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Abstract

We propose a GARCH model augmented by a time-varying inter-
cept. The intercept is parameterized by a logistic transition function with
rescaled time as the transition variable, which provides a flexible and sim-
ple way of capturing deterministic non-linear changes in the conditional
and unconditional variances. By making the intercept a smooth function
of time, it is possible to capture changes that occur gradually, rather than
abruptly as in regime switching models. It is common for financial time
series to exhibit these types of shifts. The time-varying intercept makes
the model globally nonstationary but locally stationary. We use the the-
ory of locally stationary processes to derive the asymptotic properties of
the quasi maximum likelihood estimator (QMLE) of the parameters of
the model. We show that the QMLE is consistent and asymptotically
normally distributed. To corroborate the results of the analysis, we pro-
vide a small simulation study. An empirical application on stock returns
of large US corporations demonstrates the usefulness of the model. We
find that the persistence implied by the workhorse GARCH(1,1) param-
eter estimates is reduced by incorporating a time-varying intercept. In
particular, estimates that suggest an integrated volatility model can be
reduced to lie within the stationary region.

1 Introduction

Volatility, interpreted as a measure of risk, plays an important role in finan-
cial management, and considerable efforts have been devoted to modelling it.
The most popular time series models used for forecasting volatility are the Au-
toregressive conditional heteroskedasticity (ARCH) model by Engle (1982) and
its generalisation, the General ARCH or GARCH model by Bollerslev (1986)
and Taylor (1986). They are expected to capture the stylized facts in daily or
weekly returns of financial assets and thus generate useful (short-run) forecasts
for these series.
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One such fact is that volatility exhibits a high level of persistence. Many
studies have found that conditional volatility modelled using GARCH contains a
’unit root’, that is, the unconditional variance implied by the estimated model
becomes infinite. This leads to the so-called integrated GARCH (IGARCH)
model; see Engle and Bollerslev (1986). Baillie et al. (1996) generalised the
IGARCH model to a fractionally integrated GARCH model that can be either
weakly stationary or nonstationary.

Diebold (1986), however, argued that time series of conditional volatility
may appear integrated because there may be a trend driving the development
of the series. Lamoureux and Lastrapes (1990) elaborated on this by arguing
that high persistence might be due to time variation in all GARCH parameters
and suggested that this can be accounted for by incorporating deterministic
shifts in the unconditional variance. Morana (2002) showed that a stochastically
shifting variance can also lead to high persistence. In this paper we, following
many researchers, take up the lead proposed by these authors. We consider a
GARCH model that was briefly mentioned by Teräsvirta (2012). This model,
here called the Additive Time-Varying (ATV-) GARCH model, has a flexible,
deterministically time-varying intercept that takes care of the nonstationarity
regularly present in long daily or weekly asset return series. It is particularly
well suited for situations in which volatility of an asset or index is systematically
increasing or decreasing over time. Instead of becoming infinite as in IGARCH
with a positive intercept, the unconditional variance of ATV-GARCH, under
some parameter restrictions, remains finite over time.

The plan of the paper is as follows. In Section 2, we specify and discuss the
model and related developments. We continue in Section 3 by considering esti-
mation by maximum likelihood and state two theorems, namely consistency and
asymptotic normality of the QMLE. In Section 4, we provide a short simulation
study to corroborate the analysis and examine the small sample properties of
the model. We conclude in Section 5 with an empirical example and a short
discussion. Proofs are given in the appendix.

1.1 Notation

Throughout the paper, we use ‖W‖p = (E|W |p)1/p to denote the norm, and
when applied to a matrix, we use | · | to denote the maximum norm. Further,
let A1/2 denote the Cholesky decomposition of a positive definite matrix A. We
use C1, C2, . . . as generic constants, not necessarily the same across contexts.

2 The model

We define the model and consider some related developments.
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2.1 The additive time-varying GARCH model

We consider the process

yt = µt +Xt, t = 1, 2, . . . , T, (1)

where µt = E{yt|Ft−1}, and Ft = σ(Xt, Xt−1, ...X1) is the σ-field gener-
ated by {Xt, ..., X1}. The error Xt is decomposed as Xt = εtσt,T where εt ∼
IID(0, 1) and

σ2
t,T = g(t/T ; θ) +

p∑
i=1

αiX
2
t−i,T +

q∑
j=1

βjσ
2
t−j,T . (2)

The deterministic component g(t/T ; θ) has the following form

g(t/T ; θ) := α0 +

L∑
l=1

α0lGl

(
t

T
, γl, cl

)
, (3)

with g(r; θ) > 0 for r ∈ [0, 1], where

G(t/T, γ, c) =

(
1 + exp

{
−γ

K∏
k=1

(t/T − ck)

})−1

, (4)

with γl > 0, c11 < . . . < c1K < c21 < . . . < cLK for all l = 1, . . . , L, k =
1, . . . ,K. Figure 1 shows how the logistic transition function behaves as the
shape parameter γ and location parameter c change. In what follows we assume

Figure 1: The logistic transition function

(a) γ1 varies, c1 is fixed at 0.5. (b) c1 varies, γ1 is fixed at 10
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µt = 0. The subscript T is to emphasize that we are working in rescaled time t/T ,
as is common in the literature of locally stationary processes. The decomposition
Xt = εtσt,T together with equations (2), (3) and (4) define the ATV-GARCH
model. It is nonlinear, locally stationary and globally nonstationary. Local
stationarity will be discussed in the next section. The GARCH equation (2)
may easily be made asymmetric. The simplest way to do this is to augment the
GARCH equation with an indicator variable taking the value one for negative
values of εt, which corresponds to the GJR-GARCH model by Glosten et al.
(1993). For notational simplicity we retain the form (2).

The model is unidentified if the intercept is constant. It is therefore advisable
to test for time-variation in the intercept before attempting to fit the model.
The test will be considered in a separate paper.

2.2 Relation to tvGARCH

The decomposition Xt,T = εtσt,T together with (2), (3) and (4) define the
ATV-GARCH model. The model belongs to the class of time-varying GARCH
processes defined by

Xt,T = εtσt,T ,

σ2
t,T = α0

(
t

T

)
+

p∑
i=1

αi

(
t

T

)
X2
t−i,T +

q∑
j=1

βj

(
t

T

)
σ2
t−j,T ,

where the parameters α0(t/T ), αi(t/T ), i = 1, . . . , p, and βj(t/T ), j = 1 . . . , q,
are smooth functions of time. The time-varying GARCH process is non-stationary,
but under suitable conditions on the nonstationary parameters, {Xt,T } can lo-
cally be approximated by a stationary GARCH process. Theoretical develop-
ments have been largely focused on this approach. For a survey of early devel-
opments in locally stationary volatility models, see van Bellegem (2012). For
contributions in the theory of time-varying ARCH processes, see Dahlhaus and
Subba Rao (2006), and for time-varying GARCH processes Subba Rao (2006),
Rohan (2013), Chen and Hong (2016), Kristensen and Lee (2019) and Kar-
makar et al. (2020). In a way, the conditional variances in these models are
more general than (4) in the sense that all αi and βi are time-varying. The main
practical difference between them and ATV-GARCH is that in the former, the
coefficients are nonparametric and estimated using kernel or local polynomial
estimation, whereas in the latter the time-varying intercept is parametric: the
ATV-GARCH model can be considered a parameterization of the more general
tvGARCH, with

α0(t/T ) := g(t/T ),

where g(t/T ) is defined in (3) and (4), αi(t/T ) = αi, i = 1, . . . , p, and βj(t/T ) =
βj , j = 1, . . . , q.

As the ATV-GARCH augments the GARCH equation by including an addi-
tive term, it can also be viewed in the light of a GARCH-X model, as considered
by Han and Kristensen (2014). In the ATV-GARCH model, the additive term
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is a bounded, deterministic trend. In the GARCH-X model it is a stochastic re-
gressor. As a consequence, the model has some similarities with the GARCH-X
model with a nonstationary covariate.

The idea behind the model is that a felxible intercept that affects the per-
sistence of the process adequately describes the systematic changes in volatility.
We hypothesize that the inclusion of a time-varying intercept helps explain time-
variation and structural changes often found in the unconditional volatility of
financial time series such as stock, commodity and exchange rate returns.

2.3 Local stationary approximation

The inclusion of a time-varying intercept makes the ATV-GARCH model non-
stationary. However, as the parametric intercept is a smooth function, the
process has a locally stationary behaviour. As a consequence, there exists a sta-
tionary process which locally approximates the ATV-GARCH process in some
neighbourhood of a fixed point in time. We will show that the ATV-GARCH
model is locally stationary and a general theory for nonlinear locally stationary
processes (Dahlhaus, Richter and Wu 2019, henceforth DRW) applies to the
model. The theory relies on rescaling time to the unit interval, which enables a
meaningful asymptotic analysis.

The concept of local stationarity was introduced already by Dahlhaus (1997),
but the contributions of DRW are seminal in that the authors show that the
rescaling device can be used to derive several general results, among them a
global law of large numbers and a global central limit theorem. We use this
theory applied to the ATV-GARCH model. To introduce the notion, following
among others Dahlhaus and Subba Rao (2006), a process Xt,T , t = 1, . . . , T , is
said to be locally stationary if

Xt,T = X̃t(u) +Op

(
|t/T − u|+ 1

T

)
, (5)

where u ∈ [0, 1] and X̃t(u) is a stationary approximation at u. The concept
relies on using the triangle inequality to decompose the difference between the
process and the stationary approximation as∣∣∣Xt,T − X̃t(u)

∣∣∣ ≤ ∣∣∣Xt,T − X̃t(t/T )
∣∣∣+
∣∣∣X̃t(t/T )− X̃t(u)

∣∣∣ . (6)

From (6) it can be seen that if t/T is close to u, then Xt,T and X̃t(u) should
be close and the degree of the approximation should depend on the rescaling
factor T and the deviation |t/T − u|.

The idea in this paper is to use the concept of local stationarity to extend
the theory of QML estimation of standard GARCH models to the case where
the intercept is parametric and time-varying. We use the framework in Berkes
et al. (2003), henceforth BHK, as a baseline for the theory, with the goal of
replacing the traditional limit theorems for stationary processes by their locally
stationary counterparts in DRW.
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To show that the ATV-GARCH model is locally stationary, we use some
results derived in Subba Rao (2006) for time-varying GARCH processes. The-
orem 2.1 of Subba Rao (2006) gives conditions under which a nonstationary,
nonlinear process with time-dependent parameters can be approximated locally
by a stationary process. The author uses the theorem to show that under the
conditions, the tvGARCH process Xt,T can be locally approximated by the
stationary GARCH process {Xt(u)} given by

X̃t(u) = εtσt(u),

σ2
t (u) = α0 (u) +

p∑
i=1

αi (u) X̃2
t−1(u) +

q∑
j=1

βj (u)σ2
t−j(u).

In our case, it is given by fixing the intercept at the value that the function
g takes at u. The time-varying GARCH process is then said to be locally
stationary in the sense that

X2
t,T = X̃2

t (u) +

(∣∣∣∣ tT − u
∣∣∣∣+

1

T

)
Rt,T , where sup

t,T
E(Rt,T ) <∞. (7)

The requirements for a tvGARCH to be locally stationary are as follows.
Assumption 1. Denote µn = {E(ε2n

t )}. The parameters satisfy the following
properties.

(i) The parameters {αi(·)} and {βj(·)} are Lipschitz continuous, i.e. |ai(u)− ai(v)| ≤
C |u− v| and |βj(u)− βj(v)| ≤ C |u− v|, where C is a finite constant.

(ii)

sup
u


p∑
i=1

αi (u) +

q∑
j=1

βj (u)

 < 1− η,

(iii) For some n ∈ [1,∞),

µn sup
u


p∑
i=1

αi (u) +

q∑
j=1

βj (u)

 < 1− η.

Proposition 1. Assume that E(ε2
t ) = 1, the parameter space Θ is compact

and that
∑p
i=1 αi +

∑q
j=1 βj < 1. Then the ATV-GARCH model is locally

stationary in the sense (7).

Proof. By taking n = 1, (ii) and (iii) in Assumption 1 are immediately fulfilled.
We show in the Appendix that the time-varying intercept is Lipschitz continuous
under compactness of the parameter space.

Note that the condition on the GARCH coefficients is a necessary condition
for weak stationarity of the standard GARCH(p, q) process. For the sake of
estimation by QML, this is a stronger assumption than needed in the standard
(strictly) stationary case, where a weaker condition on the coefficients can be
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derived in terms of the top Lyapunov exponent (BHK, Francq and Zaköıan
(2004)).

