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Abstract

We derive a stock ranking by applying a technical features based random forest model on an

international dataset of liquid stocks. We show that portfolios based on an outperformance

profitability ranking are more profitable than those constructed on the basis of predicted re-

turns. When applying a decile split, equally (value) weighted long-short portfolios achieve a

highly significant yearly six factor alpha of 23.49% (17.51%) and a Sharpe ratio of 2.37 (1.95).

Unobserved risk factors identified via RP-PCA may not explain the outperformance. More-

over, we show that outperformance probabilities serve as a superior measure of future returns.

Mean-variance portfolios of large stocks using our return measure are less volatile and more

profitable than equally or value weighted portfolios. The results are not explainable by limits

to arbitrage as they are robust to firm size, regional restrictions and non-crisis periods.
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1. Introduction

Picking stocks that outperform in the future is one of the challenges asset managers face. As

active investing requires accurate return estimations, various researchers proposed respective

prediction models. As in line with the Efficient Market Hypothesis (EMH), most of these models

fail to predict future stock price movements. In a comprehensive study, Welch and Goyal (2008)

show that the vast majority of suggested models not only performed poorly out-of-sample, but

also in-sample.

With the increase in computation power, researchers started to apply machine learning algo-

rithms to predict short-term stock price trends using models like support vector machines (Liu

et al., 2016), deep learning (Dos Santos Pinheiro and Dras, 2017) or ensemble models (Basak

et al., 2019) with promising results. Rather than predicting up- or downward movements, some

researchers also tried to forecast whether individual stocks generate a return higher than some

absolute return threshold. For example, Milosevic (2016) defines stocks as ”good” if they in-

creased by at least 10% in the subsequent year. More recently, Gu et al. (2020) compare the

performance of neural networks and random forests with traditional models to predict future

stock prices and find that Machine Learning models indeed outperform traditional ones. They

argue that this overperformance may be traced back to the capability of machine learning

algorithms to capture non-linear patterns. Avramov et al. (2021) find a similarly strong per-

formance for ML driven investment strategies. While they agree with Gu et al. (2020) that the

profitability likely originates in non-linear anomalies that ML models may successfully identify,

they claim that these anomalies mainly occur in stocks that are subject to serious trading fric-

tions. As a consequence, when controlling for transaction costs and excluding stocks with a low

market capitalization or missing credit rating information, the performance of these strategies

barely generate alpha, questioning the applicability of ML driven investment strategies.

Within this paper we tackle this problem by training a Random Forest classification model

on technical indicators of international liquid stocks to identify outperformers, stocks that yield

an above-average return. By excluding stocks with less than $300 million market capitalization

and less than 15 trading days per month within the previous year, the model aims at identifying

abnormal return patterns that are present in liquid stocks. Furthermore, by predicting outper-

formance probability rather than absolute returns, our proposed model solves a considerably
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less ambitious problem which might positively affect the accuracy of the model. Our strategy

is similar to Moritz and Zimmermann (2016) who use tree-based models to derive portfolio

sortings, however we provide a more granular stock ranking.

By comparing the performance of long-short portfolios based on the stock ranking suggested

by our model with the ranking obtained from a random forest regression model predicting

returns, we find that portfolios based on the rankings produced by our model are more profitable

and less risky. We explain this observation by the reduced focus on extreme return behaviour

during training. Furthermore, we observe that the feature importances are almost in line

with their relative frequencies, suggesting that the calculated outperformance probabilities are

derived from a diverse feature space and thus should be non-linear.

To further evaluate the performance of our baseline model, we split the dataset into deciles

based on the predicted outperformance probability and calculate the return spread between the

average return per decile and the average return of the whole dataset. We find that the return

spread is largest (smallest) for stocks with the highest (lowest) probability of outperformance.

Moreover, the average monthly return difference between the largest and lowest decile is positive

in all considered years. We also do not observe a substantial decrease within recent years,

indicating that the identified abnormal patterns do not seem to be traded.

To test the performance of ranking-based investment strategies more extensively, we con-

struct equally and value weighted portfolios of different sizes based on the derived stock ranking.

We obtain a Sharpe ratio (SR) of 1.93 by equally investing into the hundred highest ranked

stocks (monthly rebalancing) which is substantially larger than the SR of the MSCI World

Index over the same time horizon (0.33). Adding short investments into the hundred lowest

ranked stocks yields a substantially higher SR of 3.23. For value weighted portfolios, we obtain

Sharpe ratios of 1.25 for the long and 1.95 for the long-short portfolio respectively. The results

are also robust for portfolio size. While larger portfolios generate lower Sharpe ratios on aver-

age, they remain significantly larger than the Sharpe ratio of the market. This effect is driven

by both, higher returns and lower volatilities. High ranked portfolios also seem more resilient

during market turmoils.

To test whether the results may be explained by any of the commonly known risk factors,

we run a Fama French six factor model, using international factors. Note that we control for
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country-specific effects by weighting country-specific factors in accordance with the country

exposure of our portfolio. We obtain highly significant yearly alphas of up to 23.49% before

transaction costs for equally weighted portfolios and 17.51% for value weighted ones. The t-

statistics are 6.82 and 5.33 respectively. Additionally, we identify three relevant unobserved

risk factors within the cross section by running a RP-PCA as suggested by Lettau and Pelger

(2020). By extending the six factor model by those three factors, we find that they may

explain the performance of the top and bottom portfolio to some extent. Nevertheless, the

alpha remains significantly larger than zero in the top portfolio. At the same time, the alpha

obtained from shorting the bottom portfolio increases in magnitude. As a consequence, the

unobserved risk factors do not explain the profit obtained from equally and value weighted

long-short investments. Instead, the obtained alphas slightly increase to 25.14% for equally

weighted and 18.61% for value weighted ones respectively.

To ensure that the results are not driven by small and mid-cap stocks, we repeat the analysis

on large capitalized stocks using an absolute (larger than $10 billion) and a relative threshold

as suggested by Chen et al. (2020). We achieve Sharpe ratios of up to 1.55 and a yearly

alpha of 16.2%. As the profitability is mainly driven by the long-leg, we argue that short-

selling constraints may not explain the outperformance of the model. If we compare the value

weighted portfolio with the MSCI world index, we do not only observe a return more than twice

as high, but also a roughly twenty percent lower volatility.

Next to stock picking, asset managers also try to determine weights that optimize the

return-to-volatility ratio of the portfolio, a problem which has been heavily investigated within

academia since the mid of the last century ((Ban et al., 2018), (DeMiguel et al., 2009) and

(Jagannathan and Ma, 2003)). When Markowitz (1952) proposed the concept of the Mean-

Variance Portfolio, practitioners quickly discovered a poor out-of-sample performance, as the

approach requires good estimates of future returns which are hard to come up with. To cir-

cumvent this problem, some researchers suggest to invest in the Minimum Variance Portfolio

(MinVP) as the expected returns do not enter the optimization objective. However, a decrease

in the volatility is usually accompanied by a decrease in the portfolio return. As a consequence,

these optimization strategies often fail to achieve higher Sharpe ratios than equally weighted

portfolios out-of-sample.
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We suggest an alternative proxy for future returns, a linearly shifted version of our outper-

formance probabilities that is centered around 0. When constructing mean-variance portfolios

based on a random selection of large stocks using our future return measure, we observe a

substantial increase in the performance. On average, without short-selling, the portfolio yields

a SR of 1.01 which is not only substantially higher than the SR of a MeanVP using past returns

as a measure of future returns, but also more than three times as high as the MSCI World Index

generated within the same time horizon. What is striking is that the concentration of both

mean-variance variants is comparable, indicating that the reduction in the observed volatility

may be explained by stock selection rather than fewer concentration. With short-selling, we

observe a similar pattern. While the obtained Sharpe ratio is lower, the mean-variance portfolio

generates a return almost three times as high as an equally weighted long portfolio, leading to

a yearly alpha of 13.7%. This is impressive, given that we only consider large stocks. In gen-

eral, these findings strongly suggest that investors may be able to achieve higher alpha without

increasing their risk exposure by considering our ML driven performance forecasts as measures

of future return.

