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Abstract

Although extremely popular in the industry due to their high predictive performance, the
lack of interpretability of machine learning algorithms raises concerns from practitioners and
regulators. We propose an original model-agnostic method aiming to unravel the opacity re-
garding black boxes' decision process. Speci�cally, the method mesures the contribution of input
features to the predictive performance of a model through the decomposition of an evaluation
metric. The approach can be applied to any type of model, econometrics or machine learning,
and to a wide class of evaluation metric including the most famous measures such as the R2

for regression problem or the Area Under the ROC Curve (AUC) for classi�cation problems.
We show the properties of our decomposition method and illustrate how feature contributions
are estimated, even in a high-dimensional model context. A framework for local analysis is
also developed. We highlight the usefulness of the approach using real data of credit scoring
applications. Through the decomposition of several evaluation metrics, we illustrate how the
decomposition can be used in practice to improve the decision making associated to black boxes.
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1 Introduction

2 Framework and Evaluation Metrics

We consider a classi�cation or a regression problem involving a target variable denoted y which
takes values in Y, which is either de�ned as Y = {0, 1}, in case of classi�cation, or as Y ⊂ R, in case
of regression. The q-vector x ∈ X refers to input (explanatory) features with X ⊂ Rq. Here, we
consider continuous features for ease of comprehension but the same framework could be applied to
discrete features. We denote by f : x → ŷ an econometric model or a machine learning algorithm,
where ŷ ∈ Y is either a classi�cation output, or regression output, such as ŷ = f(x). In case of
classi�cation problem, we assume that the classi�er also produces conditional probabilities denoted
P (x) = P(ŷ = 1|x). We impose no constraint on the model form f(.). For instance, the model may
be parametric or not, linear or not, individual or ensemble classi�er, etc. In case of a parametric
model, we exclude the parameters from the notation, f(x) ≡ f(x; θ).

The model is estimated (for a parametric model) or trained (for a machine learning algorithm) once
for all on a training (estimation) sample {xj , yj}Tj=1. The training sample size T is considered as

�xed and we impose no constraint on it.1 The estimated model can be written interchangeably as
f̂(.) or f̂T (.). The statistical performance of the model is evaluated on a test sample Sn of n indi-
viduals, indexed by i = 1, ..., n, for which we observe (xi, yi, f̂(xi)), such as Sn = {xi, yi, f̂(xi)}ni=1.

We de�ne an evaluation metric (EM) as an assessment measure of the statistical model perfor-
mance. For instance, Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared are
typical evaluation metrics for regression models, whereas Area Under the Curve (AUC), Brier Score
(BS), and Gini index are standard evaluation metrics for classi�cation models. We can also consider
alternative metrics such as information criteria (AIC, BIC, etc.) or any loss function (Qlike,etc.).

De�nition 1. A sample evaluation metric EMn ∈ Θ ⊆ R associated to the model f̂(.) and a test

sample Sn is a scalar de�ned as2:

EMn = G̃n(y1, ..., yn; ŷ1, ..., ŷn) = G̃n(y1, ..., yn; f̂(x1), ..., f̂(xn))

= Gn(y1, ..., yn;x1, ...,xn) = Gn(y;X),
(1)

where y = (y1, ..., yn)T and X = (x1, ..,xn)T .

Assumption 1. The sample evaluation metrics increases with statistical performance of the model.

For instance, the R-squared and the AUC satisfy this assumption, whereas we have to consider the
opposite of the MSE and the Brier Score as sample evaluation metric.

Assumption 2. (i) The sample evaluation metric Gn(y;X) converges to the population evaluation

metric Ey,x(G(y;x)), where Ey,x(.) refers to the expected value with respect to the joint distribution

of y and x. (ii) Ey,x(G(y;x)) exists and is �nite.

1Interpretable machine learning literature (Molnar, 2020) aims to identify feature contributions to model outcomes
where the model is estimated (trained) on a given set of information. Here, we adopt the same approach and consider
a �xed training sample size. Thus, we do not assess the impact of the training sample (in-sample) size on the model
performance analysis.