Further, in the standard case, one does not need to assume that the GARCH
process has a fourth moment in order to derive the asymptotic properties of the
QMLE. It suffices to make a fourth moment assumption on the errors (BHK,
Francq and Zaköıan (2004)). Here, we shall need to make an assumption on the
fourth moment of the process, which in practice restricts the sum of the GARCH
coefficients further. The assumption is due to the existence of a stationary
approximation and will be discussed in the next section.

2.4 Other related developments

The ATV-GARCH model is most closely related to the tvGARCH and GARCH-
X models, which we discussed in Section 2.2. In this section, we survey some
other related developments.

Other nonlinear GARCH models with smooth transition have been devel-
oped in order to take assymmetry of shocks into account. These include the
Partially Nonparametric GARCH by Engle and Ng (1993), Smooth Transition
GARCH by Hagerud (1997), Gonzalez-Rivera (1998), Anderson et al. (1999) and
Lubrano (2001) and Exponential GARCH (Nelson, 1991). Lanne and Saikkonen
(2005) considered these types of models from a theoretical standpoint. The au-
thors derived sufficient conditions for the stationarity and existence of moments
of various smooth transition GARCH models. As a GARCH(1, 1) example they
gave

σ2
t = α0 + α1X

2
t−1 + δ1g(σ2

t−1; γ) + β1σ
2
t−1, (8)

where

g(σ2
t−1; γ) =

∫ σ2
t−1

0

1

Γ(γ)
sγ−1e−sds

is the cdf of a standard gamma-distributed random variable, so it obtains values
in [0, 1]. It differs from (2) in that the additive nonlinear component is stochastic
and involves σ2

t−1.
The expression (3) also has similarities with the neural network GARCH

model by Caulet and Péguin-Feissolle (2000). In their model, the argument
in the logistic function in (4) is a linear combination of εt−1, ..., εt−q. Besides,
αi = 0, i = 1, ..., q, and βi = 0, i = 1, ..., p, in (2). The idea with logistic transi-
tion functions appeared in yet another form in the flexible coefficient GARCH
(FCGARCH) model by Medeiros and Veiga (2009). In their model,

σ2
t =

L∑
i=1

(α0i + α1iX
2
t−1 + β1iσ

2
t−1)Gi(st; γi, ci), (9)

where the transition variable st is strictly stationary and ergodic, and in deriving
asymptotic results it was assumed that st = Xt−1. As the authors note, this
precludes using time as the transition variable. Furthermore, compared to (4),
K = 1. In this very flexible functional form, all linear coefficients are changing
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over time. When st = Xt−1, (9) is still univariate. Teräsvirta (2012) contains a
survey of univariate nonlinear GARCH models.

If the deterministic function g(t/T ; θ) in (3) is replaced by a positive-valued
stochastic variable Zt−1, one obtains a so-called GARCH-X model; see Han and
Kristensen (2014). These authors provided asymptotic theory for maximum
likelihood (ML) estimators for both the case in which Zt−1 is stationary and for
the one in which it is nonstationary.

The ATV-GARCH model is an example of an additive decomposition of the
conditional variance in that the deterministic component in (2) is additive. An-
other popular decomposition is the multiplicative one. The idea is to rescale
the observations such that the resulting GARCH process is weakly stationary.
This is useful when nonstationarity is due to the fact that the amplitude of
volatility clusters varies over time. Thus, Xt = εtσt,T g

1/2(t/T ), where g(t/T ) is
a positive-valued deterministic function of time, and so Xt/g

1/2(t/T ) = εtσt,T .
This decomposition was introduced by Feng (2004) and van Bellegem and von
Sachs (2004) who estimated g(t/T ) nonparametrically. Amado and Teräsvirta
(2008, 2013, 2017) took a parametric approach and used (3) and (4) to de-
fine g(t/T ). Engle and Rangel (2008) related temporally aggregated g(t/T ),
estimated by exponential quadratic splines, to macroeconomic fluctuations of a
panel of countries. For a recent survey, see Amado et al. (2019). The function
g(·) may also be stochastic: gt = g(xt), see, for example, Amado and Laakkonen
(2013) and Han and Kristensen (2017).

Examples of globally nonstationary but not locally stationary GARCH mod-
els comprise GARCH models with a structural break or breaks, see Andreou
and Ghysels (2009) for a survey. When γl → ∞, l = 1, ..., L, in (4), the ATV-
GARCH model approaches a GARCH model with breaks. These models can
be piecewise stationary. It is possible to test for stationary subperiods and fit
GARCH models to them; see for example Härdle et al. (2003) and, for surveys
Č́ıžek and Spokoiny (2009) and Č́ıžek (2011).

Lastly, we take a look at the time-varying GARCH model by Chen et al.
(2014) because it contains not only smooth transitions but also a single discon-
tinuity or break. The structure of the variance component resembles that of
Medeiros and Veiga (2009) with some modifications. First, st = t/T. Second,
asymmetry is introduced by thresholds, so the (first-order) variance equation
becomes

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 +

L∑
i=1

(α0i + α1iX
2
t−1 + β1iσ

2
t−1)

× Gi(t/T ; γi, ci)I(t/T ∈ Si) (10)

where I(·) is an indicator variable. Furthermore,

Gi(t/T ; γi, ci) = (1 + exp{(−1)H−i+1γ(
t

T
− ci)})−1, γ > 0

so the odd-indexed transition functions G1, G3, ... are decreasing functions of
time, whereas the even ones are increasing. To illustrate, set L = 2, and denote
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σ2
t = ht + g(t/T ). This yields ht = α0 + α1X

2
t−1 + β1σ

2
t−1, and

g(
t

T
) = (α01 + α11X

2
t−1 + β11σ

2
t−1)G1(t/T ; γi, ci)I(

t

T
≤ t0
T

)

+ (α02 + α12X
2
t−1 + β12σ

2
t−1)G2(t/T ; γi, ci)I(

t

T
>
t0
T

).

Note that t0 is not a ’free’ break-point parameter. It is defined as t0/T =
(γ1c1 + γ2c2)/(γ1 + γ2), where it is assumed that 0 < ci < 1, i = 1, 2, and
c1 +c2 < 1. Asymmetry is introduced through t0. Chen et al. (2014) highlighted
various identification issues that entail this parameterisation. Model selection
and parameter estimation were conducted using the Bayesian MCMC algorithm.
A comparison of (10) with the ATV-GARCH model shows that in the former,
all parameters are changing over time, whereas in the latter, only the intercept
is time-varying.

The conditional variance (2) is simpler than (10), but depending on L, the
number of transitions in (3) and Kl and the shape of the transition functions
in (4), the intercept can be made a very flexible function of time. Furthermore,
L can be determined by sequential testing that includes the possibility that
the intercept is constant. Modelling issues of the ATV-GARCH model will be
discussed elsewhere. In this paper, the main focus will be on QML estimation
and properties of the QML estimators, to which we now turn.

3 Estimation by maximum likelihood

In this section, we discuss some notation and concepts related to the implemen-
tation and theory of estimation of the model by QML.

3.1 The log likelihood function

We define the log likelihood function, a truncated version of it and a stationary
approximation. We use the recursive definition of the process as given by BHK.
Let θ0 denote the parameter vector at the ”true” values. Define

θ̂ = arg max
θ∈Θ

1

T

T∑
t=1

lt(θ), (11)

where lt(θ) is the log likelihood function for observation t

lt(θ) = −1

2

[
log ht(θ) +

X2
t

ht(θ)

]
, (12)

with

ht(θ) =
α0

1−
∑q
i=1 βi

+

∞∑
j=1

dj(θ)gt−j+1 +

∞∑
j=1

cj(θ)X
2
t−j , (13)

:= c0(θ) +

∞∑
j=1

cj(θ)X
2
t−j , (14)
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where the functions cj(·) and dj(·) are given in BHK. For the stationary case,
BHK (Theorem 2.1) prove that this representation yields σ2

t almost surely. The
proof can be extended to allow for our case as well. To see this, we consider for
simplicity the ATV-GARCH(1,1) model and proceed as in BHK, Theorem 2.1.
Some recursive substitution yields

α0 + gt + α1X
2
t−1 = σ2

t − β1σ
2
t−1

α0 + gt + α1X
2
t−1 + β1(α0 + gt−1 + α1X

2
t−2) = σ2

t − β2
1σ

2
t−2,

and so on. More generally, defining Φt = α0 + gt + α1X
2
t−1, we get

Φt + β1Φt−1 + . . .+ βj1Φt−j = σ2
t − βjσ2

t−j . (15)

In the stationary case, BHK Lemma 2.2 can be invoked to show that, under
some mild regularity conditions, the LHS converges almost surely as j → ∞.
The exponential decay of the second term on the RHS then gives the result. If
we define Φ∗t = α0 + sup[0,1] gt + α1X

∗2
t−1, and σ∗2t similarly, we see that since

the terms have stationary processes that bound them everywhere, the result
continues to hold in our case. Note that σ2

t = ht(θ0). This produces a natural
way of generating the process without the need to initialize it with an arbitrary
starting value, but as Francq and Zaköıan (2004) notes, the computational cost
of the procedure is of order O(n2). In practice, any implementation should be
optimized for speed before attempting to fit the model to a long time series.

We only observe a finite number of observations. The truncated (”feasible”)
estimator is given by:

θ̄ = arg max
θ∈Θ

1

T

T∑
t=1

l̄t(θ), (16)

where l̄t(θ) is the log likelihood for observation t

l̄t(θ) = −1

2

[
log h̄t(θ) +

X2
t

h̄t(θ)

]
, (17)

with

h̄t(θ) = c̄0(θ) +

t−1∑
j=1

cj(θ)X
2
t−j . (18)

To prove consistency of the truncated estimator θ̄T from consistency of the
estimator θ̂T , it is sufficient to show that the truncated log likelihood function
L̄T (θ) converges uniformly to the log likelihood function LT (θ). In order to
motivate how this works, we reproduce some arguments from BHK and discuss
how they relate to our model in the Appendix.

We also need the estimator stemming from the stationary approximation.
Define

θ̃ = arg max
θ∈Θ

1

T

T∑
t=1

lt(u, θ). (19)
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where lt(u, θ) is the log likelihood for observation t

lt(u, θ) = −1

2

[
log h̃t(u, θ) +

X̃2
t (u)

h̃t(u, θ)

]
, (20)

with

h̃t(u, θ) = c̃0(θ) +

∞∑
j=1

cj(θ)X̃
2
t−j(u), (21)

for some u ∈ [0, 1], where the expression is obtained by approximating g(t/T )
by a constant value g(u).

Define

LT (θ) :=
1

T

T∑
t=1

lt(θ),

L̄T (θ) :=
1

T

T∑
t=1

l̄t(θ),

LT (u, θ) :=
1

T

T∑
t=1

lt(u, θ)

and
L(u, θ) := E[lt(u, θ)].

3.2 The Score and the Hessian

Denote the score for observation t

St(θ) =
∂lt(θ)

∂θ

and the Hessian for observation t

Ht(θ) =
∂2lt(θ)

∂θ∂θT
,

and S̄t(θ), S̃t(θ) and H̄t(θ), H̃t(θ) similarly. Note that S̃t(θ) and H̃t(θ) are not
derivatives of the stationary approximation of the log likelihood, but rather the
stationary approximations of these derivatives. We have that

St(θ) =
∂

∂θ

{
lnht(θ) +

X2
t

ht(θ)

}
=

(
1− X2

t

ht(θ)

)
1

ht(θ)

∂ht(θ)

∂θ
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and

Ht(θ) =
∂

∂θT

{(
1− X2

t (θ)

ht(θ)

)
∂ lnht(θ)

∂θ

}
=

(
1− X2

t

ht(θ)

)
1

ht(θ)

∂2ht
∂θ∂θT

+

(
2
X2
t

ht(θ)
− 1

)
1

ht(θ)

∂ht(θ)

∂θ

1

ht(θ)

∂ht(θ)

∂θT
.

Similarly to the argument for consistency, to prove asymptotic normality of
the truncated estimator θ̄T from asymptotic normality of the estimator θ̂T , it
suffices to show that the difference |θ̂T − θ̄T | tends to zero faster than the factor√
T in the limiting distribution

√
T (θ̂T − θ0). The difference between the score

of the log likelihood function evaluated at the estimator θ̂T and the score of the
truncated log likelihood function evaluated at the truncated estimator θ̄T is

ST (θ̂T )− S̄T (θ̄T ).