We further test whether the results are driven by specific regions. We therefore restrict

investments into European, American, Pacific and Emerging markets. As before, we apply

decile splits based on the outperformance probability of our internationally trained prediction

model. We find that the highest return and Sharpe ratio may be obtained in the Pacific (2.46),

which translates into a large and highly significant alpha of almost 33% per year. As in line with

our expectation, the lowest Sharpe ratio is obtained in the US (1.55). However, the realized

returns of around 21% remain substantially above the returns predicted by a six-factor model.

According to Avramov et al. (2021), ML driven investment strategies tend to perform ex-

traordinarily well during crisis periods. We therefore conduct median splits among various

dimensions to test whether our suggested stock ranking is also valuable in non-crisis periods.

Indeed, we obtain a highly significant alpha of up to 9.1% in the long-leg in non-crisis peri-

ods. Shorting instead seems to be profitable only in periods of economic distress. While we

observe a slight decrease in profitability in the long-leg recently, suggesting that markets got

more efficient over time, the results may also identify underpriced stocks in non-crisis periods.

Finally, we investigate the net profitability of different investment strategies by considering
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estimated trading costs for portfolios of non-financially distressed stocks. We find that long-

only investments yield around 7% yearly six factor alpha after transaction costs. Our less

trading-intense investment strategy performs slightly better.

We contribute to the literature in two dimensions. First, we introduce a random forest

classification model that recognizes high-dimensional patterns which predict abnormal return

behaviour of liquid stocks in international markets. Second, we show that the derived out-

performance probabilities serve as a superior measure of future returns, allowing investors to

maximize their returns by optimizing their portfolio weights.

The remainder of this paper is organized as follows. First, we introduce the identification

strategy in section 2, then we present the dataset and some constructed features in section 3.

The results are evaluated in section 5, followed by some robustness checks in section 6 before

we conclude our findings.

2. Identification Strategy

The vast majority of researchers tries to predict stock prices based on technical or fundamen-

tal data, as summarized by Nti et al. (2019). Taking into account that prices are determined

by millions of individual trades, precise stock predictions are hard to come by. Moreover,

not all of the stock market trades are based on expectations, some trades can be allocated to

liquidity traders (Tirole, 2010), which further exacerbates price prediction, leading to a low

signal-to-noise ratio within capital markets.

By predicting prices in a long-term, one may be able to reduce the impact of liquidity trades,

but the problem remains complex, as next to firm-specific variables, macroeconomic variables

also affect stock prices. Moreover, when training models to predict future returns, those models

usually focus on those stocks with the most extreme return behaviour during training. These

are usually the smallest and most illiquid stocks. As a consequence, the suggested stock ranking

is not aligned with the requirements of investors. To circumvent the above-metioned problems

by breaking down the regression- into a classification problem. More specifically, we predict

whether a stock will perform better or worse than a certain performance benchmark. By doing

so we do not only reduce the complexity of the problem, our model should also be less biased

towards small and illiquid stocks.
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The simplest approach is to fix some return threshold to distinguish between ”good” and

”bad” stocks. For example, Milosevic (2016) uses a threshold of 10%. However, this approach

bears a major problem. If we assume that the majority of stocks in the training set performs

better than 10% in the subsequent year, the dataset is unbalanced. This imbalance will be

incorporated into the model such that it predicts a return larger than 10% for the majority

of stocks. Consequently, the accuracy score would appear artificially high (low) on a test set

that mostly contains stocks with a return larger (smaller) than 10%. This could lead to a

misinterpretation of the model’s prediction power.

A better approach is to label stocks according to their relative performance in the consecutive

month. A stock is an outperformer (labelled 1) if it’s next month stock return is higher than the

median next month stock return of all stocks in the dataset and an underperformer (labelled 0)

otherwise. This leads to a more robust performance as the return difference is less affected by

macroeconomic variables and the market environment in general. Moreover, setting a relative

threshold is in line with the mindset of active investors who aim at beating the market rather

than achieving some yearly return threshold.

One may argue that labelling stocks according to their relative return is not optimal because

the volatility of a security should also play a role. By calculating the Sharpe ratio (Sharpe,

1994), we could also incorporate the volatility when labelling. However, due to the diversifica-

tion effect that occurs when investing in multiple assets, a highly volatile security may be less

of a problem. In principal, a portfolio of highly volatile stocks might experience a low volatility

as long as the correlation among the stocks is sufficiently low. Thus, we argue that there is no

need to consider the volatility of a stock during the labelling process.

In general, there are two major forms of stock market analysis. Technical analysts try to pre-

dict future stock prices by analysing historical prices and trade volumes (Lo et al., 2000) while

fundamental analysts believe good investment opportunities may be discovered by analysing

the fundamental ratios of a company (Abarbanell and Bushee, 1998). Additionally, with the

latest advancements in Natural Language Processing, researchers started to investigate whether

textual data may reveal information regarding the future performance of equities (Cohen et al.,

2020). In this paper we will entirely focus on technical features.

We calculate a large amount of technical features that can broadly be categorized as either
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momentum-, trend-, volume- or volatility-based.1 In order to ensure that the model does

not capture extreme return behaviour of particularly small and illiquid stocks, we restrict our

international dataset to stocks that were traded on at least 15 days per month and have a

market capitalization of $300 million.

We decided to construct the training set as follows. One year of stock market information

is used to create features whereas the label is assigned by subtracting the average next month

stock return from the consecutive individual stock return. If the return difference is negative,

we assign a zero, if it is larger or equal to zero, a one. We then repeat this process by shifting

the starting date by one month. Following this approach we come up with 156 subsamples

that are then merged into one large training set with close to three million observations. This

approach has two main advantages. On the one hand, we construct our model on a large time

horizon (1990 to 2003) that covers both bullish and bearish market environments. This should

lead to a more robust prediction model. On the other hand, since ML algorithms usually profit

from larger datasets, we presumably increase the prediction power of the model by using a

rolling window. The test set is created in a similar manner using stock market data from 2004

to 2018.

As a next step, a Machine Learning algorithm needs to be selected. As we plan to limit

the size of these portfolios, we will need an algorithm that is able to calculate a probability of

class membership rather than returning the classes itself. We may then use this information to

create a stock ranking allowing investors to pick promising investment opportunities.

In case the classification task is non-linear, meaning that there is no clear linear distinction

between the two classes, one should apply an algorithm that is able to identify high-dimensional

relationships. In order to test for non-linearity, we follow Basak et al. (2019) and reduce the

dimensionality of the model from almost hundred to two dimensions using the so-called Principal

Component Analysis (PCA) and plot the convex hulls of both classes. If they do not intersect, a

hyperplane that separates both classes exists (De la Fuente, 2000), indicating that the problem

could be solved by some linear algorithm.