2For instance, Θ = [0, 1] for AUC, R-squared, Brier Score, and Θ = R+ for MSE, MAE, etc.
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To illustrate our framework, let us consider typical applications.

Example 1. In case of a linear regression model f̂(.) with i.i.d assumptions, if we consider the
(opposite) MSE as evaluation metric then:

Gn(y;X) = − 1

n

n∑
i=1

(yi − f̂(xi))
2,

Ey,x(G(y;x)) = −Ey,x
[(
y − f̂(x)

)2]
.

Example 2. In case of logistic regression model f̂(.) with i.i.d features, if we consider the accuracy
as evaluation metric then:

Gn(y;X) =
1

n

n∑
i=1

(
f̂(xi)yi + (1− f̂(xi))(1− yi)

)
,

Ey,x(G(y;x)) = Ey,x
(
f̂(x)y + (1− f̂(x))(1− y)

)
.

3 Shapley value decomposition of evaluation metric

Our objective is to identify the contribution of the features to the evaluation metric. To do so, we use
a standard Shapley value decomposition (Shapley, 1953). The Shapley values, a concept issued from
game theory, fairly distribute the evaluation metric (payo�) among the model features (players). It
corresponds to the average marginal impact of a given feature on the evaluation metric evaluated
while controlling for the e�ect of combinations of other features (coalitions). This interpretability
method is theorically founded and has interesting properties (dummy, symmetry, etc.).

Property 1. (E�ciency) The sum of the Shapley values φj, ∀j = 1, ..., q, is equal to the di�erence

between the population evaluation metric Ey,x(G(y;x)) and its benchmark φ0 such as:

Ey,x(G(y;x)) = φ0 +

q∑
j=1

φj , (2)

where φ0 = ExEy (G(y;x)) corresponds to the evaluation metric associated to a population where

the target variable is independent from all features considered in the model.

In other words, φ0 is the evaluation metric obtained for a model without any predictive ability.
Thereafter, we refer to φ0 as the benchmark of the evaluation metric.

If a feature xj enhances the predictive ability of the model compared to the benchmark φ0, then
its contribution φj to the evaluation metric is positive. This contribution is formally de�ned as a

Shapley value. Let denote xS as the vector of features included in coalition S and xS the vector of
features excluded from coalition S, such as {x} = {xS} ∪ {xS} ∪ {xj}.

De�nition 2. The contribution of feature xj to the evaluation metric is:

φj =
∑

S⊆P({x}\{xj})

wS

[
ExSEy,xj ,xS (G (y;x))− Exj ,xSEy,xS (G (y;x))

]
, (3)
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wS =
|S|! (q − |S| − 1)!

q!
, (4)

with S a coalition, i.e., a subset of features, excluding the feature of interest xj, |S| the number of

features in the coalition, and P({x} \ {xj}) the partition of the set {x} \ {xj}.

The Shapley value φj associated to the feature xj measures its weighted average marginal contribu-
tion to the evaluation metric over all feature coalitions. This marginal contribution is de�ned as the
di�erence betweeen expected values of the evaluation metric obtained while considering or not the
dependence between the target variable y and xj . Formally, in equation (12), ExSEy,xj ,xS (G (y;x))

refers to the expected value of the evaluation metric considering that the coalitions variables xS are
independent from (y, xj ,x

S). Similarly, Exj ,xSEy,xS (G (y;x)) is the expected value of the evalua-

tion metric when the features (xS , xj) are independent from (y,xS). To illustrate the Shapley value
computation, we consider a model with three features and x1 the feature of interest. In Table 1,
we report all the coalitions among the set {x2, x3} (column 1), the associated weights according to
equation (4) (column 2) and the marginal contributions (column 3) used to compute the Shapley
value φ1.

Table 1: Computation of the Shapley value φ1 in a three-feature model.

