, so does Im. The measurable dependence

of Im on the market parameters then follows from the explicit expression in (7) as a pointwise

limit of measurable function in a converging series.

In a multi-period binomial market, the expectation in the expression of Um is essentially a

finite sum of integral terms. Given that the inverse function of a strictly monotone function is

also strictly monotone and thus integrable over finite intervals, its corresponding integral with

variable lower limit of integration f(u) =
∫ x

u
I−1
m (t)dt for any given x exists and is continuous.

Therefore, the integral terms f(Im(dQdPU
′
0(1))), are compositions of two measurable functions,

which then shows that Um(x) is a measurable function of the market parameters as claimed.

C Proof of Proposition 1

By virtue of Theorem 1, Um exists and is unique. The single-period forward process Ũi exists

for i = 0, . . . ,m because we can define it as the value function corresponding to the backward
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expected utility maximization problem with utility Um. The required properties then follow

from the standard theory on stochastic control. On the other hand, if Ũi, i = 0, . . . ,m, is a

single-period forward process with Ũ0 = U0, with associated optimal wealth process X̃∗, then

U0(x) = E
[
Ũ1(X̃

∗
1 )
]
= E

[
E
[
Ũ2(X̃

∗
2 )|F1

]]
= · · · = E

[
Ũm(X̃∗

m)
]

and, with a similar argument, U0(x) ≥ E
[
Ũm(X̃m)

]
for any X̃ ∈ X (x). Therefore, (U0, Ũm) is

an m-forward pair and, by uniqueness established in Theorem 1, Um = Ũm.

D Proof of Proposition 2

Let m ∈ N and x > 0 be given. Without loss of generality, we discuss the time-monotonicity

between forward utilities Um(x) and Um+1(x), x ∈ R+. By virtue of Proposition 1, the perid-by-

period forward process Ũ exists uniquely and satisfies Ũm(x) = Um(x) and Ũm+1(x) = Um+1(x).

Therefore, the forward utility Um is the value function corresponding to a one-period backward

expected utility maximization problem with objective function Um+1, i.e., Um and Um+1 satisfy

the relationship Um(x) = ess supXm+1∈X (m,x) E
[
Um+1 (Xm+1)

∣∣Fm

]
.

The supremum is essentially taken over all investment strategies in the market and thus

should be larger than the expected performance corresponding to a particular strategy: putting

all the wealth in risk-free asset, i.e., ess supXm+1∈X (m,x) E
[
Um+1 (Xm+1)

∣∣Fm

]
≥ E [Um+1 (x)].

Since there is no randomness in this choice, Um(x) ≥ Um+1(x) follows, and we have a strict

inequality when the market is offering non-zero expected excess return due to the well-known

fact that the optimal strategy invests a non-zero amount into the risky asset in this case.

E Proof of Theorem 2

Making the substitution ŷ =
m∏
i=1

(1−pi)
(1−qi)

y allows us to transform (8) to

I0

(
m∏
i=1

(1− pi)

(1− qi)
y

)
=
∑2m−1

j=0

m∏
i=1

q
γj,i
i (1− qi)

1−γj,iIm

(
m∏
i=1

q
γj,i
i (1− pi)

γj,i

p
γj,i
i (1− qi)γj,i

y

)
.
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Next, we multiply both sides by
(

m∏
i=1

qi

)−1

and recall the expression in terms of ai, bi, ci, i =

1, 2, ...,m to obtain

m∏
i=1

(1 + bi)I0

(
m∏

n=1

cny

)
=
∑2m−1

j=0

m∏
i=1

b
1−γj,i
i Im

(
m∏
k=1

a
γj,k
k y

)
. (23)

Different from the homogeneous setting, the arguments of Im are not in the form of iterate

functions. We therefore cannot use the same approach as in the proof of Theorem 1. Instead,

we aim to show by mathematical induction that if there exist functions (Ĩi)
m
i=1 such that they

satisfy a system of equations Ĩi(aiy) + biĨi(y) = (1 + bi)Ĩi−1(ciy), i = 1, 2, ...,m for a given I0,

then I0 and Im = Ĩm satisfy (23) in the heterogeneous market.