We can replace S̄T (θ̄T ) by ST (θ̄T ), and the error is

ST (θ̂T )− ST (θ̄T ) = S(θ̂T )− S̄T (θ̄T ) +OP

(
1

T

)
= OP

(
1

T

)
. (22)

As in BHK, Theorem 4.4, linearize the difference θ̂T − θ̄T by coordinatewise
application of the mean value theorem:

S(θ̂T )− S(θ̄T ) = (θ̂T − θ̄T )HT (θ∗) +OP

(
1

T

)
, (23)

where (for lack of better notation) θ∗ lies (coordinate wise) between θ̂T and θ̄T .
Here, HT (θ∗) is an average evaluated at θ∗. N2 together with N3 in Appendix
A imply that

HT (θ∗)
P→ H(θ0).

See Francq and Zakoian (2004), (vi) on p. 618 and the proof on p. 626. We can
write (23) as

S(θ̂T )− S(θ̄T ) = (θ̂T − θ̄T )H(θ0)(1 + oP (1)),

which then implies

|θ̂T − θ̄T | = OP

(
1

T

)
.

Since the difference between θ̂T and θ̄T is OP
(

1
T

)
and the factor in the lim-

iting distribution is
√
T , it is legitimate to replace θ̂T by θ̄T in the limiting

distribution.
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3.3 On moments and related assumptions

We shall need to make assumptions on the moment structure of the error term,
as well as on the coefficients. It is well known that the standard GARCH
model has a finite second moment under the assumption (A4) below, coupled
with existence of the second moment of the error term. If one instead requires
strict stationarity, (A4) can be relaxed considerably. By using the develop-
ments of Brandt (1986), who studied a particular stochastic differential equa-
tion, Bougerol and Picard (1992) were able to show that strict stationarity
entails a weaker condition. McAleer and Ling (2002) used a similar argument
to show a necessary and sufficient condition for the existence of the fourth mo-
ment of a GARCH(p, q) process. Subba Rao (2006), which contains results that
we use extensively, uses the same framework to show existence of moments for
a class of locally stationary processes. The class contains in particular time-
varying GARCH processes, which is illustrated in an example in the article. In
this subsection, we discuss this framework and how it relates to our model. For
a detailed exposition of the framework in the stationary case, see Francq and
Zaköıan (2019).

Following Subba Rao (2006), the time-varying GARCH(p, q) process {X2
t,T }

admits the state space representation (assume without loss of generality that
p, q ≥ 2)

Xt,T = bt

(
t

T

)
+At

(
t

T

)
Xt−1,T

with

bt(u) =


α0(u)

0
...
0

 ∈ Rp+q−1, Xt,T =



σ2
t,T
...

σ2
t−q+1,T

X2
t−1,T
...

X2
t−p+1,T


and

At(u) =


τt(u) βq(u) α(u) αp(u)
Iq−1 0 0 0
Z2
t−1 0 0 0
0 0 Ip−2 0

 ,

a (p+q−1)×(p+q−1) matrix where τt(u) = (β1(u)+α1(u)Z2
t−1, β2(u), . . . , βq−1(u)),

α(u) = (α2(u), . . . , αp−1(u)) and Z2
t−1 = (ε2

t−1, 0, . . . , 0) ∈ Rq−1. In the locally
stationary framework of Subba Rao (2006), it is further necessary to define
quantities that bound these matrices in each interval of rescaled time. Since we
only have time variation in the intercept, it suffices to define

b̃t =


supu∈[0,1] α0(u)

0
...
0

 ∈ Rp+q−1.
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Define the stationary approximation of the representation in the obvious way.
By Lipschitz continuity of the time-varying intercept, it follows from Subba Rao
(2006), Theorem 2.1 that∣∣∣Xt − X̃t(u)

∣∣∣ ≤ |t/T − u|Wt +
1

T
Vt, (24)

where Wt and Vt are stochastic processes.
In the asymptotic theory, we shall need to show the validity of assumption

S1 and S2 in DRW (see the Appendix). We need to show expressions of the
type ∥∥∥Xt − X̃t(u)

∥∥∥
1
≤ |t/T − u|C1 +

1

T
C2 (25)

and ∥∥∥Xt − X̃t(u)
∥∥∥

2
≤ |t/T − u|C3 +

1

T
C4. (26)

It is clear from (24) that this means requiring the existence of moments of

Vt and Wt. For a matrix A, define [A]n = (E |Ai,j |n)
1/n

and let λspec[A] denote
the largest absolute eigenvalue of A. By Subba Rao (2006), Proposition 2.1, if

the conditions of Subba Rao (2006) Theorem 2.1 are fulfilled and 1)
∥∥∥b̃t∥∥∥n

n
<∞

and 2) λspec[A]n < 1− δ for some (potentially very small) δ > 0, then

sup
t/T

‖Vt‖nn <∞ (27)

and
sup
t/T

‖Wt‖nn <∞. (28)

By boundedness of the intercept, 1) is fulfilled. We shall need to assume 2)
with n = 2. Because we have no time-variation in the parameters contained
in the matrix A, this is equivalent to the necessary and sufficient condition for
the existence of a fourth moment of the GARCH process in McAleer and Ling
(2002). To see this, consider an ATV-GARCH(1,1) model. The state space
representation is given by

bt(u) =

 α0 + α01G(u)
0
0

 ,

At(u) =

 β1 + α1Z
2
t−1 0 0

1 0 0
Z2
t−1 0 0

 ,
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and

sup
u
|bt(u)| ≤

 α0 + α01

0
0

 ,

([At(u)]2) =

 {E(β1 + α1Z
2
t−1)2}1/2 0 0

1 0 0
{E(Z2

t−1)2}1/2 0 0


=

 {β2
1 + 2α1β1E(Z2

t ) + α2
1E(Z4

t )}1/2 0 0
1 0 0

{E(Z4
t )}1/2 0 0

 .

The condition λspec([At(u)]2) < 1− δ translates into

β2
1 + 2α1β1E(Z2

t ) + α2
1E(Z4

t ) < 1.

Figure 2 depicts how restrictive the assumption is in the case of an (ATV)-
GARCH(1,1) and normally distributed innovations.
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Figure 2: The fourth moment assumption for an (ATV)-GARCH(1,1) with
N(0, 1) errors.
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3.4 Assumptions

We use the framework developed by BHK as a baseline for our theory. BHK de-
velop a theory for the consistency and asymptotic normality of the GARCH(p, q)
QMLE. Consequently, we largely inherit their assumptions. Let θ ∈ Θ be a vec-
tor containing the parameters in (2), that is, θ = (α0,α

′,β′, δ′,γ′, c′)′, where
α = (α1, . . . , αp)

′, β = (β1, . . . , βq)
′, δ = (α01, . . . , α0L)′, γ = (γ1, . . . , γL)′ and

c = (c11, . . . , c1L, c21, . . . , cKL)′. We make the following assumptions.

(A1) The random variables ε1, . . . , εT are IID with E(ε0) = 0 and E(ε2
0) =

1, E
∣∣ε2

0

∣∣d < ∞ for some d > 0 and ε2
0 is non-degenerate. Further,

lim
t→0

t−µP{ε2
0 ≤ t} = 0, for some µ > 0.

(A2) The parameter space Θ is compact and θ0 ∈ int(Θ).

(A3) α0 > 0, α0 +
L∑
l=1

α0lGl (u, γl, cl) > infθ∈Θ α0 ∀u ∈ [0, 1]. The functions Gl

are non-constant for each l, that is, ∀l and ∀k γl, clk, |α0l| > 0.

(A4)
∑p
i=1 αi +

∑q
j=1 βj < 1, α1, α2, . . . , αp ≥ 0, β1, β2, . . . , βq ≥ 0. Moreover,

λspec[At]2 < 1− δ for some δ > 0, where At is given in Section 3.3.

(A5) The polynomials A = α1x+α2x
2 + . . .+αpx

p and B = β1x+β2x
2 + . . .+

βqx
q are coprime on the set of polynomials with real coefficients.

(A6) E|εt|4+s <∞ for some s > 0.

Remark 1. (A1) and (A5) are directly inherited from BHK and (A2) is a
standard assumption for proving consistency and asymptotic normality. (A3) is
a modified nonnegativity condition. (A4) is discussed in the previous subchapter.
(A6) is a moment condition on the innovations.

4 Asymptotic theory

As a part of a general theory DRW discuss estimation by QML of non-linear, lo-
cally stationary processes. The estimation framework in DRW is non-parametric.
To characterize the processes that can be estimated as locally stationary, the re-
sults in DRW rely on imposing smoothness conditions on the curves that model
parameter change. In a non-parametric estimation procedure, these smoothness
conditions are assumed. Any parameterization naturally necessitates verifying
the conditions, rather than leaving them as high-level assumptions. In prac-
tice, this means verifying that Lipschitz or Hölder-type conditions hold for the
parameter curves in the conditional variance equation, as well as for necessary
transformations of them. The log likelihood function and its derivatives are
such necessary transformations.

We use results from Subba Rao (2006) to show that our model and the related
transformations are locally stationary. As mentioned in Section 3, we use the
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framework in BHK as a baseline for the theory, with the goal of motivating a
substitution of the traditional limit theorems for stationary processes to their
locally stationary counterparts in DRW.

4.1 Consistency

Theorem 1. Under (A1-A6)

θ̄T
p→ θ0 as T →∞. (29)

Proof. The proof is given in Appendix A.

Remark 2. In order to show the result, we need to apply a law of large numbers
for locally stationary processes to the log likelihood function, namely Theorem
2.7(i) in DRW. Due to an application of the Cauchy-Schwarz inequality, we
require Assumptions (A4) and (A7) already in the proof of consistency.

4.2 Asymptotic normality

Theorem 2. Under (A1-A6)

√
T
(
θ̄T − θ0

) D→ N
(
B−1AB−1

)
as T →∞, (30)

where the matrices A and B are given in the Appendix.

Proof. The proof is given in Appendix A.

5 Practical considerations and simulation study

We discuss the implementation of the model and some practical consideration
regarding estimation. We conduct a simulation study to corroborate the theo-
retical analysis and demonstrate the small sample properties of the test. In what
follows, we shall consider an ATV-GARCH(1,1)-model with one transition func-
tion and refer to the parameters α01, α1 and β1 as the ”GARCH parameters”,
and γ1, c1 and α01 as the ”G parameters”.

5.1 Considerations

When conducting simulations, the ”true” DGP is given by an ATV-GARCH
model, so we would expect the parameters to be consistently estimated and
asymptotically normal. In empirical applications, however, it is implicit that
the hypothesized DGP is a GARCH model with some non-linear structure in
the intercept. The logistic transition function approximates this non-linearity.
It is therefore perhaps less important to look at the exact values and t-statistics
of the G parameters, and more important to look at the shape of the transition
that they imply.
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Especial care need to be taken when estimating the speed of the transition,
i.e. the γ parameter in an ATV-GARCH model. As γ increases, its marginal
effect on the shape of the logistic transition function becomes smaller. Therefore,
the optimization routine cannot distinguish between large values of γ, which in
practice seems to lead to the parameter increasing towards infinity. By requiring
that the parameter space is compact, or equivalently (for a metric space) closed
and bounded, we have assumed that each parameter is bounded from above and
below by some value.

Further, When γ increases, the derivatives of the logistic transition function
increase around c, making the required Lipschitz constant larger. For the theory
to be valid, γ needs to be a finite value. Besides, one might argue that large
values of γ1 defeats the purpose of the model. The transitions are meant to be
smooth, which is to say easily distinguishable from a step function.

For the other parameters, we have imposed the necessary conditions in our
assumptions, as well as upper and lower bounds that are very unlikely to be
binding in any practicable application. This is necessary as we have assumed
that the parameter space is compact.

To overcome these issues, we note that we can follow Ekner and Nejstgaard
(2013) who propose rescaling γ to the unit interval. This can be achieved by
replacing γ with γ = δ/(1 − δ), where δ is the parameter to be estimated.
For identification, the case δ = 0 has to be ruled out, and for preservation
of Lipschitz continuity, the case δ = 1 is prohibited, so δ ∈ (0, 1). As in the
LSTAR-case in Ekner and Nejstgaard (2013), we have found that this small
reparameterization is conducive to stable estimation of the speed of transition.