S wS ExSEy,x1,xS (G (y;x))− Ex1,xSEy,xS (G (y;x))

{∅} 1/3 Ey,x1,x2,x3 (G (y;x))− Ex1Ey,x2,x3 (G (y;x))
{x2} 1/6 Ex2Ey,x1,x3 (G (y;x))− Ex1,x2Ey,x3 (G (y;x))
{x3} 1/6 Ex3Ey,x1,x2 (G (y;x))− Ex1,x3Ey,x2 (G (y;x))
{x2, x3} 1/3 Ex2,x3Ey,x1 (G (y;x))− Ex1,x2,x3Ey (G (y;x))

Note: This table displays details of Shapley value computation, i.e., the coalitions (column 1), the associated weights

according to equation (4) (column 2) and the marginal contributions (column 3).

The Shapley value φ1 is computed from Table 1 by multiplying the weights (column 2) to the
marginal contributions (column 3) and summing over all coalitions, such as:

φ1 =
1

3
(Ey,x(G(y;x))− Ex1Ey,x2,x3 (G (y;x)))

+
1

6
(Ex2Ey,x1,x3 (G (y;x))− Ex1,x2Ey,x3 (G (y;x)))

+
1

6
(Ex3Ey,x1,x2 (G (y;x))− Ex1,x3Ey,x2 (G (y;x)))

+
1

3
(Ex2,x3Ey,x1 (G (y;x))− φ0) .

Using the same approach we can compute φ2, φ3 and then veri�ed the e�ciency property as follows:

3∑
j=1

φj =

3∑
j=1

1

3
(Ey,x(G(y;x))− φ0)︸ ︷︷ ︸
Ey,x(G(y;x))−φ0

+

3∑
j=1

Mj(G (y;x))︸ ︷︷ ︸
= 0

(5)

where Mj(G (y;x)) includes expected values of the evaluation metric (see Appendix A).

4



The Shapley value satis�es a set of axioms (e�ciency, dummy, symmetry, monotonicity) particularly
relevant for statistical performance analysis.

Property 2. (Dummy) If the model feature xj does not have any impact on the evaluation metric

Ey,x(G(y;x)), then its Shapley value φj is null, i.e., φj = 0.

Property 3. (Monotonicity) If a feature xj contributes more to the evaluation metric Ey,x(G(y;x))
than a feature xs then φj > φs.

Property 4. (Symmetry) If two features xj and xs contribute equally to the evaluation metric

Ey,x(G(y;x)) across all coalitions then φj = φs.

Illustration (MSE and regression model). Consider a linear regression model f̂(xi) =
∑q

j=1 βjxi,j ,

and the MSE (opposite) as sample evaluation metric. We consider model parameters βj as �xed.
3

As concerned the Data Generating Process (DGP) for the validation sample Sn = {xi, yi, f̂(xi)}ni=1,
we assume that the features satisfy E (x) = 0q and V(x) = diag(σ2xj ) ∀j = 1, ..., q. We denote by σ2y
the variance of the target variable and by σy,xj the covariance between the feature xj and the target
variable. Then, the contributions φj of features xj , ∀j = 1, ..., n, to the MSE (opposite) satisfy the
e�ciency property such that:

2

q∑
j=1

βjσy,xj −
q∑
j=1

β2j σ
2
xj − σ

2
y︸ ︷︷ ︸

Ey,x(G(y;x))

= −
q∑
j=1

β2j σ
2
xj − σ

2
y︸ ︷︷ ︸

φ0

+

q∑
j=1

2βjσy,xj︸ ︷︷ ︸
φj

(6)

Formally, the Shapley value φj depends on the model parameter βj (estimation sample) and the
covariance between xj and the target variable y (validation sample), i.e., σy,xj . The Shapley values
φj , ∀j = 1, ..., n, are positive or null. 4 The dummy property φj = 0 is either satis�ed if the feature
has no impact on the model (βj = 0) or if the feature is uncorrelated with the target variable on
the validation sample (σy,xj = 0). Similarly, a variable xj has a larger MSE contribution than a
feature xs as soon as βjσy,xj > βsσy,xs , meaning that xj is more related to the target variable than
xs both in-sample (through βj) and out-sample (through σy,xs). The benchmark φ0 corresponds
to the MSE that we would obtain by applying the model to data generated by a DGP where the
target variable is independent from the features.