Firstly, when m = 1, the statement naturally holds. Let us then assume that the statement

is true for m =M . When m =M + 1, the left hand side of equation (23) becomes

M+1∏
i=1

(1 + bi)I0

(
M+1∏
n=1

cny

)

=(1 + bM+1)
M∏
i=1

(1 + bi)I0

(
M∏
n=1

cncM+1y

)

=(1 + bM+1)
∑2M−1

j=0

M∏
i=1

b
1−γj,i
i ĨM

(
M∏
k=1

a
γj,k
k cM+1y

)

=
∑2M−1

j=0

M∏
i=1

b
1−γj,i
i

(
ĨM+1(aM+1

M∏
k=1

a
γj,k
k y) + bM+1ĨM+1(

M∏
k=1

a
γj,k
k y)

)
.

(24)

Note that the right hand side of (23) is given by
∑2M+1−1

j=0

M+1∏
i=1

b
1−γj,i
i IM+1

(
M+1∏
k=1

a
γj,k
k y

)
when

setting m = M + 1. Observe that for j ∈ {0, 1, ..., 2M − 1}, we have γj,M+1 = 0, where γj,M+1

is the first digit of j in binary if expressed in M + 1 digits in total. Thus, the term inside the

summation becomes bM+1

M∏
i=1

b
1−γj,i
i IM+1

(
M∏
k=1

a
γj,k
k y

)
. However, for j ∈ {2M , 2M +1, ..., 2M+1−

1}, γj,M+1 = 0, and the term inside the summation is given by
M∏
i=1

b
1−γj,i
i IM+1

(
aM+1

M∏
k=1

a
γj,k
k y

)
.

Hence, the right hand side of (23) is equal to the last line of (24) by letting Im = Ĩm. This

proves the claim for m =M + 1, and thus for arbitrary m by induction.
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For the other direction, by the fact that with substitution Ĩk−1(y) =
1

1+bk
(Ĩk(

aky
ck

)+bkĨk(
y
ck
)),

k = m, . . . , 1, equation

k∏
i=1

(1 + bi)I0

(
k∏

n=1

cny

)
=
∑2k−1

j=0

k∏
i=1

b
1−γj,i
i Ĩk

(
k∏

n=1

aγj,nn y

)

will become

k−1∏
i=1

(1 + bi)I0

(
k−1∏
n=1

cny

)
=
∑2k−1−1

j=0

k−1∏
i=1

b
1−γj,i
i Ĩk−1

(
k−1∏
n=1

aγj,nn y

)
,

we can show that if I0 and Im are related by (23), then there exist functions (Ĩi)
m−1
i=1 such that

they satisfy a system of equations Ĩi(aiy)+biĨi(y) = (1+bi)Ĩi−1(ciy), i = 1, 2, ...,m with Ĩ0 = I0

and Ĩm = Im.

Solving Ĩi(aiy) + biĨi(y) = (1 + bi)Ĩi−1(ciy), i = 1, 2, ...,m by sequentially and repeatedly

applying Lemma 2, which is a version of Theorem 6.3 in Angoshtari et al. (2020) with slight

difference, we can finally derive the expression of Im and obtain the conditions for uniqueness.

As in the proof of Theorem 1, we can show by induction that Ĩi, i = 1, 2, ...,m solving

Ĩi(aiy) + biĨi(y) = (1 + bi)Ĩi−1(ciy), i = 1, 2, ...,m, must be given by

Ĩi(y) =

i∏
v=1

(1 + bv)

i∏
j=1

b
αj

j

∞∑
n1=0,...,ni=0

(−1)p(n1,...,ni)

i∏
k=1

b
nk(1−2αk)
k I0(

i∏
s=1

ans(2αs−1)+(αs−1)
s

i∏
u=1

cuy). (25)

We outline these arguments again below, now adapted to the setting of heterogeneous market

parameters. Firstly, the statement obviously holds for i = 1 by Lemma 2. In the general

inductive step, we show that if Ĩk is given by (25) with its corresponding (α1, . . . , αk), then the

statement is also true for Ĩk+1. Noticing that Φk and Ψk defined for solving the single-period

inverse problem with Ĩk given by (25) must be expressed by (10), we apply Lemma 2 to obtain
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that Ĩk+1 is unqiue and given by

Ĩk+1(y) =

k+1∏
v=1

(1 + bv)

bk+1

k∏
j=1

b
αj

j

∞∑
n1=0,...,nk+1=0

(
(−1)p(n1,...,nk+1)b

−nk+1

k+1

k∏
t=1

b
nt(1−2αt)
t

× I0(a
nk+1

k+1

k∏
s=1

ans(2αs−1)+(αs−1)
s

k+1∏
u=1

cuy)