In general, we expect there to be a trade-off between the speed of convergence
of the estimators and the numerical accuracy of the estimation. We hypothesize
that large, aggressive transitions are easier to estimate because the parameters
that govern them might affect the log-likelihood more if the transition is a
distinct feature of the data. However, large transitions imply large deviations
from stationarity, which might make the convergence slower.

The parameter c governs the locations of the inflection point of the transition.
If c is either small or large, ceteris paribus a larger part of the transition will be
outside of the observed data, which of course makes it more difficult to estimate.
If γ is large, this might not be a problem, as the transition will then happen
rapidly enough to be mostly observed. We note that if a researcher is dealing
with a dataset where it it suspected that c is close to 0 or 1 with a small γ, it
might be wise to collect more data before attempting to fit the model.

Numerical optimization of GARCH-type log likelihood equations is subject
to sensitivity to starting values. Many solvers can accommodate this by allowing
the user to specify a sequence of starting values, or selecting the starting values
based on some randomization around a vector of the user’s choice. It is therefore
reasonable to expect that, in applications, the user can benefit from knowledge
of the data at hand and the solver’s options to select starting values that come
fairly close to the parameters that generated the time series. In a practical
application, it might be a good idea to plot profile likelihoods and try at least
a few sets of starting values before settling on a final model.
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5.2 Simulation study

We conduct a simulation study to investigate the small sample properties of
the model and support the results of the asymptotic analysis in the previous
section. Using the statistical programming language R, we simulate time series of
lengths T = 1000, T = 2500, T = 5000, fit the ATV-GARCH model and use the
(numerically computed) Hessian to calculate standard errors and t-statistics for
the parameter estimates. We use 2000 Monte Carlo repetitions and the standard
random number generator with the seed set to 8493.

In estimating the model, we have used the solver solnp from the R package
Rsolnp. As we are estimating a non-linear function in the conditional variance
of the process, that is to say a numerically difficult optimization problem, some
of the results might not be due to the asymptotic properties in the theory, but
rather due to the solver converging to a local maxima. This shortcoming is likely
less prominent for large values of T, but serves as a sober reminder to applied
researchers that relying on the ”canned” solution to a difficult log-likelihood
problem might cause sub-optimal outcomes. To make sure that this effect is as
small as possible, we have supplied the solver with the ”correct” starting values,
as well as adjusted the default tolerance downwards.

We consider three data generating processes (DGPs). DGP 1 features a rapid
and relatively large transition. Because the transition is a pronounced part of
the process, we expect it to be well estimated in small samples. However, it
makes the process highly non-stationary, so the convergence of the GARCH
parameters might be slow. DGP 3 is a slow and small transition, so we expect
the opposite effect. DPG 2 is a middle-ground.

DGP 1 is given by
Xt,T = σt,T εt,

where εt is NID(0, 1) for all t,

σ2
t,T = g(t/T ) + 0.1X2

t−i,T + 0.8σ2
t−j,T

with

g(t/T ) = 0.05 + 0.15G1

(
t

T
, 20, 0.5

)
.

Figure 3 illustrates a typical realization of DGP 1.
DGP 2 is given by

Xt,T = σt,T εt,

where εt is NID(0, 1) for all t,

σ2
t,T = g(t/T ) + 0.1X2

t−i,T + 0.8σ2
t−j,T

with

g(t/T ) = 0.05 + 0.05G1

(
t

T
, 20, 0.5

)
.

Figure 4 illustrates a typical realization of DGP 2.
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Figure 3: A typical realization of DGP 1.

Figure 4: A typical realization of DGP 2.
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DGP 3 is given by

Xt,T = σt,T εt,

where εt is NID(0, 1) for all t,

σ2
t,T = g(t/T ) + 0.1X2

t−i,T + 0.8σ2
t−j,T

with

g(t/T ) = 0.05 + 0.05G1

(
t

T
, 10, 0.5

)
.

Figure 5 illustrates a typical realization of DGP 3.
To avoid initialization issues, we use a burn-in period of 500 observations

from the corresponding GARCH process with the transition set to zero.
The results of the study are reported in Table 1 and illustrated by the figures

in the Appendix. Table 1 shows that as the number of time series observations
increase, the mean of the estimated parameters tend to their true values. For
T = 5000, they are reasonably close to the values that generates the process.

We find that the standardized parameter estimates, or t-statistics, converge
toward their limiting distributions. This effect is illustrated by the figures in
the Appendix. For the smallest sample size T = 1000, we observe some rather
significant deviations. The purpose of the model is to capture behaviour that
happens over long periods of time, so empirically this shold not be an issue. As T
increases to 2500, the estimates and the shape of the distribution improves quite
dramatically. Using for example daily return data, the common assumption of
252 trading days in a year suggests that 10 years of data would yield roughly
2500 observations.

The empirical distributions have some probability mass distributed from
the shoulders into their centre and tails. This effect is less pronounced for
the GARCH parameters than the nonlinear parameters in the g function. The
empirical distributions become closer to the standard normal distribution as T
increases.

We mention that we have noticed that for DGPs with small values of γ1

and α01 (slow, small transitions) and a few number of observations, there might
be problems with the invertibility of the Hessian. It also seems that for small
transitions, the normal distribution approximation of the G parameters needs
many observations to be cogent. We conjecture that as a particularly slow
transition is difficult to distinguish from no transition, especially if the transition
is small, some parameters appear roughly superfluous over short periods of time
in some realizations, which might lead to approximate linear dependence in the
column space of the Hessian. Further, the normal approximation tends to be
sub-optimal because the G parameters skew right. This is likely because the
model is unidentified if one or all of the G parameters are zero, so they err
on the side of a rapid, aggressive transition. Especially in DGP 3, where the
transition is slow and small, we see a clear tendency to overestimate rather
than to underestimate: the convergence in Table 1 is approaching from the
right rather than from the left for the α01 parameter, and the corresponding
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distributions skew right. This tendency to overestimate in turn causes β1 to
skew left: as β1 determines how fast the effect of past values of the time-varying
intercept decays, an overestimation of α01 leads to an underestimation of β1.

Table 1: True values and empirical means of fitted coefficients in the simulation
study.

Parameter α̂0 α̂1 β̂1 γ̂1 ĉ1 α̂01

Panel A: DGP 1
True value 0.05 0.1 0.8 20 0.5 0.15
Mean 1000 0.073 0.102 0.748 20.459 0.509 0.24
Mean 2500 0.058 0.1 0.781 20.598 0.5 0.178
Mean 5000 0.054 0.1 0.791 20.413 0.5 0.163

Panel B: DGP 2
True value 0.05 0.1 0.8 20 0.5 0.05
Mean 1000 0.071 0.102 0.748 22.365 0.514 0.091
Mean 2500 0.057 0.101 0.781 18.380 0.509 0.066
Mean 5000 0.054 0.1 0.791 20.142 0.503 0.056

Panel C: DGP 3
True value 0.05 0.1 0.8 10 0.5 0.05
Mean 1000 0.07 0.102 0.747 12.175 0.534 0.104
Mean 2500 0.055 0.101 0.781 9.707 0.528 0.075
Mean 5000 0.052 0.1 0.791 9.811 0.515 0.062

We used 2000 Monte Carlo repetitions to calculate the means.

We have rounded the results to three significant digits.
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6 Empirical application

We motivate the use of the model by a short empirical example. We consider
Intel corporation (ticker INTC) returns during the period 2000 − 2008. The
return and price time series are plotted in Figure 6. The period starts with a
high degree of turbulence, possibly due to the tech bubble. After a period of
relative calm towards the middle of the time series, the volatility seems to pick
up as the financial crisis approaches. Summary statistics of the returns can be
found in the first panel of Table 2. The returns have been multiplied by 10 in
order to make the intercept larger in magnitude, which helps numerically in the
optimization routine and with ease of reporting of coefficient estimates.

We begin by testing for additive misspecification using a Lagrange mutliplier
test and a sequential procedure; we fit the model that is correct under the
null hypothesis, initially a traditional GARCH(1,1) model, and calculate the
corresponding test statistic. If the test rejects, we fit an ATV-GARCH(1,1)
model with one transition and continue to test for misspecification. We add
transition functions until the test statistic no longer exceeds its critical value.
The asymptotic distribution of the test statistic under the null hypothesis is
chi-square with three degrees of freedom. The critical value is calculated using
the 5% level of significance, which corresponds to a value of χ2(3) ≈ 7.815. We
assume that the errors are normally distributed, and account for distributional
misspecification by reporting a robust version of the test statistic. The test is
going to be expanded on in a subsequent article.

The results can be found in the second panel of Table 2. The test rejects
the null hypothesis of a standard GARCH(1, 1) model (χ2(3) = 11.838, Robust

χ2(3) = 12.332). Moreover, the sum (0.994) of the α̂1 (0.066) and β̂1 (0.928)
coefficients is close to unity, indicating a very high level of persistence.

After fitting a model with one transition function, the test no longer re-
jects the null hypothesis of no remaining misspecification (χ2(3) = 7.077, Ro-
bust χ2(3) = 6.227). The sum of the GARCH coefficients (0.963) is reduced.
We choose an ATV-GARCH(1,1) as our final model. Coefficients estimates,
t-statistics and their corresponding p-values can be found in the last panel of
Table 2.
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Table 2: Summary of the empirical application

Statistics
Series Mean Sd Med Min Max Skew Kurt
INTC -0.005 0.296 0.000 -2.489 1.833 -0.474 9.435

Testing

Null hyp. χ2(3) R χ2(3) p-val R p-val α̂1 β̂1 α̂1 + β̂1

0 tr. 11.838 12.332 0.008*** 0.006*** 0.066 0.928 0.994
1 tr. 7.077 6.227 0.069* 0.101 0.062 0.901 0.963

Final model
Coefficient Value t-stat R t-stat p-val R p-val
α̂00 0.006 3.812 2.633 0.000*** 0.008***
α̂1 0.062 6.074 4.301 0.000*** 0.000***

β̂1 0.901 54.365 44.174 0.000*** 0.000***
γ̂1 55.034 1.799 2.206 0.072* 0.027**
ĉ1 0.340 17.625 14.516 0.000*** 0.000***
α̂01 -0.005 -3.564 -2.423 0.000*** 0.015**

Note: All values are rounded to three decimals.
”Mean” is the average value of the series over the time period, ”SD” is the standard
deviation and ”Med” is the median.
”Min” and ”Max” are the minimum and maximum values, respectively.
”Skew” is the skewness and ”Kurt” is the kurtosis.
”Null hyp.” is the null hypothesis of the misspecification test.
”0 tr.” and ”1 tr.” are the number of transitions in the model under the null.
”R” is an abbreviation for ”robust”.

***,** and * indicate significance on the 1%, 5% and 10% levels, respectively.

25



Figure 5: A typical realization of DGP 3.
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Figure 6: Intel prices and returns 2000− 2008.

(a) Intel prices 2000 − 2008.

(b) Intel returns 2000 − 2008.
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Figure 7: ATV-GARCH(1,1) with one transition function fitted to 2000− 2008
Intel returns.

(a) Conditional variance 2000 − 2008.

(b) Time varying intercept 2000 − 2008.
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7 Conclusion

In this paper we have proposed an additive time-varying GARCH model where
the intercept is allowed to have a smoothly time-varying structure. The ATV-
GARCH model has a representation as a tvGARCH process. By rescaling the
parameters to the unit interval, an asymptotic theory for locally stationary
processes becomes available for asymptotic analysis. We use this theory applied
to the ATV-GARCH model. We derive the asymptotic properties of the QMLE
of the parameters of the model. We prove consistency and asymptotic normality
of the QMLE. A simulation study supports the theoretical findings. We provide
an illustration of the ATV-GARCH model fitted to stock returns.

Overall, the results indicate that our model provides a simple, flexible and
effective way of accounting for time-variation in the intercept. One does not
have to specify an exogenous, stochastic transition variable, but can use rescaled
time instead. A time-varying intercept indeed reduces persistence, which is in
line with previous empirical work. We conjecture that the reduction in the
persistence could impact results in academic studies where a GARCH model
has been used over long time horizons to obtain estimates of volatility.
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Appendix: Proofs

We provide proofs of consistency and asymptotic normality of the QMLE. We
use results from DRW for processes that can be locally approximated by sta-
tionary processes. Following Dahlhaus (1997), such processes are called locally
stationary process. As shown by Subba Rao (2006), the time-varying GARCH
process is included in the class of locally stationary processes. For consistency,
we mainly need the global law of large numbers in Theorem 2.7 of DRW, which
requires showing Assumption S1 in DRW is satisfied. To apply the global cen-
tral limit theorem in Theorem 2.9 of DRW, we need Assumptions S1, S2 and
MI in DRW. We start by stating these assumptions. We continue with a short
section containing some useful Lemmata and then proceed to the proofs.