Illustration (Accuracy and classi�cation model). Consider a logistic regression model and
the accuracy as sample evaluation metric with

f̂(xi) =

{
1 if P̂ (xi) = 1/ [1 + exp (−xiβ)] > π
0 otherwise,

(7)

where π ∈ [0, 1] refers to a cuto� value. We denote by σy,f̂(x) the covariance between the target

3In a traditional in-sample/out-of-sample estimation framework, βj refers to the parameter estimates obtained on
the estimation sample.

4If the DGPs of the estimation and validation sample are similar, we expect the model parameters βj and covari-
ances σy,xj , ∀j = 1, ..., n to have the same sign. For instance, if the covariance between the target variable and a
feature is negative in-sample and out-of-sample, i.e., βj < 0 and σy,xj < 0, then φj > 0.
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variable and the classi�cation output. Then, the e�ciency property becomes:

2σy,f̂(x) + 2P (x)P̂ (x) + 1− P (x)− P̂ (x)︸ ︷︷ ︸
Ey,x(G(y;x))

= 2P (x)P̂ (x) + 1− P (x)− P̂ (x)︸ ︷︷ ︸
φ0

+ 2σy,f̂(x)︸ ︷︷ ︸∑q
j=1 φj

(8)

with P (x) = P(y = 1|x). Unlike the example of the MSE, the Shapley values φj , ∀j = 1, ..., n
do not have any analytical expressions. As expected, the Shapley values depend on the covariance
between the target variable y and the classi�cation output f̂(x). The benchmark φ0 corresponds to
the accuracy that we would obtain by applying the model to data generated by a DGP where the
target variable is independent from the features.

4 Shapley value estimation

In this section we develop the estimation of Shapley values φj , j = 1, .., q and identify among them
individual contributions φi,j , i = 1, .., n, j = 1, .., q.

4.1 Global Analysis

The estimation of feature contributions to the evaluation metric requires to make the following
assumption.

Assumption 3. The sample evaluation metric satis�es an additive property such that:

Gn(y;X) =
1

n

n∑
i=1

G(yi;xi; δn), (9)

where G(yi;xi; δn) denotes an individual contribution to the evaluation metric and δn(yi,xi) is a

normalization factor which depends on the test sample Sn.

For ease of presentation, we only consider models for which the outcome yi for cross-sectional unit
i only depends on its own features xi. For regression or classi�cation models with cross-sectional
interactions (e.g., spatial econometrics model) or time series dependence, notations have to be
adjusted such that ŷi = f̂ (wi) where xi ⊆ wi, ∃j 6= i : xj ⊆ wi and/or yj ⊆ wi. Then, the additive
property becomes Gn(y;X) = n−1

∑n
i=1G (yi;wi; δn).

The additive property is satis�ed for many pairs of models and evaluation metrics as illustrated by
the following examples.

Example 3. Consider a linear regression model f̂(.) with i.i.d assumptions and the (opposite) MSE
as evaluation metric then:

Gn(y;X) =
1

n

n∑
i=1

G(yi;xi; δn) = − 1

n

n∑
i=1

(yi − f̂(xi))
2,

with G(yi;xi; δn) ≡ G(yi;xi) = −(yi − f̂(xi))
2.
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Example 4. Consider a logistic regression model f̂(.) with i.i.d features and the accuracy as eval-
uation metric then:

Gn(y;X) =
1

n

n∑
i=1

G(yi;xi; δn) =
1

n

n∑
i=1

(
f̂(xi)yi + (1− f̂(xi))(1− yi)

)
,

with G(yi;xi; δn) ≡ G(yi;xi) = f̂(xi)yi + (1− f̂(xi))(1− yi).