)
,

if (Φk,Ψk) satisfies (C1), and given by

Ĩk+1(y) =

k+1∏
v=1

(1 + bv)

k∏
j=1

b
αj

j

∞∑
n1=0,...,nk+1=0

(
(−1)p(n1,...,nk+1)b

nk+1

k+1

k∏
t=1

b
nt(1−2αt)
t

× I0(a
−(nk+1+1)
k+1

k∏
s=1

ans(2αs−1)+(αs−1)
s

k+1∏
u=1

cuy)

)
,

if (Φk,Ψk) satisfies (C2). Therefore, Ĩk+1(y) can be expressed by (25) with the sequence given

by (α1, . . . , αk, 1) when (C1) is satisfied or (α1, . . . , αk, 0) when (C2) is satisfied. This proves

the claim and thus shows that Im is uniquely given by (7). The expression for Um and X∗
m can

be derived similarly as in the proof of Theorem 1.

F Proof of Corollary 2

The measurability of the mapping M → R defined by (p, u, d) 7→ Um(x) in the heterogeneous

setting of Corollary 2 can be proved analogously as in Corollary 1.

G Proof of Proposition 3

We only discuss the case θ > 1. Similar arguments apply when 0 < θ < 1.

Let (Di)i=0,...,T and m ∈ N be fixed. We first compute the expected performance at times
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before the first interaction with the robo-advisor. By Theorem 1 and Theorem 2, we have

E1

[
U

(1)
i (X

(m)
i )

∣∣Fi−1

]
= DipU

(1)
i

(
I
(m)
i

(
q

p
U

(m)′

i−1 (X
(m)
i−1 )

))
+ (1−Dip)U

(1)
i

(
I
(m)
i

(
1− q

1− p
U

(m)′

i−1 (X
(m)
i−1 )

))
= Dip

i∏
j=1

δ
1
θ
Dj

U0

(
I
(m)
i

(
q

p
U

(m)′

i−1 (X
(m)
i−1 )

))

+ (1−Dip)

i∏
j=1

δ
1
θ
Dj

U0

(
I
(m)
i

(
1− q

1− p
U

(m)′

i−1 (X
(m)
i−1 )

))

= Dip

i∏
j=1

δ
1
θ
Dj

(
1− 1

θ

)−1

δ1−
1
θ q1−θpθ−1

(
X

(m)
i−1

)1− 1
θ

+ (1−Dip)
i∏

j=1

δ
1
θ
Dj

(
1− 1

θ

)−1

δ1−
1
θ (1− q)1−θ(1− p)θ−1

(
X

(m)
i−1

)1− 1
θ

= δ
1
θ
Di
δ1−

1
θU

(1)
i−1(X

(m)
i−1 )

(
Dip

θq1−θ +

(
1−Dip

1− p

)
(1− p)θ(1− q)1−θ

)
,

for i = 1, . . . ,m, where δDj
= 1+b

cθj (a
−θ
j +b)

= 1
(Djp)θq1−θ+(1−Djp)θ(1−q)1−θ , j = 1, 2, . . . , i, and δ = δD1 .

Indeed, U (1)
i−1(X

(m)
i−1 ) =

i−1∏
j=1

δ
1− 1

θ
Dj

U0(X
(m)
i−1 ) = (1− 1

θ
)−1

i−1∏
j=1

δ
1− 1

θ
Dj

(X
(m)
i−1 )

1− 1
θ .

Let C1 = pθq1−θ, C2 = (1−p)θ(1−q)1−θ, and consider a new variable ti = (Di(1−p)
1−Dip

)θ. Clearly,

ti is strictly positive and increasing in Di. Then E1[U
(1)
i (X

(m)
i )

∣∣Fi−1] can be represented by

E1[U
(1)
i (X

(m)
i )

∣∣Fi−1] =

(
C1

(C1 + t−1
i C2)

1
θ

+
C2

(tiC1 + C2)
1
θ

)
U

(1)
i−1(X

(m)
i−1 )δ

1− 1
θ .

Let f(ti) = C1

(C1+t−1
i C2)

1
θ
+ C2

(tiC1+C2)
1
θ
. After taking derivative we have

f
′
(ti) =

1

θ
C1C2t

−2
i (C1 + t−1

i C2)
− 1

θ
−1 − 1

θ
C1C2(tiC1 + C2)

− 1
θ
−1

=
1

θ
C1C2(tiC1 + C2)

− 1
θ
−1(t

1
θ
−1

i − 1).