Assumptions from DRW

Our proofs require verification of Assumptions S1, S2 and M1 from DRW. We
state them here.

Assumptions S1 and S2 are concerned with the existence of a stationary
approximation. Let p > 0. LetXt,T be a triangular array of stochastic processes.

For each u ∈ [0, 1], let X̃t(u) be a stationary and ergodic process such that the
following holds.

Assumption (DRW S1). supu∈[0,1]

∥∥∥X̃t(u)
∥∥∥
p
< ∞. There exists 1 ≥ α > 0,

C > 0 s.t. uniformly in t = 1, . . . , T and u, v ∈ [0, 1],∥∥∥X̃t(u)− X̃t(v)
∥∥∥
p
≤ C |u− v|α ,∥∥∥Xt,T − X̃t(t/T )
∥∥∥
p
≤ CT−α.

Assumption (DRW S2). u 7→ X̃t(u) is almost surely continuous for all t ∈ Z
and

∥∥∥supu∈[0,1]

∣∣∣X̃t(u)
∣∣∣∥∥∥
p
<∞.

Assumption M1 is a mixing condition on the stationary approximation X̃t(u).
Let εt, t ∈ Z, be a sequence of independent and identically distributed random
variables. For t ≥ 0, define the σ-fields

Ft = σ(. . . , εt−1, εt)

and
Fe0t = σ(. . . , ε−1, ε

e
0, ε1, . . . , εt−1, εt),

where εe0 has the same distribution as ε1 and is independent of all εt, t ∈ Z.

The (uniform) functional dependence measure for the stationary process X̃t is
defined as (see Wu 2011, p. 2)

δ0,p(t) =
∥∥∥X̃t − X̃e

t

∥∥∥
p
,
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where X̃e
t is a coupled version of X̃t with ε0 in the latter being replaced by εe0.

The process is said to be p-stable if (see Wu 2011, p. 3)

∞∑
t=1

δ0,p(t) <∞.

Assumption (DRW M1). For each u ∈ [0, 1] there exists a measurable func-

tion H(u, ·) s.t. X̃t(u) = H(u,Ft) and δX̃0,p(t) := supu∈[0,1] δ
X̃(u)
0,p (t) fulfills∑∞

t=0 δ
X̃
0,p(t) <∞.

We continue by establishing some intermediate results.

Lemmata

Lemma 1. The logistic function in (4) is Lipschitz continuous in t/T ∈ [0, 1],
and its first three partial derivatives with respect to the parameters c and γ,
|c|, |γ| <∞, are bounded and Lipschitz in t/T.

Proof. The first partial derivatives are

∂G

∂γ
= (t/T − c)G(1−G),

∂G

∂c
= −γG(1−G).

The second partial derivatives are

∂2G

∂γ2
=

∂

∂γ
{(t/T − c)G(1−G)} = (t/T − c)2G(1−G)(1− 2G),

∂2G

∂γ∂c
=

∂

∂c
{(t/T − c)G(1−G)} = (t/T − c)(−γ)G(1−G)(1− 2G)−G(1−G),

∂2G

∂c2
=

∂

∂c
{−γG(1−G)} = (−γ)2G(1−G)(1− 2G).

The third partial derivatives are

∂3G

∂γ3
=

∂

∂γ

{
(t/T − c)2G(1−G)(1− 2G)

}
= (t/T − c)3G(1−G)(1− 6G+ 6G2),

∂3G

∂γ2∂c
=

∂

∂c

{
(t/T − c)2G(1−G)(1− 2G)

}
= (t/T − c)2(−γ)G(1−G)(1− 6G+ 6G2)

− 2(t/T − c)G(1−G)(1− 2G),

∂3G

∂γ∂c2
=

∂

∂γ

{
(−γ)2G(1−G)(1− 2G)

}
= (t/T − c)(−γ)2G(1−G)(1− 6G+ 6G2)

− 2γG(1−G)(1− 2G),

∂3G

∂c3
=

∂

∂c

{
(−γ)2G(1−G)(1− 2G)

}
= (−γ)3G(1−G)(1− 6G+ 6G2).
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Since G ∈ [0, 1], these derivatives are all bounded. The partial derivative of G
with respect to t/T is given by

∂G(t/T, θ)

∂(t/T )
= γG(t/T, θ) (1−G(t/T, θ)) ,

which achieves its maximum γ
4 when G(t/T ) = 1/2. Therefore, by the mean

value theorem, for any points a, b ∈ [0, 1],

G(a, θ)−G(b, θ) ≤ γ

4
(a− b).

The derivatives consist of products of Lipschitz continuous, bounded functions,
so they are Lipschitz.

For later use, it will be useful to consider a stationary stochastic process
that bounds the locally stationary process

{
X2
t,T

}
. To do so, define

σ∗2t = g∗ +

p∑
i=1

αiX
∗2
t−i +

q∑
j=1

βjσ
∗2
t−j , (31)

where g∗ := supu∈[0,1] g(u). This is a finite value as the parameter space is com-

pact and (4) is bounded from above by 1. Note that by definition, σ∗2t,T ≥ σ2
t,T .

The process σ∗2t,T is the variance equation of a standard, stationary GARCH(p, q)
process with an intercept that bounds some time-varying deterministic function.
Denote the corresponding process by X∗2t,T .

The following intermediate result is often required in our subsequent deriva-
tions. It is a special case of Subba Rao (2006), Theorem 2.1 and Proposition
2.1.

Lemma 2. Under (A1)-(A6), for p = 1, 2, uniformly in t and u, v ∈ [0, 1],∥∥∥X2
t,T − X̃2

t (u)
∥∥∥
p
≤ C1

T
+ C2 |t/T − u| , (32)

∥∥∥X2
t,T − X̃2

t (t/T )
∥∥∥
p

=
C1

T
, (33)

and ∥∥∥X̃2
t (u)− X̃2

t (v)
∥∥∥
p
≤ C3 |u− v| . (34)

It also holds that ∥∥∥ht(θ)− h̃t(u, θ)∥∥∥
p
≤ C4

T
+ C5 |t/T − u| , (35)

∥∥∥ht(θ)− h̃t(t/T, θ)∥∥∥
p
≤ C4

T
(36)

and ∥∥∥h̃t(u, θ)− h̃t(v, θ)∥∥∥
p
≤ C5 |u− v| . (37)
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Proof. It follows from Subba Rao (2006, Section 5.2) that for a TV-GARCH(p, q)
process to be locally stationary, it is sufficient that the parameter curves αi(u), i =
0, . . . , p, and βj(u), j = 1, . . . , q, are Lipschitz continuous, and that

sup
u

 p∑
i=1

αi(u) +

q∑
j=1

βj(u)

 < 1− η, (38)

for some η > 0 and u ∈ [0, 1]. We have effectively assumed (38) in (A4). It
remains to show that the time-varying intercept is Lipschitz continuous. We
need to verify that

|α0(u)− α0(v)| ≤ K |u− v| , (39)

for some constant K. It follows from the mean value theorem that it is sufficient
to show that the curve α0(u) has bounded first derivatives. Therefore, our
Lemma 1, in conjunction with compactness of the parameter space, shows that
the curve is Lipschitz continuous. By the discussion in Subsection 1.3 and
assumption (A4), the first three results now follow from Subba Rao (2006),
Theorem 2.1 and Proposition 2.1. For (35), note that BHK, Lemma 3.1 gives

ci(θ) ≤ Cρi/q0

for some 0 < ρ0 < 1. We have that

ht(θ) = c0(θ) +

∞∑
i=1

ci(θ)X
2
t−i

and

h̃t(θ) = c̃0(θ) +

∞∑
i=1

ci(θ)X̃
2
t−i

Thus, we can write∣∣∣ht(θ)− h̃t(u, θ)∣∣∣ ≤ |c0(θ)− c̃0(θ)|

+

∣∣∣∣∣C
( ∞∑
i=1

ρ
i/q
0

(
X2
t−i − X̃2

t−i(u)
))∣∣∣∣∣ .

Similarly to an argument in the proof of Kristensen and Lee (2019), Theorem
6, by an application of the triangle inequality, we get that at each index∣∣∣X2

t−i − X̃2
t−i(u)

∣∣∣ ≤ ∣∣∣∣X2
t−i − X̃2

t−i

(
t− i
T

)∣∣∣∣+

∣∣∣∣X̃2
t−i(t/T )− X̃2

t−i

(
t− i
T

)∣∣∣∣
+
∣∣∣X̃2

t−i(t/T )− X̃2
t−i(u)

∣∣∣ .
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Taking norms and using (32) we get∥∥∥X2
t−i − X̃2

t−i(u)
∥∥∥
p
≤ C1

T
+ C3

i

T
+ C3 |t/T − u| .

It follows that∥∥∥ht(θ)− h̃t(u, θ)∥∥∥
p
≤ C4

T
+ C5 |t/T − u|

+ C

∞∑
i=1

ρ
i/q
0

(
C1

T
+ C3

i

T
+ C3 |t/T − u|

)
≤ C6

T
+ C7 |t/T − u| .

where we have used the fact that ρ0 < 1, so the arithmetic-geometric series∑∞
i=1 ρ

i/q
0 i <∞.

In our proofs, we shall require a result similar to BHK, Lemma 5.1. Some
explanation of how this is related to our assumptions is appropriate here. The
Lemma states that for a stationary, standard GARCH (p, q) process, under
assumptions (A1) and (A2), which include the moment condition on the inno-
vations,

E|ε2
0|γ <∞,

for some γ > 0, then for any 0 < υ < γ, it holds

E

{
sup
θ∈Θ

h̃t(θ0)

h̃t(θ)

}υ
<∞.

The lemma holds for the stationary process X̃t(u) with variance function h̃t(u, θ).
Moreover, the lemma continues to hold with the variance function ht(θ) replaced
by h∗t (θ). We note that under assumption (A1), the result is true for υ = 2.
Note further that

E
{

sup
θ∈Θ

X2
t

ht(θ)

}υ
= E

{
ε2
t sup
θ∈Θ

ht(θ0)

ht(θ)

}υ
(40)

≤ E
{
ε2
t sup
θ∈Θ

h∗t (θ0)

ht(θ)

}υ
(41)

< E

{
ε2
t sup
θ∈Θ

h∗t (θ0)

h̃t(θ)

}υ
<∞, (42)

where the last line is true because by (A3), α0 +
L∑
l=1

α0lGl (u, γl, cl) > infθ∈Θ α0,

so ht(θ) is increasing in g(t/T ) at the lower bound of α0. As an increasing g(t/T )
makes the denominator larger, the supremum will be reached when g(t/T ) is
as small as possible close to this bound, that is, nearly constant at infθ∈Θ α0.
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In other words, the smallest stationary process is bounding the smallest locally
stationary process from below. For identification reasons, we cannot allow a
constant intercept. Therefore the last line is an inequality. The last line consists
entirely of terms that fall under the jurisdiction of BHK Lemma 5.1, so we can
continue to apply it here.

Lemma 3. Under our assumptions, we have

E sup
θ∈Θ

∣∣∣∣ 1

ht(θ)

∂ht(θ)

∂θ

∣∣∣∣υ <∞, (43)

E sup
θ∈Θ

∣∣∣∣ 1

ht(θ)

∂2ht(θ)

∂θ∂θ′

∣∣∣∣υ <∞ (44)

and

E sup
θ∈Θ

∣∣∣∣ 1

ht(θ)

∂3ht(θ)

∂θi∂θj∂θk

∣∣∣∣υ <∞ (45)

for any υ > 0.