Example 5. Consider a linear regression model f̂(.) with i.i.d assumptions and the R2 as evaluation
metric then:

Gn(y;X) =
1

n

n∑
i=1

G(yi;xi; δn) = 1−
∑n

i=1(yi − f̂(xi))
2

1
n

∑n
j=1(yj − ȳ)2

,

with G(yi;xi; δn) = 1− δ−1n (yi − f̂(xi))
2 and δn = 1

n

∑n
j=1(yj − ȳ)2.

Under regular assumptions and the additive property (assumption 9), the Shapley value φj can be
estimated as a weighted average of individual contributions di�erences.

De�nition 3. A consistent estimator of the contribution of feature xj to evaluation metric is:

φ̂j =
∑

S⊆P({x}\{xj})

wS

[
1

n2

n∑
u=1

n∑
v=1

G
(
yv;xv,j ,x

S
u ,x

S
v ; δn

)
− 1

n2

n∑
u=1

n∑
v=1

G
(
yv;xu,j ,x

S
u ,x

S
v ; δn

)]
, (10)

wS =
|S|! (q − |S| − 1)!

q!
, (11)

with S a coalition, i.e., a subset of features, excluding the feature of interest xj, |S| the number of

features in the coalition, and P({x} \ {xj}) the partition of the set {x} \ {xj}.

Similarly to the examples reported in Table 1 we illustrate the computation of the estimated Shapley
value φ̂1 in a model with three features. Table 2 reports the estimated marginal contributions
(column 3) of feature x1 and the corresponding weights (column 2) for all coalitions of other features
(column 1).

Table 2: Computation of the Shapley value φ̂1 in a three-feature model.

S wS
1
n2

∑n
u=1

∑n
v=1G

(
yv;xv,j ,x

S
u ,x

S
v ; δn

)
− 1

n2

∑n
u=1

∑n
v=1G

(
yv;xu,j ,x

S
u ,x

S
v ; δn

)
{∅} 1/3 1

n

∑n
v=1G (yv;xv,1, xv,2, xv,3; δn)− 1

n2

∑n
u=1

∑n
v=1G (yv;xu,1, xv,2, xv,3; δn)

{x2} 1/6 1
n2

∑n
u=1

∑n
v=1G (yv;xv,1, xu,2, xv,3; δn)− 1

n2

∑n
u=1

∑n
v=1G (yv;xu,1, xu,2, xv,3; δn)

{x3} 1/6 1
n2

∑n
u=1

∑n
v=1G (yv;xv,1, xv,2, xu,3; δn)− 1

n2

∑n
u=1

∑n
v=1G (yv;xu,1, xv,2, xu,3; δn)

{x2, x3} 1/3 1
n2

∑n
u=1

∑n
v=1G (yv;xv,1, xu,2, xu,3; δn)− 1

n2

∑n
u=1

∑n
v=1G (yv;xu,1, xu,2, xu,3; δn)

Note: This table displays details of empirical Shapley value computation, i.e., the coalitions (column 1), the associated

weights (column 2) and the estimated marginal contributions (column 3).
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4.2 Local Analysis

Feature contributions to the evaluation metric can be distributed among individuals. We detail the
estimation of individual i contribution to the Shapley value φj as follows.

De�nition 4. Under assumption 3, individual i contribution to the Shapley value φj is:

φi,j =
∑

S⊆P({x}\{xj})

wS

[
ExS (G (y;x))− Exj ,xS (G (y;x))

]
. (12)

De�nition 5. A consistent estimator of individual i contribution to the estimated Shapley value φ̂j
is:

φ̂i,j =
∑

S⊆P({x}\{xj})

wS

[
1

n

n∑
u=1

G
(
yi;xi,j ,x

S
u ,x

S
i ; δn

)
− 1

n

n∑
u=1

G
(
yi;xu,j ,x

S
u ,x

S
i ; δn

)]
, (13)

φ̂j =
1

n

n∑
i=1

φ̂i,j (14)

with S a coalition, i.e., a subset of features, excluding the feature of interest xj, |S| the number of

features in the coalition, and P({x} \ {xj}) the partition of the set {x} \ {xj}.