[Figure 1 about here.]

1Further information may be found in section 3.
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Figure 1 reveals that the convex hulls clearly intersect such that a separating hyperplane

does not exist. Thus, we will need to employ a non-linear algorithm to the classification

problem. Among others, neural networks, support vector machines and random forests are the

most prominent ones.

In this paper we decided to construct a random forest, a model suggested by Breiman

(2001). Random forests are basically a combination of multiple Decision Trees whereas each

tree is trained on a random subsample of the dataset only. A Decision Tree itself is capable

of learning non-linear relationships but tends to overfit on the training data. Random forests

may reduce this problem by averaging the results of multiple Decision Trees that are fitted to

random subsamples of the dataset.(Horning et al., 2010)

Random forests have been successfully applied within quantitative finance (Emerson et al.,

2019). They are robust, automatically handle missing values and work well on discrete and

continuous variables Obthong et al. (2020).

3. Data

We collected international stock market data from Refinitiv (Datastream), covering stocks

from 68 countries between 1990 and 2018. All technical indicators are calculated by considering

not more than one year of previous stock price data as we argue that the future price devel-

opment is mostly affected by recent price movements. Additionally, as all technical indicators

should be calculated using the same length of price history, extending the time frame would

lead to a reduction in the number of stocks as some stocks in the dataset might be relatively

new.

We restrict the dataset to sufficiently liquid stocks and thus ensure that our results are

not driven by small and iliquid stocks. We define a stock as sufficiently liquid if its market

capitalization is larger than $300 million dollars and the average monthly amount of trading

days within the last year was above 15 days. We also considered adding a liquidity threshold for

the average daily traded amount. However, as the variable is usually highly positive correlated

with market capitalization and at the same time often missing in our dataset, we refrained from

doing so. To reduce the probability that the dataset contains data errors that significantly affect

our results, we further drop the 0.1% of stocks that show the highest (lowest) return in the
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forecasting period. In total, our dataset comprises 18973 stocks across 67 countries. Note that

not all of those stocks fulfill the required liquidity constraints throughout the entire investment

horizon. We therefore restrict investments to those stocks that match the criteria at the month

of investment. As a result, the number of possible investment opportunities ranges between

3000 and 10000 over time.

We calculate technical indicators like Moving Average, Relative Strength Index and others.

We also added features like volatility, skewness and kurtosis. In total, we calculate 96 features

that can broadly be categorized as either momentum, trend, volatility or volume-based2. To get

rid of the price levels some indicators contain by construction, we further relate all indicators

to their last available share price such that a comparison among different stocks is possible.

The full list of calculated features may be found in figure 15 and 16 in the appendix.

[Table 1 about here.]

Table 1 provides an overview of the stocks contained within our dataset. We observe that

the majority of stocks originates in the US, China and Japan. However, we also include some

stocks from smaller countries like Bahrain or Serbia that match our liquidity criteria. The

average market capitalization within our dataset is $3.74 billion. We also provide the average

monthly return for a country across time and observe substantial differences. For countries

that on average show a negative monthly return usually contain only few stocks, for example

Ukraine or Bahrain. In contrast, countries like South Africa and Turkey show high monthly

returns across more than hundred stocks. This is the reason we control for country-fixed effects

when running factor models later on.

4. Model Construction

4.1. Model comparison

Within this paper we argue that ranking stocks according to their probability of outperfor-

mance is better than using predicted returns, since the model focuses less on stocks with an

extreme return behaviour during training. To test whether our argument holds, we compare

2Note that some of the features could be associated with more than one category, therefore we decided to
allocate those to a fifth category called ”other”.
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value weighted investments based on our classification approach with an investment guided

by a random forest regressor predicting future returns. Note that we use default parameters,

namely a forest size of 100 trees and no restrictions on the tree depth or the maximum features

a decision tree may use to split a node.

[Table 2 about here.]

We observe high portfolio returns for the equally weighted long-short portfolio based on our

random forest model 2. What is striking is that the volatility of the portfolio is relatively low

at the same time, leading to a sharpe ratio of 2.18. If we look at the value weighted portfolio,

we observe a lower sharpe ratio which is in line with our expectation. A sharpe ratio of 1.52

remains a strong result though, taking into account that the msci world index yielded a SR of

0.33 only. Even with default parameters, the classification model seems to be quite powerful.

If we compare those results with the regression ones, we make multiple observations. Most

importantly, the return of the equally weighted regression model is substantially lower with

14.5% compound annual growth rate. At the same time, the volatility is higher, this translates

into a sharpe ratio of 1.4 for the equally weighted portfolio which is around thirty percent smaller

than the returns of the classification driven portfolio. This underperformance also persists in

value weighted portfolios. The results obtained so far strongly support our argument that

reformulating the prediction problem as a classification one leads to better prediction results.

Some might argue that in contrast to training a model once, refitting a model over time

should yield better prediction results since relationships between variables might change over

time. Irrespective of the effect on the models accuracy, refitting the model means loosing the

ability to assess whether the patterns captured by the model remain valid over time. To shed

some light on the difference in accuracy, we will compare the performance of our baseline model

with a yearly refitted one. At the beginning of each year, we train the model again by extending

the training period by the most recent year and dropping data from the oldest one. This should

ensure a comparable dataset size during training and is also in line with the idea that the oldest

data should be least relevant.

According to table 2, refitting the model does not lead to improved prediction results. This

is surprising, taking into account that using more recent data is often associated with more

11



prediction power. These results could either be arbitrary or indicate that newer stock price

data has a lower signal-to-noise ratio. Consequently, the model captures more patterns within

variables that are not predictive but rather occur randomly. Since we are interested in observing

whether learned relations remain predictive over time and thus may not be allocated to known

anomalies, we will analyze a non-refitted model within the upcoming sections.

4.2. Parameter optimization

When comparing different model setups, we used default parameter settings so far to avoid

any systematic bias. However, tuning parameters in a random forest model often improves

prediction results. Therefore, we will optimize the parameters of our random forest classifier

to maximize the accuracy of the model. There exist multiple parameters that may have an

influence on the accuracy of the model. However, optimal parameter settings might differ

substantially based on the given task and dataset. For example, the signal-to-noise ratio might

have an impact on the parameter choice. If there is a low signal to noise ratio which probably

is the case within stock markets, restricting the tree depth is probably a good idea. Otherwise

the model overfits on the training set and learns complex relationships that occured randomly

and have no predictive power will improve the classification results. By default, there is no

restriction on the depth of an individual decision tree, random forest will be as deep as necessary

to ensure that all samples are correctly classified. To identify the maximum tree depth for our

data, we we randomly divide the training set into two equally sized subsets. Then a random

forest model is fitted to one of them and evaluated on the other using different values for the

maximum tree depths.3

[Figure 2 about here.]

As shown in figure 2, we observe that restricting the depth of the trees too much leads to

a performance reduction on the validation set. With an increase in depth, the accuracy of the

model on the training set converges to 100%, which is a sign for overfitting. Therefore, we fix

the maximum tree depth to 23 as this seems to maximize the out-of sample prediction power.