Proof. As in Boussama (2000) and Francq and Zakoian (2004), we can exploit
the inequality x/(1 + x) ≤ xs for s ∈ (0, 1). Using Lemma 1 and BHK, Lemma
3.2, we obtain

E sup
θ∈Θ

∣∣∣∣ 1

ht(θ)

∂ht(θ)

∂θ

∣∣∣∣ ≤ E
(

sup
θ∈Θ

|∂c0(θ)/∂θ|+
∑∞
i=1 ici(θ)X

2
t−i

c0(θ) +
∑∞
i=1 ci(θ)X

2
t−i

)
(46)

≤ E
(

sup
θ∈Θ

C2

c0(θ) +
∑∞
i=1 ci(θ)X

2
t−i

)
(47)

+ E
(

sup
θ∈Θ

∑∞
i=1 ici(θ)X

2
t−i

c0(θ) +
∑∞
i=1 ci(θ)X

2
t−i

)
(48)

≤ C3 + E

(
sup
θ∈Θ

∞∑
i=1

icsi (θ)X
2s
t−i

)
(49)

≤ C3 + E

(
sup
θ∈Θ

∞∑
i=1

iρ
is/q
0 X2s

t−i

)
(50)

≤ C3 + E

(
sup
θ∈Θ

∞∑
i=1

iρ
is/q
0 X2∗s

t−i

)
(51)

<∞, (52)

for all s ∈ (0, 1] by weak stationarity, and similarly for (44) and (45) using the
boundedness of the derivatives in Lemma 1. Note now that for large but finite
values of υ, we can pick s close to zero to offset their impact on the expectation.
Hence the result.

35



Motivating the feasible estimator

We reproduce some arguments from BHK in order to motivate the truncated,
feasible estimator. We can use similar arguments as long as the unobserved,
truncated part of the recursion is bounded by a stationary process. By the
triangle inequality, we obtain

sup
θ∈Θ

∣∣LT (θ)− L̄T (θ)
∣∣ ≤ sup

θ∈Θ

1

T

T∑
t=1

∣∣∣∣ X2
t

ht(θ)
− X2

t

h̄t(θ)

∣∣∣∣+ sup
θ∈Θ

1

T

T∑
t=1

∣∣lnht(θ)− ln h̄t(θ)
∣∣

Consider the second term. We have

sup
θ∈Θ

1

T

T∑
t=1

∣∣lnht(θ)− ln h̄t(θ)
∣∣ ≤ sup

θ∈Θ

1

T

T∑
t=1

1

C1

∣∣∣∣∣
∞∑
i=1

ci(θ)X
2
t−i −

t−1∑
i=1

ci(θ)X
2
t−i

∣∣∣∣∣
(53)

≤ sup
θ∈Θ

1

T

T∑
t=1

∣∣∣∣∣C2

C1

∞∑
i=t

ρ
i/q
0 X2

t−i

∣∣∣∣∣ (54)

= sup
θ∈Θ

1

T

T∑
t=1

∣∣∣∣∣∣C2

C1
ρ
t/q
0

∞∑
j=0

ρ
j/q
0 X2

−j

∣∣∣∣∣∣ . (55)

Note that the sum in (54) starts at t− t = 0. Under our assumptions, the term
that causes the global nonstationarity is constant until t = 0, so the difference
between the infinite and the feasible estimator stems from a stationary process.
The sum in (55) is always smaller than a corresponding sum of a stationary
process obtained by fixing the intercept of X2

j at supu<0 g(u). BHK Lemma 2.2
and Lemma 2.3 gives the result: the term in (55) is o(1). For the first term we
similarly get

sup
θ∈Θ

1

T

T∑
t=1

∣∣∣∣ X2
t

ht(θ)
− X2

t

h̄t(θ)

∣∣∣∣ =
1

T

T∑
t=1

sup
θ∈Θ

X2
t

ht(θ)

∣∣∣∣ht(θ)− h̄t(θ)h̄t(θ)

∣∣∣∣ (56)

≤ 1

T

C2

C1

∞∑
j=0

ρ
j/q
0 X2

−j sup
θ∈Θ

T∑
t=1

X2
t

ht(θ)
ρ
t/q
0 (57)

≤ 1

T

C2

C1

∞∑
j=0

ρ
j/q
0 X2

−j sup
θ∈Θ

T∑
t=1

X∗2t

h̃t(θ)
ρ
t/q
0 , (58)

which is op(1) by the same argument as above and the arguments in BHK
Lemma 5.9. The last line is necessary because the term X2

t /ht(θ) is not sta-
tionary, so the arguments in BHK are not directly applicable. We solve this by
bounding it by the stationary process X∗2t /h̃t(θ). By similar slight adaptations
of the arguments in the second parts of BHK Lemma 5.8 and 5.9, we can show
that

sup
θ∈Θ

∣∣St(θ)− S̄t(θ)∣∣ (59)

is op(1). This validates the use of the truncated, feasible estimator.
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Proof of Theorem 1 (Consistency)

Since we shall need to apply a law of large numbers to the log likelihood func-
tion, namely Theorem 2.7(i) in DRW, we have to verify the assumptions (DRW
Assumption S1) that are needed to do so. The invariance principle, Theorem
2.5 in the same article, details when a transformation of such a process preserves
local stationarity. However, the transformation is a function with the process
as the only argument, which does not immediately translate to a log likelihood
function. Later in the article, the authors make a structural assumption on a
log likelihood function of a recursively defined autoregressive process in order
to derive the asymptotic properties of a QML estimator. It is, however, not im-
mediately clear how to deal with transformations in the form of log likelihood
functions of GARCH type models. This difficulty is remedied by Kristensen
and Lee (2019, Theorem 1), who state conditions under which a transforma-
tion involving a parameter vector, an IID process and a parameter dependent
locally stationary process preserves the local stationarity. Instead of relying on
an invariance principle, however, we have chosen to provide a direct proof.

We use the following consistency theorem

Theorem 3 (Amemiya, 1985). If

C1 The parameter space Θ is a compact subset of Rk,

C2 The objective function Qn(θ) is a measurable function of the data for all
θ ∈ Θ, and Qn(θ) is continuous in θ ∈ Θ,

C3 Qn(θ) converges uniformly in probability to a non-stochastic function Q0(θ),
and Q0(θ) attains a unique global maximum at θ0,

then
θ̂

p→ θ0.

The proof will follow by considering the following argument. The condition
C1 is satisfied by (A2). The log likelihood is clearly a measurable function of
the data. Moreover, it is Lipschitz continuous in θ, which implies that it is
continuous in θ, so C2 is satisfied. For C3, we use the law of large numbers
in DRW to show that the objective function converges to its expectation in
probability. Uniform convergence follows from stochastic equicontinuity. As in
BHK and Francq and Zaköıan (2004) and others, since

L(u, θ0)− L(u, θ) = −1

2
+

1

2
E

(
h̃t(θ0)

h̃t(θ)
− log

h̃t(θ0)

h̃t(θ)

)
,

we can use that x− log(x) is positive for x > 0 and reaches its minimum when
x = 1 to deduce that for each u, L(u, θ) has an absolute maximum at θ0. BHK

Lemma 5.5 shows that for each u, if h̃t(θ1) = h̃t(θ2), then θ1 = θ2. Therefore,
the log likelihood function is uniquely maximized at θ0. We now turn to our
detailed argument for convergence requirement in C3.
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7.1 Verifying C3

As in Kristensen and Lee (2019), we observe that the log likelihood function
l (Xt, θ) can be written as l (ht(θ), εt, θ) . The following Lemma shows that the
log likelihood function is locally stationary and Lipschitz continuous in the pa-
rameters, from which it follows that it is also continuous in the parameters.

Lemma 4. Under (A1-A6), uniformly in t and u ∈ [0, 1],∥∥∥lt(ht(θ), εt, θ)− lt(h̃t(u, θ), εt, θ)∥∥∥
1
≤ C4

T
+ C5 |t/T − u| (60)

Proof. The condition (60) is required in order to preserve local stationarity.
Write

‖lt(ht, εt, θ)− lt(h′t, εt, θ)‖1 ≤ ‖lnht − lnh′t‖1 +

∥∥∥∥X2
t

ht
− X2′

t

h′t

∥∥∥∥
1

:= A+B,

say. Consider A and the following argument. Assume that y is bounded from
below by some δ > 0. Use the inequality ln(1 + u) ≤ u for all u > −1. Then,

|lnx− ln y| =
∣∣∣∣ln xy

∣∣∣∣ =

∣∣∣∣ln(1 +

(
x

y
− 1

))∣∣∣∣
≤
∣∣∣∣xy − 1

∣∣∣∣ =
1

y
|x− y|

≤ 1

C
|x− y| .

Therefore,

‖lnht − lnh′t‖1 ≤
∥∥∥∥ 1

C
(ht − h′t)

∥∥∥∥
1

,

where we have used the fact that the conditional variance is bounded from below
by some positive constant. To the best of our knowledge, Francq and Zakoian
(2004) were the first ones to use this argument for a GARCH log likelihood.

Now consider B. As in the proof of Chen and Hong (2016), Theorem A.2,
by adding and subtracting X ′2t /ht and using the triangle inequality, we obtain∥∥∥∥X2

t

ht
− X ′2t

h′t

∥∥∥∥
1

≤
∥∥∥∥ 1

ht

(
X2
t −X ′2t

)∥∥∥∥
1

+

∥∥∥∥ X ′2thth′t
(ht − h′t)

∥∥∥∥
1

.

Now, let ht = ht(θ) and h′t = h̃t(u, θ). We obtain∥∥∥lnht(θ)− ln h̃t(u, θ)
∥∥∥

1
≤
∥∥∥∥ 1

C

(
ht(θ)− h̃t(u, θ)

)∥∥∥∥
1

, (61)
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and∥∥∥∥∥ X2
t

ht(θ)
− X̃2

t (u)

h̃t(u, θ)

∥∥∥∥∥
1

≤
∥∥∥∥ 1

ht(θ)

(
X2
t − X̃2

t (u)
)∥∥∥∥

1

+

∥∥∥∥∥∥ X̃
2
t (u)

h̃t(u, θ)

(
ht(θ)− h̃t(u, θ)

)
ht(θ)

∥∥∥∥∥∥
1

.

(62)

By BHK, Lemma 3.1 and Lemma 5.1, and (A6)

E

(
sup
θ∈Θ

X̃2
t (u)

h̃t(u, θ)

)2

<∞, (63)

and by boundedness from below and positivity of the conditional variance, we
have

1

ht(θ)
≤ 1

infu∈[0,1] g(u)
<∞. (64)

An application of the Cauchy-Schwarz inequality yields∥∥∥∥∥ X2
t

ht(θ)
− X̃2

t (u)

h̃t(u, θ)

∥∥∥∥∥
1

≤
∥∥∥∥ 1

C1

(
X2
t − X̃2

t (u)
)∥∥∥∥

1

+

∥∥∥∥∥ X̃2
t (u)

h̃t(u, θ)

∥∥∥∥∥
2

∥∥∥∥∥∥
(
ht(θ)− h̃t(u, θ)

)
ht(θ)

∥∥∥∥∥∥
2

.

(65)

Since the argument remains valid if we in the first step instead add and subtract
X2
t /h

′
t, we can without loss of generality assume that ht(θ) ≥ h̃t(u, θ). Then,

since
(
ht(θ)− h̃t(u, θ)

)
/ht(θ) ∈ (0, 1], we obtain

ht(θ)− h̃t(u, θ)
ht(θ)

≤

(
ht(θ)− h̃t(u, θ)

ht(θ)

)1/2

.

The result follows by using (63) and (64) and applying Lemma 3 to (61) and
(65).

Lemma 5. Under (A1-A6) supu∈[0,1] ‖l(u, θ)‖1 <∞.
Proof. As this is the log likelihood of the stationary approximation, the result
follows for each u from BHK, Lemma 5.3, and therefore for the supremum in
particular.

Lemmas 5 and 6 enables us to apply DRW, Theorem 2.7(i) to the log likeli-
hood function and we obtain pointwise

LT (θ)
P→
∫ 1

0

L(u, θ) du = E(LT (θ)). (66)

To complete the verification of C3, we need the convergence to be uniform.
A sufficient condition for uniform convergence is a compact parameter space,
pointwise convergence and stochastic equicontinuity (SE) of the sequence of
estimators (see e.g. Andrews (1992)). Therefore, we consider the following
Lemma.
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Lemma 6. The function LT (θ) := 1
T

∑T
t=1 lt(θ) is stochastically equicontinu-

ous.

Proof. We make use of the sufficient conditions for SE in Andrews (1992),
Lemma 2. In order to proceed as in BHK, we would have to argue that

sup
θ∈Θ
|LT (θ1)−  LT (θ2)| ≤ C |θ1 − θ2|

almost surely. In BHK, this was done by an application of the ergodic theorem.
Since we consider a process that is only locally stationary, rather than ergodic
stationary, this is not viable.