φ̂i,0 =
1

n

n∑
u=1

G (yi;xu,1, xu,2, xu,3; δn) (15)

Table 3: Computation of the Shapley value φ̂i,1 in a three-feature model.

S wS
1
n

∑n
u=1G

(
yi;xi,j ,x

S
u ,x

S
i ; δn

)
− 1

n

∑n
u=1G

(
yi;xu,j ,x

S
u ,x

S
i ; δn

)
{∅} 1/3 G (yi;xi,1, xi,2, xi,3; δn)− 1

n

∑n
u=1G (yi;xu,1, xi,2, xi,3; δn)

{x2} 1/6 1
n

∑n
u=1G (yi;xi,1, xu,2, xi,3; δn)− 1

n

∑n
u=1G (yi;xu,1, xu,2, xi,3; δn)

{x3} 1/6 1
n

∑n
u=1G (yi;xi,1, xi,2, xu,3; δn)− 1

n

∑n
u=1G (yi;xu,1, xi,2, xu,3; δn)

{x2, x3} 1/3 1
n

∑n
u=1G (yi;xi,1, xu,2, xu,3; δn)− 1

n

∑n
u=1G (yi;xu,1, xu,2, xu,3; δn)

Note: This table displays details of empirical Shapley value computation, i.e., the coalitions (column 1), the associated

weights (column 2) and the estimated marginal contributions (column 3).

4.3 Illustrations

4.3.1 Classi�cation model

Consider a probit model and the accuracy as sample evaluation metric with

yi =

{
1 if y∗i > 0
0 otherwise,

(16)

where y∗i refers to a latent variable de�ned as:

y∗i = xiβ + εi, (17)
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with εi ∼ N (0, 1) an i.i.d random variable.

We generate q = 3 features xi,j , j = 1, 2, 3, for n = 100 individuals, i = 1, . . . , 100, and assume
the following Gaussian distributions, x1 ∼ N (0, 8), x2 ∼ N (0, 4), and x3 ∼ N (0, 1). Conditional
probability of observing the event yi = 1 is obtained as follows:

P (xi) = Φ(xiβ), (18)

where Φ(.) represents the cumulative distribution function of the standard normal distribution and
{β0, β1, β2, β3} = {0.05, 0.5, 0.5, 0} the vector of parameters. Finally, the estimated probabilities are
de�ned as:

P̂ (xi) = Φ(xiβ̂), (19)

with {β̂0, β̂1, β̂2, β̂3} = {0.06, 0.7, 0.3, 0.08} the vector of estimated parameters.

The AUC and features contributions obtained from our simulations are the following:

Gn(y;X) ' 0.9804

0.4697︸ ︷︷ ︸
φ̂0

+ 0.3988︸ ︷︷ ︸
φ̂1

+ 0.1139︸ ︷︷ ︸
φ̂2

+−0.002︸ ︷︷ ︸
φ̂3

' 0.9804

As we can see the benchmark φ̂0 obtained from our simulations is very close to the well-known AUC
value of 0.5. As a reminder, an AUC equal to 0.5 means that the estimated model is as good as a
model making random guesses of the target variable. Hence, our benchmark AUC is very close to
the one obtained from of a model making random prediction of yi. This result is expected as φ0
represents the AUC provided by a model without any predictive ability. As our estimated model
has an AUC close to 1 (' 0.9804) the features contain important information allowing the model
to make correct predictions most of the time. Using our methodology we �nd that among those
features, the �rst one above all explain the predictive ability of the model (0.3988/0.9804 ' 41%).
At the opposite, as the last feature has a low impact on the estimated probabilities, i.e., β̂3 = 0.08
and σ2x3 = 1, its Shapley value φ̂3 is close to 0 (−0.002).5