3Note that we keep all other parameters at their default values.
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Another important parameter is the maximum number of features available per node. By

default, each Decision Tree may consider all features when looking for the best split. In order

to further reduce overfitting, it is possible to restrict the number of features that a decision tree

may consider to find the best split. To identify an optimal max feature parameter, we follow

the process described above.4

[Figure 3 about here.]

According to figure 3, even though there is a local optimum around 80, the model achieves

the best performance if we do not restrict the amount of features that may be assessed at each

node. Note that the performance difference between these two parameter settings is marginal

anyways, suggesting that both settings will probably lead to similarly powerful models.

Finally, we have to determine the size of the forest. In general, more trees should lead

to better classification results even though this effect diminishes with an increasing forest size

(Breiman, 2001). A common strategy is to plot the Out-of-Bag (OOB) error rate for different

forest sizes to check when the generalization error converges. More precisely, we fix a specific

forest size and fit the model on a subsample of the training data. Then, the model is applied

to previously unseen data of the training set to calculate the mean prediction error, which is

the OOB error rate.

[Figure 4 about here.]

We find that the model converges when the number of estimators is approximately 2000

which we consequently set as forest size. The plot may be found in figure 4.

5. Results

5.1. Feature evaluation

In order to assess which of the used features are most important within our model, we

extract feature importances from the model. Feature importances are obtained by counting

the nodes where a specific feature was used for splitting and relating it to the total amount of

4Note that we use the optimal tree depth parameter within our evaluation.
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nodes. Since focusing on 96 different features is not feasible, we calculate feature importances

for each category. Note that simply comparing feature importances might be misleading in case

some categories contain a lot more features than others. We therefore also relate the amount

of features per category with the total amount of features.

[Table 3 about here.]

Table 3 shows the feature importances as derived from our worldwide random forest model.

We further present the feature importances of random forest models that were trained on

stocks from certain regions only. This enables us to test whether feature importances vary

across regions.

By looking at the raw feature importances, one might conclude that trend-based features

seem to be most relevant for our international model. In around 36.95% of all cases, the ran-

dom forest model chose a trend-related feature to split a node. However, given that 37.88%

of all features are trend-based, trend features seem to be less important. Instead, momentum

and volume factors seem to be favored more often than expected. In total, we obtain a rela-

tively similar image for regionally restricted models. Even though they are trained on different

subsamples, the obtained feature importances are mainly in line with the ones from the inter-

national model. We observe the largest difference for volume-based features in Europe. Here,

volume based features seem to be less important than in other regions. These results strongly

indicate that the patterns learned by the model are diverse and thus do not load on specific

features.

5.2. Model evaluation

When assessing the performance of a classification model, researchers usually evaluate the

accuracy, the precision and the recall. However, taking into account that the amount of correct

classifications is less important in our setting, we will focus on the actual return difference for

correct and wrong classifications. The reason is that a high accuracy could still mean that an

investor looses money, if the underperformance of wrong classifications is sufficiently larger than

the outperformance of correct classifications. Therefore, we calculate the deviation between the

mean stock return of the dataset and the mean return of the stocks that share similar class

probabilities to get an intuition whether the model produces high return spreads.
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[Figure 5 about here.]

Figure 5 depicts the relationship between the return spread and the model’s estimated

class probabilities for the test set. As desired, the spread is positive for stocks with a high

probability of outperformance. In contrast, the spread is strongly negative for stocks with only

small probabilities. We also observe that stocks, which have a probability of at least 50%,

perform better than the average stock in the dataset. Consequently, we may conclude that

picking stocks according to the calculated probability of outperformance should be a profitable

investment strategy.

[Figure 6 about here.]

To better illustrate the performance of a ranking-based long-short portfolio let us consider

the average monthly return spread between equally weighted portfolios with high and low

probabilities (decile split) and plot the it for different years. According to figure 6, the average

monthly return spread is positive in all considered years. The highest average monthly return

spread with around 5.8% was obtained in 2008, amidst the financial crisis. This is in line with

Avramov et al. (2021), who argues that ML driven long-short investments tend to be most

profitable in crisis periods.

5.3. Portfolio Construction

So far we have seen that the model produces positive return spreads. However, we have

not yet considered potentially different levels of volatility of the stocks with the highest (top

portfolio) and lowest (bottom portfolio) probabilities of outperformance.

[Table 4 about here.]

Table 4 depicts several performance metrics of differently sized equally weighted top and

bottom portfolios. As expected, the return of the top portfolio is substantially larger than

the return of the bottom portfolio. For a portfolio of hundred equally weighted stocks, the

difference is around 41 percentage points annually. Surprisingly, the annualized volatility of

the top portfolio (10.57%) is smaller than the annualized volatility of the bottom portfolio

(20.85%). This is in contrast to the Capital Asset Pricing Model (CAPM) that predicts higher
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volatilities for portfolios with higher returns. Furthermore, we observe that the maximum

monthly drawdown of our value weighted long-only portfolio ranges between 15% and 17%,

whereas the value weighted MSCI World Index looses up to 22.41% on a monthly basis. We

therefore argue that our long-only portfolios are not only less risky on average, but also more

robust during crisis periods. Combining long and short investments thus yields extraordinary

high profits. For example, an equally weighted long-short portfolio with hundred long and short

position yields yields a SR of 3.23. Taking into account that the average market capitalization

is $2.65 billion, these results might potentially be driven by smaller stocks. If we consider value

weighted portfolios, the obtained SR decreases to a still high 1.95. If we investigate larger

portfolios, in example investments into stocks with the 10% highest probabilities, meaning

holding around 600 stocks on average, the obtained SR decreases to 1.51 for equally and 1.12

for value weighted portfolios. Combined with short investments, the Sharpe ratios remain

impressively high with 2.37 equally and 1.59 value weighted. All of the observed Sharpe ratios

are substantially larger than the Sharpe ratio of the MSCI World Index (0.33) and thus indicate

market superiority.

To ensure that our dataset does not suffer from a selection bias, we apply a bootstrap ap-

proach by comparing our equally and value weighted portfolios with equally and value weighted,

randomly constructed portfolios. Those portfolios are constructed in a similar manner as our

top and bottom decile portfolios, meaning that the holding period and the portfolio size are

the same. The only difference is that we use a random ranking before conducting the decile

split.

[Figure 7 about here.]

The results are illustrated in figure 7. We find that both, equally and value weighted portfo-

lios have a higher return-to-volatility ratio than any of the equally or value weighted, randomly

constructed portfolios. On the one hand, model-based long-only portfolios are substantially

less volatile than their randomly constructed counterparts. The observed volatility difference

is around 3% for value weighted and 3.75 percent for equally weighted portfolios. On the other

hand, model-based portfolios are also more profitable. The average return difference between

model-based portfolios and the random portfolio with the highest return-to-volatility ratio is
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around 8% equally and 5% for value weighted portfolios. The opposite is true for model-based

short-only portfolios. These portfolios not only yield a substantially lower return, they are also

more volatile. The average difference in volatility is around 4.5%.

Based on these findings we may conclude that model-based portfolios do not only promise

better performance but seem to be even less volatile than randomly constructed ones.