Consider instead the following argument. Similarly to BHK, Lemma 5.3, by
an application of the mean value theorem we get

|lt(θ1)− lt(θ2)| ≤ Kt|θ1 − θ2|,

where

Kt =

∣∣∣∣ 1

ht(θm)

∂ht(θ
m)

∂θ

(
1 +

X2
t

ht(θm)

)∣∣∣∣ , (67)

where θm lies between θ1 and θ2.
Now we could proceed by arguing that the terms in Kt satisfy S1 and S2

in DRW, and apply the law of large numbers from the same article to obtain
1
T

∑T
t=1Kt

P→ K <∞. This turns out to be more arduous than worthwhile. In
BHK, the authors set out to prove strong consistency, i.e. almost sure conver-
gence of the sequence of estimators. This would require that

1

t

∑
t≥1

Kt = O(1) almost surely,

which in Andrews (1992) is a condition required for strong SE. The limit theorem
from DRW only holds in L1, however, and in this article we are only interested in
weak consistency, i.e. convergence in probability of the sequence of estimators.
This means that we only require weak SE. It follows from Andrews (1992),
Lemma 2 (a) that in order to obtain weak SE of our sequence of estimators, it
is enough to show

sup
t≥1

1

t

∑
t≥1

E(Kt) <∞. (68)

Now it is easy to see that this is fulfilled, since Cauchy-Schwarz inequality
yields∥∥∥∥ X2

t

ht(θm)

1

ht(u, θm)

∂ht(u, θ
m)

∂θ

∥∥∥∥
1

≤
∥∥∥∥ X2

t

ht(θm)

∥∥∥∥
2

∥∥∥∥ 1

ht(u, θm)

∂ht(u, θ
m)

∂θ

∥∥∥∥
2

<∞

by (63) and (43). Now, by Amemiya (1985) Theorem 4.1.1, we obtain the result

θ̂
P→ θ0.

This completes the proof.
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Proof of Theorem 2 (Asymptotic normality)

We shall prove the results for the estimator (11) based on the infinite represen-
tation of the process, but as discussed in the beginning of the Appendix, the
results also hold for the truncated, feasible estimator (16).

Proving asymptotic normality of the QMLE can be done in a variety of
ways. The decision to be made when approaching the proof is whether one
wants to rely on a third order Taylor expansion of the log likelihood (examples
with GARCH include Comte and Lieberman (2003) and Francq and Zaköıan
(2004)) or on a second order expansion (see BHK). Here, we present our results
using a third order expansion.

7.1.1 Sufficient results for asymptotic normality

Similarly to Comte and Lieberman (2003), we rely on the sufficient conditions
for normality of the MLE in Basawa et al. (1976). These are

(N1)

1√
T

T∑
t=1

∂lt (θ0)

∂θ

D→ N (0, A)

when T →∞ for a nonrandom A.
(N2)

− 1

T

T∑
t=1

∂2lt (θ0)

∂θ∂θT
P→ B

as T →∞ for a nonrandom positive-definite matrix B.
(N3)

E

(
sup

‖θ−θ0‖≤δ

∣∣∣∣ ∂3lt(θ)

∂θi∂θj∂θk

∣∣∣∣
)

is bounded for all i, j, k and all δ > 0. We continue by verifying the conditions.

7.1.2 Verifying N1

The score evaluated at θ0 is

S(Xt, θ0) = (1− ε2
t )

(
1

ht(θ0)

∂ht(θ0)

∂θ

)
(69)

We want to apply the global central limit theorem from DRW. In order to do
so, we shall need to verify that the assumptions S1, S2 and M1 hold with p = 2.
The first term in (69) is independent of the second term, so in order to show S1
we only need to consider differences of the type∥∥∥∥ 1

ht(θ)

∂ht(θ)

∂θ
− 1

ht(θ)′
∂ht(θ)

′

∂θ

∥∥∥∥
2

(70)
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Consider for a moment only the derivative of ht(θ) with respect to the param-
eters. By BHK, Lemma 3.2 we can write∥∥∥∥∂ht(θ)∂θ

− ∂ht(θ)
′

∂θ

∥∥∥∥
2

≤
∥∥∥∥∂α0(t/T, θ)

∂θ
− ∂α0(t/T, θ)′

∂θ

∥∥∥∥
2

+

∥∥∥∥∥C
∞∑
i=1

iρ
i/q
0

(
X2
t−i −X2′

t−i
)∥∥∥∥∥

2

.

(71)

for a generic ht(θ)
′ 6= ht(θ). When replacing

∂α0(t/T, θ)′

∂θ

by the stationary approximation, the first term goes to zero as T → ∞ by
Lipschitz continuity of the derivatives of the logistic transition function. The
infinite sum

∞∑
i=1

iρ
i/q
0

is an arithmetic-geometric series and converges. Therefore, by Lemma 3, we can
write ∥∥∥∥∂ht∂θ

− ∂ht(u)

∂θ

∥∥∥∥
2

≤ C
(

1

T
+ |t/T − u|

)
. (72)

By adding and subtracting

1

ht(θ)

∂h′t
∂θ

,

rearranging terms and using the triangle inequality, we can write

∣∣∣∣ 1

ht(θ0)

∂ht
∂θ
− 1

ht(θ0)′
∂h′t
∂θ

∣∣∣∣ ≤ ∣∣∣∣ 1

ht(θ0)

∣∣∣∣ ∣∣∣∣∂ht∂θ
− ∂h′t

∂θ

∣∣∣∣
+

∣∣∣∣ 1

ht(θ0)′
∂ht(θ)

′

∂θ

∣∣∣∣ ∣∣∣∣ht(θ0)− ht(θ0)′

ht(θ0)

∣∣∣∣
≤
∣∣∣∣ 1

C1

∣∣∣∣ ∣∣∣∣∂ht∂θ
− ∂h′t

∂θ

∣∣∣∣
+

∣∣∣∣ 1

ht(θ0)′
∂ht(θ0)′

∂θ

∣∣∣∣ ∣∣∣∣ht(θ0)− ht(θ0)′

ht(θ0)

∣∣∣∣ ,
where we have emphasized dependence on θ0 where it is important. Note that,
by (43),

‖D‖p :=

∥∥∥∥ 1

ht(θ0)′
∂ht(θ0)′

∂θ

∥∥∥∥
p

≤ ∞

for any p. Since the argument is still valid if we instead add and subtract

1

ht(θ)′
∂ht
∂θ

,
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we can without loss of generality assume that ht(θ0) ≥ ht(θ0)′, so for s ∈ (0, 1),∥∥∥∥D(ht(θ0)− ht(θ0)′

ht(θ0)

)∥∥∥∥
2

≤
∥∥∥∥D(ht(θ0)− ht(θ0)′

ht(θ0)

)s∥∥∥∥
2

since

ht(θ0)− ht(θ0)′

ht(θ0)
= 1− ht(θ0)′

ht(θ0)
∈ [0, 1).

Pick for example s = 1/2. Define

D̃ =
1

h̃t(u, θ0)

∂h̃t(u, θ0)

∂θ
.

Now the Cauchy-schwarz inequality gives∥∥∥∥∥D̃
(
ht(θ0)− h̃t(u, θ0)

ht(θ0)

)∥∥∥∥∥
2

≤
∥∥∥D̃∥∥∥

4

∥∥∥∥∥∥
(
ht(θ0)− h̃t(u, θ0)

ht(θ0)

)1/2
∥∥∥∥∥∥

4

≤ C6

∥∥∥(ht(θ0)− h̃t(u, θ0)
)∥∥∥

2

≤ C7

(
1

T
+ |t/T − u|

)
.

From (72) we get∥∥∥∥∥
(

1

C1

)(
∂ht
∂θ
− ∂h̃t(u)

∂θ

)∥∥∥∥∥
2

≤ C8

(
1

T
+ |t/T − u|

)
. (73)

Now S1 is verified.
To obtain S2, consider that by independence and as BHK Lemma 5.2 gives

in particular

E

∣∣∣∣∣ sup
u∈[0,1]

1

h̃t(θ0)

∂h̃t(u, θ0)

∂θ

∣∣∣∣∣
2

<∞, (74)

we obtain∥∥∥∥∥ sup
u∈[0,1]

S̃(X̃t, u, θ0)

∥∥∥∥∥
2

=
∥∥(1− ε2

t )
∥∥

2

∥∥∥∥∥ sup
u∈[0,1]

(
1

h̃t(u, θ0)

∂h̃t(u, θ0)

∂θ

)∥∥∥∥∥
2

≤ ∞.

(75)
This verifies S2 for p = 2.

Finally, we need assumption (M1) in DRW to be fulfilled with p = 2. The
assumption entails a mixing condition on the stationary approximation of the
score. Suppressing dependence on the data, u and θ0, we specifically need

sup
u∈[0,1]

∞∑
t=0

∥∥∥(S̃t − S̃et )∥∥∥
p
<∞, (76)
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for some p ≥ 2, where as described in Section 7, S̃et is a coupled version of the
stationary approximation of the score where the error term has been replaced at
index t = 0 in the information set. As Wu (2011) writes, the condition ensures
that the process ”forgets the history geometrically quickly”.

By BHK and previous inequalities, for p ≤ 2,

sup
u∈[0,1]

∥∥∥(S̃t − S̃et )∥∥∥
p
≤ C1

∥∥∥∥∥ sup
u∈[0,1]

∣∣∣∣∣∂h̃t∂θ
− ∂h̃et

∂θ

∣∣∣∣∣
∥∥∥∥∥
p

(77)

+ C2

∥∥∥∥∥ sup
u∈[0,1]

∣∣∣h̃t − h̃et ∣∣∣
∥∥∥∥∥
p

(78)

≤ C1

∞∑
i=1

iρ
i/q
0 E

∣∣∣∣∣ sup
u∈[0,1]

(
X̃2
t−i − X̃2e

t−i

)∣∣∣∣∣
p

(79)

+ C2

∞∑
i=1

ρ
i/q
0 E

∣∣∣∣∣ sup
u∈[0,1]

(
X̃2
t−i − X̃2e

t−i

)∣∣∣∣∣
p

(80)

Here, the terms are very similar. It suffices to consider the first one and the
second will follow similarly. Since for x, y ≥ 0 we have (x2 − y2) = (x+ y)(x−
y) ≤ C |x+ y| |x− y| for some C ≥ 1, the function f(x) = x2 satisfies the
invariance property of proposition (2.5) in DRW with M = 1. The principle
states that if some assumptions, among them (M1), are fulfilled for a process
with p̃ = p(M + 1), then the same assumptions are fulfilled for a function of the
process that satisfies the invariance property. In our case, since M = 1 and we
need p = 2, we have p̃ = 4, which translates to us needing

C

∞∑
i=1

iρ
i/q
0 E

∣∣∣(X̃∗t−i − X̃∗et−i)∣∣∣4 <∞. (81)

Since the expectation in (81) involves a stationary GARCH process, Propo-
sition 3 in Wu and Min (2005) can be invoked, and we obtain

C

∞∑
i=1

iρ
i/q
0 E

∣∣∣(X̃∗t−i − X̃∗et−i)∣∣∣4 ≤ C ∞∑
i=1

iρ
i/q
0 rt−i, (82)

where r ∈ (0, 1) for t− i ≥ 0, r = 0 otherwise. Now choose a ∈ (0, 1) such that
a > r, a > ρ0 for t− i ≥ 0, a = 0 otherwise. Then

G := C

∞∑
i=1

iai/q+t−i ≥ C
∞∑
i=1

iρ
i/q
0 rt−i.

To illustrate, we have

G =

{
C
(
a1/q+t−1 + . . .+ (t− 1)a(t−1)/q+t−(t−1)

)
, if t > i

0, o.w.
(83)
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Since G is increasing in i for q > 0 up to i = t−1, we have that it is less than
the term at index i = t− 1 multiplied by (t− 1), which yields the inequality

∞∑
t=0

G <

∞∑
t=0

(t− 1)2a(t−1)/q+1 (84)

≤ C2 + C

∞∑
t=1

t2at/q+1 <∞ (85)

since |a| < 1. The result follows.
Now, indexing the elements of the score by s = 1, 2, . . . , by an application

of DRW Theorem 2.9,

1√
T

T∑
t=1

∂lt (θ0)

∂θs

D→
{∫ 1

0

As(v)
1
2 dW (v)

}
, (86)

where W is a Brownian motion and As(v) =
∑
k∈Z cov(S̃0s(v), S̃ks(v)). By the

Ito Isometry we can conclude that

E
{∫ 1

0

As(v)
1
2 dW (v)

}
= 0

and

Var

{∫ 1

0

As(v)
1
2 dW (v)

}
=

∫ 1

0

EAs(v)dv := As.