When θ > 1, U0(x) > 0, 1
θ
− 1 < 0, f(ti) is increasing first and attains its maximum at ti = 1,

which corresponds to Di = 1, and then begins to decrease. Since f(1) = C1+C2

(C1+C2)
1
θ
= δ

1
θ
−1,

we have E1[U
(1)
i (X

(m)
i )

∣∣Fi−1] = U
(1)
i−1(X

(m)
i−1 ) when Di = 1. Therefore, let ti,max = (

Di,u(1−p)

1−Di,up
)θ,
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ti,min = (
Di,d(1−p)

1−Di,dp
)θ, fDi,u

= C1

(C1+t−1
i,maxC2)

1
θ
+ C2

(ti,maxC1+C2)
1
θ

and fDi,d
= C1

(C1+t−1
i,minC2)

1
θ
+ C2

(ti,minC1+C2)
1
θ
.

The value range of f(ti) is [min{fDi,u
, fDi,d

}, δ 1
θ
−1], and E1[U

(1)
i (X

(m)
i )

∣∣Fi−1] is thus bounded be-

tween [δ1−
1
θ min{fDi,u

, fDi,d
}U (1)

i−1(X
(m)
i−1 ), U

(1)
i−1(X

(m)
i−1 )] for any possible value of Di in the interval

[Di,d, Di,u].

Let fj = min{fDj,u
, fDj,d

} for j = 2, 3, ...,m. According to the above we have

E
[
U (1)
m (X(m)

m )
]
≤ E

[
U

(1)
m−1(X

(m)
m−1)

]
≤ · · · ≤ U0(x)

and

E
[
U (1)
m (X(m)

m )
]
≥ E

[
δ1−

1
θ fmU

(1)
m−1(X

(m)
m−1)

]
≥ · · · ≥

m∏
j=1

fjδ
m(1− 1

θ
)U0(x).

When T > m then, according to our assumptions, the agent interacts at time m with the

robo-advisor to update pm back to the original p and her wealth is reduced from Xm
m to αXm

m .

Since U (1)
i (αx) = α1− 1

θU
(1)
i (x), which one can show similarly as in Example 1, we can repeat

the above steps and obtain that

E
[
U

(1)
2m(X

(m)
2m )

]
∈

[
α1− 1

θ

2m∏
j=1

fjδ
2m(1− 1

θ
)U0(x), α

1− 1
θU0(x)

]

=

[
α1− 1

θ (
m∏
j=1

fj)
2δ2m(1− 1

θ
)U0(x), α

1− 1
θU0(x)

]
.

The last equality holds because the choice of intervals are periodic. Repeating the above

argument then immediately proves the claim.

To show that fi is non-increasing in Di,u and non-decreasing in Di,d, we notice that Di,u ≥ 1

and thus ti,max ≥ 1 and that ti,max is increasing in Di,u. Therefore, due to the fact that f(t)

is decreasing when t ≥ 1, fDi,u
= f(ti,max) is decreasing in Di,u. One can show analogously

that fDi,d
= f(ti,min) is increasing in Di,d. Because fDi,u

does not depend on Di,d and fDi,d

does not depend on Di,u, we conclude that fi = min{fDi,u
, fDi,d

} is non-decreasing in Di,u and
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non-increasing in Di,d.

H Proof of Proposition 4

We only show the proof for θ > 1, similar arguments hold for 0 < θ < 1, but note that then

U0(x) is negative.

Let terminal time T ∈ N be given, its minimal expected performance for any interaction

schedule m is given by

α( T
m
−1)(1− 1

θ
)(

m∏
j=1

fj)
T
m δT (1− 1

θ
)U0(x) =

(
α1− 1

θ

m∏
j=1

(fjδ
1− 1

θ )

) T
m

α1− 1
θ

U0(x)

Apparently, maximising the minimal expected performance or
(
α1− 1

θ

m∏
j=1

(fjδ
1− 1

θ )

) T
m

over

the divisor m of T is equivalent to maximising
(
α1− 1

θ

m∏
j=1

(fjδ
1− 1

θ )

) 1
m

which is positive for any

interaction schedule m, and we denote this optimal schedule by m∗, by considering a large

enough T , it can be ensured that
(
α1− 1

θ

m∏
j=1

(fjδ
1− 1

θ )

) 1
m

will not continue increasing after T if

m∗ = T . The assertion for the independence of T is thus shown, i.e., any setup with horizon T

which is a multiple of m∗ must share the same optimal interaction schedule.
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