Some might argue that the large returns obtained so far might be explained by some well

known factors. We therefore run a six factor model using international factor data for long,

short and long-short portfolios. More specifically, we calculate portfolio weights per country

and date and group the respective country factors according to those weights. By doing so,

we are able to control for country fixed effects. For example, in case our portfolio overweights

countries that showed a strong performance in general, we control for this country-specific

overperformance. As a consequence, if we obtain significant alphas, we argue that our model

identified new potentially high non-linear relationships that may be exploited by investors.

[Table 5 about here.]

Table 5 shows the factor exposure of different model-based portfolios. On the one hand, we

obtain a highly significant yearly positive alpha of 11.36% when equally investing in 10% of

stocks with the highest probability of outperformance (monthly rebalancing). When using value

weighting, the alpha is slightly lower (7.07%), but still highly signficant. On the other hand,

equally investing in the 10% of stocks with the lowest probability of outperformance yield a

highly significant alpha of -9.84%. When using value weights, the alpha is smaller in magnitude

with -7.44% but still highly significant at the 1% level. If we form a long-short portfolio, we

obtain even higher alphas of up to 23.49% (equally weighted) and 17.51% (value weighted).

If we focus on the long-leg, next to the expected high correlation with the market, we mainly

find a strong correlation with the SMB factor in the equally weighted portfolio, suggesting that

the portfolio contains a lot of smaller stocks that drive the profitability of the portfolio. As

expected, this dependency disappears when using value weights. A similar observation may be

found in the short-leg. What is striking is that both long-short portfolios are highly correlated

with the market. This is surprising, taking into account that this a long-short strategy and

both portfolios are highly correlated with the market themselves.
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So far we have shown that the obtained stock ranking may be used to construct market

superior portfolios and none of the other five commonly used factors may explain the out-

performance. However, it could be that the top and bottom portfolios load on unobserved

factors, meaning that investors would face some unobserved risk. We therefore run a RP-

PCA analysis as suggested by Lettau and Pelger (2020) to identify the most important factors

within the cross-section of stocks. Note that not all of the stocks were available within the

full time-horizon, meaning that we lack the required return information for some stocks. To

circumvent this problem, we restrict the dataset to those stocks where we have return infor-

mation throughout the time horizon. In total, this subsample comprises around 3200 stocks.

Once having identified the most important factors, we subdivide the dataset into 25 portfolios

with monthly rebalancing and test how much of the variance within portfolio returns may be

explained by the most common factors.

[Table 6 about here.]

[Table 7 about here.]

Table 6 shows the model exposure of the portfolio with the largest outperformance prob-

abilities. We observe that the most important factor on its own already explains 69% of the

variations within the portfolio. Adding the second most important factor, the R2 increases to

79%. A regression model that contains the five most important factors explains 82% of the

variance, however only the first three factors are highly significant. We find similar results for

the portfolio with the lowest outperformance probabilities (see table 7). Here, only factor one

is significantly different from zero. The explained variance is only slightly smaller (73%).

Now that we have identified relevant unobserved factors in the cross-section, we are able

to test whether these unobserved factors may explain the high alphas obtained before. We

therefore compare the obtained alphas from an eight factor model, which is the six factor model

extended by the two relevant factors, with those previously reported. By assuming that there

is no additional unobserved factor in our dataset of liquid stocks that is not available within

the dataset on which we constructed the factors, we should be able to isolate the idiosyncratic

component from the unobserved factor loadings.

[Table 8 about here.]
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According to table 8, we find that the three unobserved risk factors are highly significant for

equally and value weighted investments into the stocks with the 10% largest (lowest) outper-

formance probabilities. At the same time, the exposure to the other factors remains relatively

unchanged, indicating that the new factors are indeed unobserved risk factors and no plain lin-

ear combinations of the previous ones. However, the reduction in the obtained alpha appears

rather low. For equally weighted top portfolio, the alpha decreases by around three percentage

points and remains significantly larger than zero (8.18%). Value weighted, the alpha is smaller,

but still significantly larger than zero at the 1% level (4.67%).

Given that top and bottom portfolios share the same factor loading sign for factor 1, a

reduction in the alpha in the top portfolio will also mean a reduction in the bottom portfolio.

As a consequence, the observed negative alpha increases in magnitude by p7 percentage points

to a highly negative 16.62% for equally weighted and to -13.71% for a value weighted portfolio.

What is striking is that neither of the two unobserved factors may explain a large share of the

overperformance in the long-short portfolio. While we observe that factor 2 is significant, we

see an increase in the alphas for equally and value weighted portfolios. We therefore argue that

the highly significant alphas may not be explained by unobserved risk factors.

To ensure that our results are also valid for the largest stocks, we could increase our threshold

for the minimum market capitalization to a higher value, for example $10 billion.

[Table 9 about here.]

According to table 9, an equally (a value) weighted long-short investment into the 10%

highest ranked large firms yields a highly significant yearly six factor alpha of 13.80% (12.09%).

Those results strongly indicate that the model identified patterns within the data that may

also help to predict the performance of large caps. The performance seems to be mainly driven

by the long-leg. An equally weighted long-portfolio already yields a highly significant alpha of

6.75%. Taking into account that the average market capitalization is around $31 billion, our

proposed stock ranking might also be highly relevant for large institutional investors that may

not want to enter short selling positions. For large firms, the bottom portfolio yields a return

of around zero percent. Thus, adding short selling does not increase the return of the portfolio.

However, as we hedge against certain risk factors, the obtained alpha increases to 11.94% for

equally weighted and 10.1% for value weighted portfolios.
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Some might argue that, in general, setting an absolute threshold is not ideal, since the value

of the Dollar is not constant over time. We therefore rerun the previous analysis by following

Chen et al. (2020) and classify a stock as large if its market capitalization represents more than

a certain threshold of the total market capitalization at a given point in time. For the US stock

market, they suggest a threshold of 0.01% to roughly obtain stocks contained in the SP500.

[Table 10 about here.]

Using the alternative classification for large firms, we observe a SR of 1.55 and a monthly

six factor alpha of 16.2% for an equally weighted long-short portfolio in table 10. These results

are mainly driven by the long-leg. An equally (a value) weighted long investment into the 10%

highest ranked large firms yields a highly significant yearly six factor alpha of 14.91% (12.93%).

Those results strongly indicate that the model identified patterns within the data that may

also help to predict the performance of large caps.

5.4. Portfolio Optimization

Rather than equally or value weighting, investors might also construct portfolio weights

using optimization techniques. One of the most famous one is the mean variance portfolio

(MeanVP). The idea is that portfolio weights are chosen such that the SR is maximized. How-

ever, the performance of this approach depends heavily on the accuracy of the return forecasts.

Investors often model future returns using past returns, however this often leads to heavily

concentrated portfolios where past winners are strongly overweighted. To circumvent this is-

sue, we suggest to use a modified version of our calculated probabilities of outperformance as

a measure of future returns. We substract 0.5 from the outperformance probability such that

underperformers are associated with negative values. Since this measure is bounded by -0.5

and 0.5, we expect to see less extreme weights in the portfolio compared to a mean variance

portfolio that uses past returns. Potentially, this also translates into lower volatilies.