It is well known that integrals of the form of the distributional limit in (86)
follow a normal distribution. By an application of the Cramér-Wold device, we
can write

1√
T

T∑
t=1

∂lt (θ0)

∂θ

D→ N(0, A). (87)

We emphasize that the matrix A is nonrandom. Therefore, N1 is fulfilled.

7.1.3 Verifying N2

We continue by verifying N2.

Lemma 7. Under (A1-A7), the Hessian evaluated at θ0 fulfills the assumptions
of DRW, Theorem 2.7(i).

Proof. The Hessian at θ0 is

Ht(Xt, θ0) =
(
1− ε2

t

) 1

ht(θ0)

∂2ht(θ0)

∂θ∂θT
(88)

+
(
2ε2
t − 1

) 1

ht(θ0)

∂ht(θ0)

∂θ

1

ht(θ0)

∂ht(θ0)

∂θT
. (89)
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The first term has expectation 0 when evaluated at θ0, so it suffices to consider
the second term. Recall the definition D from the verification of N1 and consider
(89). By adding and subtracting a suitable term, we can write∥∥∥DDT − D̃D̃T

∥∥∥
1

=
∥∥∥D (DT − D̃T

)
+
(
D − D̃

)
D̃T
∥∥∥

1
(90)

≤
∥∥∥D (DT − D̃T

)∥∥∥
1

(91)

+
∥∥∥(D − D̃) D̃T

∥∥∥
1

(92)

≤ ‖D‖2
∥∥∥(DT − D̃T

)∥∥∥
2

(93)

+
∥∥∥(D − D̃)∥∥∥

2

∥∥∥D̃T
∥∥∥

2
. (94)

Now use the same argument as in the verification of S1 to see that this term is
locally stationary. By using Lemma 4 and an argument similar to the one for
the score, we get that∥∥∥Ht(Xt, θ0)− H̃t(X̃t, u, θ0)

∥∥∥
1
≤ C

(
1

T
+ |t/T − u|

)
. (95)

By BHK Lemma 5.6, we have

E

∣∣∣∣∣sup
θ∈Θ

∂2L̃t(u, θ)

∂θ∂θ′

∣∣∣∣∣ <∞, (96)

so

sup
u∈[0,1]

E

∣∣∣∣∣∂2L̃t(u, θ)

∂θ∂θ′

∣∣∣∣∣ ≤ E

∣∣∣∣∣ sup
u∈[0,1]

∂2L̃t(u, θ)

∂θ∂θ′

∣∣∣∣∣ <∞. (97)

Now, we can apply the law of large numbers, Theorem 2.7(i) in DRW
(component-wise) to the Hessian. This yields

− 1

T

T∑
t=1

∂2lt (θ0)

∂θ∂θ′
P→
∫ 1

0

E
(
H̃(u, θ0)

)
du := B.

We emphasize that the matrix B is nonrandom. It remains to show that B
is positive definite. It is clear that B is positive semi-definite. We need to show
that it is not singular. As in Francq and Zaköıan (2004), it suffices to show that
for any vector λ with the same number of elements as a column in the Hessian,

λT

(∫ 1

0

E

(
1

h̃t(u, θ)2

∂h̃t(u, θ)

∂θ

∂h̃t(u, θ)

∂θT

)
du

)
λ (98)

=

∫ 1

0

E

 1

h̃t(u, θ)2

(
λT

∂h̃t(u, θ)

∂θ

)2
du

 = 0 (99)
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implies that λ is the zero vector. Define the vector

φt :=
∂h̃t(u, θ)

∂θ
.

If we consider a standard GARCH(p, q), it is shown in BHK, Lemma 5.7, that
if there is such a vector such that λTφt = 0, λ 6= 0, (we mean the equality in
the sense almost surely, but will henceforth use it without this qualifier) then
by stationarity it holds for all t, which contradicts the minimality of the model.
As argued by Han and Kristensen (2014) in a slightly different but comparable
case, in the GARCH(1,1) case it implies that the distribution of εt is degenerate.
This is ruled out by (A1). We can follow this logic exactly for the GARCH part
of the model, but need to adjust it to account for the parameters concerning
the transition function.

Consider for simplicity the GARCH(1,1) case and one transition. The vector
φt takes the form

φt = (1, X̃2
t (u), σ2

t (u), gγ(u), gc(u), gα01
(u))T + β1φt−1 (100)

= wt(u)T + β1φt−1, (101)

where the partial derivatives gγ , gc, gα01 are given in Lemma 1. If we consider all
terms in wt(u) we note that, as we are considering the stationary approximation,
the three last derivatives are constant over time. Naturally for each u, there
will exist a λu depending on u such that λTuwt(u) = 0. The dependence on u of
this λu is what makes the integral positive definite. If λ was independent of u,
then B̃ would be singular. Viewing the integral in (99) as a Riemann sum, and
taking two points u1, u2 ∈ [0, 1] from that sum, we see that

λT
(
H̃(u1, θ0) + H̃(u2, θ0)

)
λ = λT H̃(u1, θ0)λ+ λT H̃(u2, θ0)λ = 0

for λ 6= 0 implies H̃(u1, θ0) = H̃(u2, θ0), which will only happen if there is no
variation in G over time, which is ruled out by (A3). Since for each u it holds

that H̃(u, θ0) is at least positive semi-definite, and there exist no λ 6= 0 that
makes all the terms in the Riemann sum 0, it holds

λT

(∫ 1

0

E

(
1

h̃t(u, θ0)2

∂h̃t(u, θ0)

∂θ

∂h̃t(u, θ0)

∂θT

)
du

)
λ > 0

for λ 6= 0. This gives N2.
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7.1.4 Verifying N3

Let θi, θj and θk be elements of θ. The third derivatives of the log likelihood
function with respect to the parameters are given by

∂3lt(θ)

∂θi∂θj∂θk
=

{
1− X2

t

ht(θ)

}{
1

ht(θ)

∂3ht(θ)

∂θi∂θj∂θk

}
(102)

+

{
2
X2
t

ht(θ)
− 1

}{
1

ht(θ)

∂ht(θ)

∂θi

}{
1

ht(θ)

∂2ht(θ)

∂θj∂θk

}
(103)

+

{
2
X2
t

ht(θ)
− 1

}{
1

ht(θ)

∂ht(θ)

∂θj

}{
1

ht(θ)

∂2ht(θ)

∂θi∂θk

}
(104)

+

{
2
X2
t

ht(θ)
− 1

}{
1

ht(θ)

∂ht(θ)

∂θk

}{
1

ht(θ)

∂2ht(θ)

∂θi∂θj

}
(105)

+

{
2− 6

X2
t

ht(θ)

}{
1

ht(θ)

∂ht(θ)

∂θi

}{
1

ht(θ)

∂ht(θ)

∂θj

}{
1

ht(θ)

∂ht(θ)

∂θk

}
.

(106)

By repeated use of the Cauchy-Schwarz inequality, Francq and Zaköıan (2004)
(see p. 622-626) proved that in the standard (strictly stationary) case, N3 is true
in some neighbourhood of θ0. The authors use weaker assumptions than ours.
The restriction to some neighbourhood, rather than all of Θ, was necessary in
their case because the first term in each row is not uniformly integrable under
their assumptions, but is integrable in some neighbourhood of θ0.

Note however, in our case, by (A6), (42) and independence,∥∥∥∥sup
θ∈Θ

X2
t

ht(θ)

∥∥∥∥
2

=
∥∥ε2

0

∥∥
2

∥∥∥∥sup
θ∈Θ

ht(θ0)

ht(θ)

∥∥∥∥
2

<∞,

and the subsequent terms admit moments of any order by Lemma 4. The proof
now follows similarly to Francq and Zaköıan (2004) by applying the Cauchy-
Schwarz and Hoelder inequalities to the terms in the derivatives, i.e

∥∥∥∥{1− X2
t

ht(θ)

}{
1

ht(θ)

∂3ht(θ)

∂θi∂θj∂θk

}∥∥∥∥
1

≤
∥∥∥∥{1− X2

t

ht(θ)

}∥∥∥∥
2

∥∥∥∥{ 1

ht(θ)

∂3ht(θ)

∂θi∂θj∂θk

}∥∥∥∥
2

<∞,

∥∥∥∥{2
X2
t

ht(θ)
− 1

}{
1

ht(θ)

∂ht(θ)

∂θi

}{
1

ht(θ)

∂2ht(θ)

∂θj∂θk

}∥∥∥∥
1

≤
∥∥∥∥{2

X2
t

ht(θ)
− 1

}∥∥∥∥
2

∥∥∥∥{ 1

ht(θ)

∂ht(θ)

∂θi

}∥∥∥∥
p

∥∥∥∥{ 1

ht(θ)

∂2ht(θ)

∂θj∂θk

}∥∥∥∥
q

<∞

for some 1/p + 1/q = 1/2 and similarly for the two subsequent terms. As in
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Francq and Zaköıan (2004), we can deal with the last term by writing∥∥∥∥{2− 6
X2
t

ht(θ)

}{
1

ht(θ)

∂ht(θ)

∂θi

}{
1

ht(θ)

∂ht(θ)

∂θj

}{
1

ht(θ)

∂ht(θ)

∂θk

}∥∥∥∥
1

≤
∥∥∥∥{2− 6

X2
t

ht(θ)

}∥∥∥∥
2

max
i

∥∥∥∥{ 1

ht(θ)

∂ht(θ)

∂θi

}∥∥∥∥3

6

<∞.
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Appendix: Simulation study

Figure 8: Simulation study DGP 1, 1000 time series observations
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Figure 9: Simulation study DGP 1, 2500 time series observations

Figure 10: Simulation study DGP 1, 5000 time series observations

51



Figure 11: Simulation study DGP 2, 1000 time series observations

Figure 12: Simulation study DGP 2, 2500 time series observations
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Figure 13: Simulation study DGP 2, 5000 time series observations

Figure 14: Simulation study DGP 1, 1000 time series observations
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Figure 15: Simulation study DGP 3, 2500 time series observations

Figure 16: Simulation study DGP 3, 5000 time series observations
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Č́ıžek, P., & Spokoiny, V. (2009). Varying coefficient GARCH models. In T. G.
Andersen, R. A. Davis, J.-P. Kreiss, & T. Mikosch (Eds.), Handbook of
financial time series (pp. 169–185). Springer.

Comte, F., & Lieberman, O. (2003). Asymptotic theory for multivariate garch
processes. Journal of Multivariate Analysis, 84 (1), 61–84. https://doi.
org/https://doi.org/10.1016/S0047-259X(02)00009-X

Diebold, F. X. (1986). Modeling persistence in conditional variances: A com-
ment. Econometric Reviews, 5, 51–56.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates
of the variance of United Kingdom inflation. Econometrica, 50, 987–
1007.

Engle, R. F., & Bollerslev, T. (1986). Modeling persistence in conditional vari-
ances. Econometric Reviews, 5, 1–50.

Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on
volatility. Journal of Finance, 48, 1749–1777.

Engle, R. F., & Rangel, J. G. (2008). The spline-GARCH model for low-frequency
volatility and its global macroeconomic causes. Review of Financial
Studies, 21, 1187–1222.

Feng, Y. (2004). Simultaneously modeling conditional heteroskedasticity and
scale change. Econometric Theory, 20, 563–596.
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Teräsvirta, T. (2012). Nonlinear models for autoregressive conditional heteroskedas-

ticity. In L. Bauwens, C. Hafner, & S. Laurent (Eds.), Handbook of
volatility models and their applications (pp. 49–69). Wiley.

van Bellegem, S., & von Sachs, R. (2004). Forecasting economic time series with
unconditional time-varying variance. International Journal of Forecast-
ing, 20, 611–627.

van Bellegem, S. (2012). Locally stationary volatility modeling. In L. Bauwens,
C. Hafner, & S. Laurent (Eds.), Handbook of volatility models and their
applications (pp. 249–268). Wiley.

Wu, W. B. (2011). Asymptotic theory for stationary processes. Statistics and
its Interface, 4 (2), 207–226.

Wu, W. B., & Min, W. (2005). On linear processes with dependent innovations.
Stochastic Processes and their Applications, 115 (6), 939–958.

57