Local analyses of feature contributions to individual performances G(yi;xi; δn) is detailed in Table
4. In binary classi�cation, the benchmark φ̂i,0 only takes two values as it corresponds to the
evaluation metric computed for each target value from a model without any predictive ability. In
our case, we can see that φ̂i,0 is either equal to 0.4748 or 0.4648. Individual performances superior

to their benchmark, i.e., G(yi;xi; δn) > φ̂i,0, show that knowledge of individual's characteristics
empower the model to make more accurate predictions than simple random guesses. In other
words, if G(yi;xi; δn) > φ̂i,0 it means that for individual i features xj , j = 1, ..., q contributes to
its correct classi�cation. As expected for most individuals feature x1 mainly contributes to their
good classi�cation, i.e., φ̂1 � 0 and G(yi;xi; δn) � φ̂i,0. However, local analysis allows us to see
that features impact on performances is not homogeneous among individuals. Indeed, for some
individuals the second feature plays a more important role than the �rst one to promote their
correct classi�cation. For instance, for individual 5 feature x2 contributes to 28.3% of his good
performance (G(yi;xi; δn)� φ̂i,0) whereas x1 share is about 21.8%.

5Note that even if in the DGP used to simulate the data the third feature does not have any e�ect on the predicted
probabilities it does not implies that φ̂3 = 0.
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Table 4: Illustration of AUC Shapley values in a three-fold logit model.

G(yi;xi; δn) φ̂i,0 φ̂i,1 φ̂i,2 φ̂i,3

i = 1 1.0204 0.4748 0.4464 0.0884 0.0108
i = 2 1.0204 0.4748 0.5137 0.0329 -0.0010
i = 3 1.0204 0.4748 0.4672 0.0815 -0.0031
i = 4 1.0004 0.4748 0.4742 0.0612 -0.0097
i = 5 0.9804 0.4648 0.2133 0.2782 0.0240
...

...
...

...
...

...
i = 996 0.9804 0.4648 0.4971 0.0260 -0.0074
i = 997 0.9204 0.4648 0.2335 0.2146 0.0076
i = 998 0.9804 0.4648 0.4574 0.0711 -0.0129
i = 999 0.8203 0.4648 0.1741 0.2170 -0.0355
i = 1, 000 1.0204 0.4748 0.3721 0.1635 0.0100

Note: This table displays individual contributions to the AUC, individual benchmarks, and Shapley values associated

to each feature xj , j = 1, 2, 3, in a three-fold logit model.

4.3.2 Regression model

Consider a linear regression model f̂(xi) = β̂0 +
∑3

j=1 β̂jxi,j , and the R2 as sample evaluation
metric. We assume that the features are normally distributed and satisfy E (x) = 0q and V(x) =
diag(σ2xj ) ∀j = 1, 2, 3.

We generate q = 3 predictive features xi,j , j = 1, . . . , q, for n = 1, 000 individuals, i = 1, . . . , n, and
assume the following Gaussian distributions, x1 ∼ N (0, 8), x2 ∼ N (0, 4), and x3 ∼ N (0, 1). We
simulate the true target variable yi, and predicted target variable ŷi as follows:

yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + εi, (20)

ŷi = β̂0 + β̂1xi,1 + β̂2xi,2 + β̂3xi,3, (21)

with {β0, β1, β2, β3} = {β̂0, β̂1, β̂2, β̂3} = {0.2, 0.5, 0.5, 0} the vector of parameters, and εi ∼ N (0, 4)
the error term.

The R2 and features contributions obtained from our simulations are the following:

Gn(y;X) ' 0.3948

−0.3973︸ ︷︷ ︸
φ̂0

+ 0.5358︸ ︷︷ ︸
φ̂1

+ 0.2563︸ ︷︷ ︸
φ̂2

+ 0︸︷︷︸
φ̂3

' 0.3948
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Table 5: Illustration of R2 Shapley values in a three-fold standard linear model.