We test these hypotheses by comparing the performance and the amount of non-zero posi-

tions for mean-variance portfolios using different measures for future returns. Note that we have

to select stocks randomly rather than forming portfolios based on the stocks with the highest

probability. The reason is that the expected returns for high-ranked stocks would be very sim-

ilar by construction. In the extreme case, when all considered stocks in the long-leg (short-leg)
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have the same calculated probabilities of outperformance, we would have zero variance within

expected returns. Since including a variable without variation is the same as excluding it from

the objective function, we would simply come up with the weights for a minimum variance

portfolio, where expected returns do not enter the objective function. As Avramov et al. (2021)

point out, ML driven investment strategies tend to overweight stocks that face strong limits

to arbitrage and thus the reportedly high profitability of ML driven investments is often hard

to realize in practice. To ensure that our results are not biased by limits to arbitrage, we re-

strict the dataset to large stocks5. Moreover, we will consider both, MeanVP with and without

short-selling.

[Table 11 about here.]

Table 11 compares different portfolio strategies based on fifty randomly selected stocks with

a large market capitalization (monthly rebalancing). Without short-selling, we find that the

MeanV P using past returns as return proxy is indeed highly concentrated with only twelve non-

zero weights out of fifty investment options. It yields a Sharpe ratio of 0.16 which is lower than

those obtained from equal and value weighted investments. Not only the volatility is higher,

but also the return is lower suggesting that past returns are indeed a bad measure for future

returns. In contrast, using probabilities of outperformance as a measure of expected returns

yields a substantially higher Sharpe ratio of 1.01 which is more than twice as much as an equally

weighted portfolio generates. This is striking, taking into account that the amount of non-zero

positions is not different from the mean-variance portfolio using past returns. The outperfor-

mance may not be explained by any of the factors included in our six-factor model, leading

to an alpha of 6.38% which is significant at the 5% level. A similar image may be obtained

when allowing short selling. We observe a substantially higher Sharpe ratio for MeanV Pproba

compared to the MeanV Pret which is driven by both, a larger return and a smaller volatility.

Overall, this translates into a yearly alpha of 13.7% which is significant at the 10% level.

Based on these findings, we argue that outperformance probabilities may serve as an accu-

rate proxy for future returns. Given that the only consider large stocks, limits to arbitrage or

5We define stocks as large stocks, if there market capitalization was larger than $10 billion in the previous
month.

21



short-selling restrictions may not explain the performance gain. It seems that investors may

improve their return-to-risk ratios by constructing mean-variance portfolios using our proxy for

future performance.

6. Robustness

6.1. Regional Differences

Intuitively, one may hypothesize that the derived stock picking approach works better in re-

gions with less developed stock markets, as stocks within these markets should be less efficiently

priced. On the contrary, Jacobs (2016) finds that there are at least as many market anomalies

in developed markets as in emerging markets. Therefore, we calculate the performance of the

previously discussed investment approach with restrictions to specific regions. We follow the

classification of MSCI to allocate all stocks to the regions Emerging Markets, Europe, North

America, Pacific and Frontier Markets. Note that we do not test the performance on frontier

markets as there are not enough sufficiently liquid stocks available.

[Table 12 about here.]

As suggested by table 12, the stock picking approach yields highly significant positive alphas

in all tested regions. We find that the Sharpe ratio is highest for investments into Europe for

both equally and value weighted portfolios. This is mainly driven by the extraordinarily small

volatility of the long-short portfolios. With respect to the obtained yearly six factor alphas,

Europe yields the smallest one. The highest alpha may be obtaines within Emerging Markets

for both equally and value weighted portfolios. With highly significant alphas of up to 23.05%,

these portfolios are very profitable. What is striking is that we also obtain a highly significant

alpha in the US for both, equally and value weighted portfolios. Based on the observed high

Sharpe ratios, we conclude that the suggested stock picking approach works on markets with

different development status.

6.2. Profitability over time

One may argue that the profitability of our investment approach might deviate over time.

Among others, Avramov et al. (2021) finds evidence that ML driven investment strategies
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tend to perform substantially better within periods of economic distress. To test whether

investments based on the suggested stock ranking also generate positive alpha in non-crisis

periods, we conduct multiple median splits using different indicators for crisis periods. We

use a volatility index for international markets obtained from Refinitiv, the market sentiment

obtained from Baker and Wurgler (2006) and the average monthly bid-ask spread within our

dataset as splitting variables. We further investigate whether we observe a decrease in the

profitability within more recent years.

[Table 13 about here.]

Table 13 shows the performance of the previously studied portfolios for different time pe-

riods. We conduct a median split based on the VStoxx volatility index and find that the

alphas obtained from long-short investments are substantially higher in periods of high volatil-

ity. While the equally weighted long-short portfolio generates a yearly alpha of 31.31% in more

volatile periods, the obtained yearly six factor alpha is smaller with 15%, which is still signifi-

cantly larger than zero. We obtain a very similar image when using the average bid-ask spread

as proxy for economic distress. What is striking is that for periods of lower volatility and lower

spreads, shorting the lowest ranked stocks does not generate a significant profit, whereas we

observe substantially high alphas in periods of economic distress. Conducting a median split

based on investor sentiment as measured by Baker and Wurgler (2006), we do not observe

significantly different alphas though. We further show that the investments of the portfolios

remain profitable within more recent years, however with a lower magnitude. We trace this

reduction back to the lack of strong economic downturns within the last century rather than

increased market efficiency, as the reduction in profitability is mainly driven by the short leg.

6.3. Net Profitability of portfolios

So far we have not considered transaction costs when evaluating the different portfolio

strategies. One may hypothesize that the suggested investment strategy requires frequent trad-

ing and thus faces high transaction costs which ultimately reduce profitability. We therefore

suggest an alternative investment strategy that should require less trading. An investor ini-

tially buys (sells short) a predetermined amount of stocks based on the calculated probability
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of outperformance. He holds those stocks as long as their probability is above (below) a cer-

tain threshold, otherwise he will dissolve his investment and replace it with a new investment

that is highly ranked at that point in time. By assessing the performance of this investment

strategy, we should additionally get an intuition on how stable the predictions of the model

are. Another aspect which might influence our results is the financial distress of individual

firms. Stocks that are in financial distress are often associated with anomalously low return

patterns. While investors could theoretically profit from this overpricing by short selling the

respective stocks, these securities often experience serious trading frictions around credit rating

downgrades.Avramov et al. (2013) To ensure that our results are not biased by such stocks,

we drop stocks that have a default probability of more than 10% based on the failure measure

suggested by Campbell et al. (2008).

[Table 14 about here.]

Table 14 shows the average exit rate, which is the percentage of stocks that are replaced

per month, for our baseline and alternative investment strategy (threshold 50%). Indeed, we

observe a high average exit rate between 83% and 87% for equally weighted investments into

the highest (lowest) ranked 100 stocks. Applying our alternative strategy instead, we observe

a substantially lower AER of just 6.83% for the long leg.6 Based on this finding, we argue that

the estimated outperformance probabilities are relatively robust. A stock which gets a high

ranking in one month is unlikely to receive a low one in the subsequent month. As expected,

the alternative investment strategy is less profitable before transaction costs. To test which of

these portfolios performs better after transaction costs, we calculate the net alpha, which is a

six factor alpha minus the estimated relative yearly transaction costs. We estimate transaction

costs by multiplying the average monthly exit rate by the portfolios’ average bid-ask spread of

0.73% and scale it to a yearly figure. After controlling for transaction costs, both strategies

yield similar high significant net alphas of 7-8%. We may conclude that long-only investments

into stocks that are favoured by our model yield highly significant alphas even after controlling

for transaction costs. For the short leg, we observe a similar effect. Here, the AER drops to

6We also tested different thresholds. As expected, we find a positive correlation between the threshold and
the AER.
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22.94%, which is substantially lower than the baseline strategy, but higher than the long leg of

the alternative strategy. We hypothesize that the AER is higher in the short leg because stocks

either turn around or drop out of the market eventually. Using the same proxy for transaction

costs as before and assuming zero lending fees, both short investments yield around 9% net

alpha. We therefore conclude that our suggested stock ranking should not only be relevant for

hedge funds, as the long investments yield significant alphas also.

7. Conclusion

While most researchers focus on return prediction, we propose a model that predicts the

relative outperformance of a stock during the subsequent month. We train a random forest

model based on technical indicators and test it on a fifteen year horizon with monthly invest-

ments into liquid stocks. The obtained results indicate that out- and underperformers indeed

share common technical attributes that may be discovered by Machine Learning models which

questions the weak-form efficient market hypothesis. We observe Sharpe Ratios of up to 3.23

for equally weighted and 1.95 for value weighted portfolios. None of the risk factors within

a six factor model may explain the outperformance (underperformance) of stocks with a high

(low) probability of outperformance. For equally (value) weighted portfolios, we obtain highly

significant yearly alphas of up to 23.34% (17.51%).

To ensure that the outperformance of long-short portfolios may not be explained by some

unobserved risk factors, we run a RP-PCA to identify the most relevant factors within the

cross section. While one of those three identified factors is highly significant for the long-short

portfolio, we obtain an even larger alpha. This indicates that the strong performance of our

model is probably not driven by some unobserved risk factor.

We further investigate whether the calculated outperformance probabilities may be used

to model future returns when constructing a mean-variance portfolio. We find that using

outperformance probabilities rather than past returns leads to a substantially higher return-to-

volatility ratio. These results even persist when restricting the optimization to long investments.

As a robustness check, we analyze the performance of our model within different groups

of countries. As expected, the observed returns are smaller in the US and Europe, whereas

investments into the Pacific and emerging markets yield the highest returns. Nevertheless, we
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obtain highly significant alphas in all considered regions.

We also show that the suggested stock picking approach is profitable in different market

environments. We observe that the alpha is larger in periods of higher volatility and higher bid-

ask spreads, but remains significantly positive throughout all other periods. While we observe

lower profitability in more recent years, we find some evidence that this effect is mainly driven by

the lower amount of economic crisis rather than a substantial increase in market efficiency. We

have also proposed an alternative ranking-based investment strategy that requires significantly

lower transactions and thus trading costs. By comparing net alphas, we find that both, the

baseline and the alternative investment strategies are highly profitable.

Given the robust results, our findings are of high relevance for fund managers pursuing an

active stock selection. Not only does our stock ranking approach can serve as a guideline for

future investments, it may also be combined with other stock rankings derived by fundamental

or textual data by simply averaging outperformance probabilities on the stock level. Future

research might therefore investigate whether adding fundamental or textual data to the model

may lead to an even more valuable stock ranking.
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8. Appendix

[Table 15 about here.]

[Table 16 about here.]
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Figure 1: Convex hulls of good and bad stocks
Principal component analysis of outperformers (green) and
underperformers (red). We reduce the dimensionality of
the feature space to visualize whether a linear separation
of both classes is possible.
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Figure 2: Accuracy on the training and validation sets in relation to tree depth

Figure 3: Accuracy for different values of maximum features considered at each node

32



Figure 4: Out-of-Bag error rate for different numbers of estimators

Figure 5: Spread between median return and median return of subgroup
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Figure 6: Average monthly return difference top and bottom portfolio
This figure reports the difference between the average monthly return of the
top and bottom portfolio within a year.

Figure 7: Model-based portfolios vs. random portfolios
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Table 1: Summary Statistics by Country:

Country Stocks MV Ret. Country Stocks MV Ret.

Worldwide 18973 3.74 0.64

Argentina 30 1.51 2.52 Malaysia 203 1.96 0.61
Australia 587 2.56 0.53 Mauritius 11 0.8 0.12
Austria 60 2.81 0.77 Mexico 88 3.98 0.92
Bahrain 6 1.09 -2.83 Morocco 31 2.02 0.64
Bangladesh 40 1.01 0.33 Netherland 87 5.45 0.68
Belgium 74 5.06 0.58 New Zealand 64 1.39 0.97
Brazil 204 3.79 0.77 Nigeria 39 2.04 0.15
Bulgaria 23 0.58 -0.08 Norway 177 4.08 0.67
Canada 896 2.87 0.41 Oman 25 1.11 0.14
Chile 48 3.24 0.87 Pakistan 63 1.24 1.13
China 3205 2.31 0.80 Peru 32 1.4 0.93
Colombia 31 4.86 1.05 Philippines 76 2.33 1.09
Croatia 31 1.43 -0.14 Poland 141 2.09 0.27
Czech Republic 20 5.23 1.24 Portugal 35 3.53 0.37
Denmark 82 2.56 0.86 Qatar 43 4.39 0.7
Egypt 82 1.39 1.05 Romania 22 2.1 0.91
Estonia 8 0.61 -0.16 Russia 148 8.65 0.94
Finland 85 4.80 0.78 Serbia 7 0.73 0.39
France 353 6.19 0.71 Singapore 264 2.08 0.28
Germany 431 7.65 0.75 Slovenia 11 0.69 -0.31
Greece 89 1.93 -0.35 South Africa 156 3.17 1.25
Hong Kong 825 5.42 0.30 Spain 144 7.56 0.33
Hungary 14 3.42 0.86 Sri Lanka 12 0.78 0.77
India 639 3.36 0.97 Sweden 252 2.91 1.1
Indonesia 192 2.64 0.93 Switzerland 163 7.13 0.64
Ireland 30 2.92 0.58 Taiwan 642 1.97 0.3
Italy 215 4.68 0.30 Thailand 203 2.01 0.61
Japan 1237 3.18 0.58 Tunisia 19 0.58 0.81
Jordan 20 1.53 0.12 Turkey 136 2.4 1.18
Kazakhstan 14 1.83 -0.36 USA 4432 5.12 0.68
Kenya 22 1.08 0.47 Ukraine 49 1.78 -1.03
Korea 660 2.97 0.43 United Kingdom 726 4.66 0.61
Kuwait 122 2.03 -0.60 Vietnam 79 1.54 0.67
Lithuania 18 0.59 0.68

On the country-level, we count the number of stocks (Stocks), the average market
capitalization in billion USD (MV ) and the average monthly return (Ret.) within
the dataset.
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Table 2: Model Comparison:

Portfolio CAGR Vola SR CAGR Vola SR MV
Equal Value

Classification 19.30 8.86 2.18 13.23 8.71 1.52 3.49
Class. refit 14.37 11.43 1.26 8.44 11.24 0.75 3.50
Regression 14.50 10.35 1.4 8.40 10.05 0.84 2.98

This table reports the performance of equally and value-weighted long short
portfolios based on different types of models. We split the dataset into
deciles based on the probability of outperformance (Classificaiton, Class.
refit) or predicted returns (regression). CAGR is the compound annual
growth rate. MV is the average market capitalization in billion USD. TA
the average daily traded amount in million USD.