G(yi;xi; δn) φ̂i,0 φ̂i,1 φ̂i,2 φ̂i,3

i = 1 -1.0893 -0.9820 -0.3794 0.2721 0.0
i = 2 0.5751 0.6006 -0.2142 0.1887 0.0
i = 3 0.9018 -0.0310 0.6548 0.2780 0.0
i = 4 -1.0454 -1.7017 1.0307 -0.3744 0.0
i = 5 0.8222 0.5626 0.2827 -0.0231 0.0
...

...
...

...
...

...
i = 996 0.9995 0.2820 0.5569 0.1606 0.0
i = 997 -1.4782 -1.0698 2.0814 -2.4898 0.0
i = 998 0.9411 0.5965 0.2129 0.1317 0.0
i = 999 -0.5503 0.0593 -0.8088 0.1992 0.0
i = 1, 000 0.9253 0.5173 0.2741 0.1340 0.0

Note: .

5 Feasible Shapley values

6 Empirical Application
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A Additive property in a three-fold model

In a three-fold model the additive property is illustrated as follows:

3∑
j=1

φj =

3∑
j=1

1

3
[Ey,x(G(y;x))− φ0]︸ ︷︷ ︸
Ey,x(G(y;x))−φ0

+

3∑
j=1

Mj(G (y;x))︸ ︷︷ ︸
= 0

(22)

with

M1(G (y;x)) =
1

6
(Ex2Ey,x1,x3 (G (y;x))− Ex1,x2Ey,x3 (G (y;x)))

+
1

6
(Ex3Ey,x1,x2 (G (y;x))− Ex1,x3Ey,x2 (G (y;x)))

+
1

3
(Ex2,x3Ey,x1 (G (y;x))− Ex1Ey,x2,x3 (G (y;x)))

M2(G (y;x)) =
1

6
(Ex1Ey,x2,x3 (G (y;x))− Ex1,x2Ey,x3 (G (y;x)))

+
1

6
(Ex3Ey,x1,x2 (G (y;x))− Ex2,x3Ey,x1 (G (y;x)))

+
1

3
(Ex1,x3Ey,x2 (G (y;x))− Ex2Ey,x1,x3 (G (y;x)))

M3(G (y;x)) =
1

6
(Ex2Ey,x1,x3 (G (y;x))− Ex2,x3Ey,x1 (G (y;x)))

+
1

6
(Ex1Ey,x2,x3 (G (y;x))− Ex1,x3Ey,x2 (G (y;x)))

+
1

3
(Ex1,x2Ey,x3 (G (y;x))− Ex3Ey,x1,x2 (G (y;x))) .

B Additive property additional examples

Example 6. Consider a logistic regression model f̂(.) with i.i.d features and the sensitivity as
evaluation metric then:

Gn(y;X) =
1

n

n∑
i=1

G(yi;xi; δn) =
1

n

n∑
i=1

[
yif̂(xi)

1
n

∑n
j=1 yj

]
,

with G(yi;xi; δn) = yif̂(xi)
δn

and δn = 1
n

∑n
j=1 yj .

Example 7. Consider a logistic regression model f̂(.) with i.i.d features and the speci�city as
evaluation metric then:

Gn(y;X) =
1

n

n∑
i=1

G(yi;xi; δn) =
1

n

n∑
i=1

[
(1− yi)(1− f̂(xi))

1
n

∑n
j=1(1− yj)

]
,
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with G(yi;xi; δn) = (1−yi)(1−f̂(xi))
δn

and δn = 1
n

∑n
j=1(1− yj).

Example 8. Consider a logistic regression model f̂(.) with i.i.d features and the precision as
evaluation metric then:

Gn(y;X) =
1

n

n∑
i=1

G(yi;xi; δn) =
1

n

n∑
i=1

[
yif̂(xi)

1
n

∑n
j=1 f̂(xj)

]
,

with G(yi;xi; δn) = yif̂(xi)
δn

and δn = 1
n

∑n
j=1 f̂(xj).
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