Table 3: Feature importances:

Category (%) Rel freq. World North America Europe Pacifc Emerging
Momentum 16.757 18.340 18.510 18.100 18.340 18.160
Trend 37.838 36.950 36.400 37.470 36.510 37.150
Volatility 24.865 21.540 22.280 22.020 22.130 21.120
Volume 10.811 13.420 13.510 12.010 13.660 13.770
Other 9.73 9.760 9.300 10.410 9.360 9.790

Feature importances obtained directly from the model. We allocate features to the
categories momentum, trend, volatility, volume and other. Then we count the amount of
nodes where features from a specific category were used and then relate it to the total
amount of nodes. Next to the international model, we further train regional models to
test whether certain features are more important in some regions than others. Rel. freq is
the relative frequency of the features in the category compared to all features. All values
are denoted in
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Table 4: Portfolio metrics top, bottom and top bottom portfolios:

Portfolio (size) CAGR Vola DDmax SR CAGR Vola DDmax SR MV
Equal Value

MSCI World 5.20 15.52 -22.41 0.33
T (100) 20.38 10.57 -18.95 1.93 14.25 11.43 -15.18 1.25 4.08
T (decile) 17.54 11.64 -19.33 1.51 12.99 11.65 -15.40 1.12 5.750
T (quintile) 16.65 12.45 -20.26 1.34 11.86 12.48 -16.98 0.95 5.74
B (100) -20.54 20.85 -30.48 -0.99 -17.81 23.07 -27.50 -0.77 1.22
B (decile) -8.37 18.42 -26.61 -0.45 -6.93 18.45 -24.77 -0.38 1.700
B (quintile) -4.22 18.02 -25.30 -0.23 -4.01 17.15 -23.17 -0.23 2.00
TB (100) 49.68 15.37 -9.41 3.23 37.34 19.14 -18.71 1.95 2.65
TB (decile) 26.75 11.31 -8.29 2.37 19.95 12.56 -8.95 1.59 3.725
TB (quintile) 20.33 10.18 -6.97 2.00 15.13 10.23 -6.7 1.48 3.87

We go long into the stocks with the highest calculated probabilities of outperformance (top portfolio)
and the lowest ones (bottom portfolio). We present portfolios with investments into fifty stocks as
well as investments with on average 600 (decile) and 1200 (quintile) stocks. The TB portfolio
comprises long investments into the top and short investments into the bottom portfolio. To assess
the performance of these portfolios, we calculate compound annual growth rates (CAGR), yearly
volatilities (Vola), the maximum monthly drawdown (DDmax) and Sharpe ratios. MV is the average
market capitalization in billion USD. TA the average daily traded amount in million USD.

Table 5: Six factor model using international factor data:

Factor EW Top VW Top EW Bottom VW Bottom EW TB VW TB
MKTRF 0.64*** 0.7*** 0.87*** 0.77*** -0.25*** -0.14**

(16.26) (19.24) (16.46) (13.09) (-3.48) (-2.01)
SMB 0.61*** 0.08 0.97*** 0.35** -0.71*** -0.5**

(6.2) (0.66) (7.12) (2.19) (-3.79) (-2.33)
HML 0.14 0.02 -0.24* 0.14 0.12 -0.26

(1.46) (0.19) (-1.9) (0.74) (0.7) (-1.23)
RMW 0.05 0.03 -0.07 -0.44** 0.19 0.34*

(0.75) (0.51) (-0.44) (-2.22) (1.11) (1.63)
CMA -0.26** -0.18* 0.09 -0.28 -0.21 0.16

(-2.19) (-1.65) (0.46) (-1.43) (-0.81) (0.58)
WML 0.01 0.06 -0.26*** -0.27*** 0.25* 0.33***

(0.08) (0.93) (-4.52) (-5.03) (1.65) (2.6)
alpha 11.36*** 7.07*** -9.84*** -7.44*** 23.49*** 17.51***

(6.05) (4.09) (-4.04) (-2.58) (6.82) (5.33)

This table shows the factor exposure for equally (EW) and value weighted portfolios (VW)
constructed based on the highest (lowest) 10% calculated probabilities of outperformance.
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Table 6: Factor Loadings Top Portfolio:

Coefficient (1) (2) (3) (4) (5)
Constant 0.74*** 0.69*** 0.61*** 0.64*** 0.58***

(4.23) (4.78) (4.16) (3.76) (3.23)
Factor 1 -0.82*** -0.91*** -1.05*** -1.03*** -1.1***

(-10.1) (-12.36) (-12.78) (-11.18) (-10.89)
Factor 2 0.39*** 0.44*** 0.43*** 0.45***

(7.56) (9.2) (8.87) (8.39)
Factor 3 0.36*** 0.33*** 0.42***

(4.17) (2.97) (3.1)
Factor 4 0.08 0.04

(0.56) (0.24)
Factor 5 0.22*

(1.85)
R-Squared 0.69 0.79 0.81 0.81 0.82
R-Squared Adj. 0.69 0.79 0.8 0.8 0.81

This table shows the factor exposure for equally (EW) and value weighted
portfolios (VW) constructed based on the highest (lowest) 10% calculated
probabilities of outperformance.

Table 7: Factor Loadings Bottom Portfolio:

Coefficient (1) (2) (3) (4) (5)
Constant -2.05*** -2.04*** -2.08*** -2.02*** -2.02***

(-9.12) (-9.0) (-8.92) (-8.17) (-7.79)
Factor 1 -1.41*** -1.41*** -1.46*** -1.42*** -1.42***

(-20.39) (-18.81) (-14.46) (-13.14) (-11.47)
Factor 2 -0.04 -0.02 -0.03 -0.04

(-0.31) (-0.16) (-0.27) (-0.28)
Factor 3 0.14 0.08 0.08

(0.68) (0.41) (0.36)
Factor 4 0.13 0.13

(0.74) (0.69)
Factor 5 -0.01

(-0.06)
R-Squared 0.73 0.73 0.74 0.74 0.74
R-Squared Adj. 0.73 0.73 0.73 0.73 0.73

This table shows the factor exposure for equally (EW) and value weighted
portfolios (VW) constructed based on the highest (lowest) 10% calculated
probabilities of outperformance.
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Table 8: Nine factor model using international factor data:

Factor EW Top VW Top EW Bottom VW Bottom EW TB VW TB
MKTRF 0.45*** 0.53*** 0.58*** 0.55*** -0.33*** -0.26*

(8.34) (7.12) (7.99) (6.48) (-2.69) (-1.8)
SMB 0.43*** -0.08 0.69*** 0.16 -0.74*** -0.57**

(4.88) (-0.71) (5.38) (1.0) (-3.6) (-2.3)
HML 0.02 -0.07 -0.2* 0.16 -0.01 -0.43*

(0.26) (-0.68) (-1.66) (0.86) (-0.05) (-1.78)
RMW 0.06 0.01 0.06 -0.3 -0.05 0.11

(1.27) (0.21) (0.38) (-1.59) (-0.33) (0.58)
CMA -0.19* -0.12 0.11 -0.23 -0.17 0.25

(-1.8) (-0.98) (0.62) (-1.22) (-0.67) (0.84)
WML -0.0 0.07 -0.24*** -0.26*** 0.25** 0.35***

(-0.04) (1.06) (-4.5) (-4.56) (1.93) (3.2)
Factor 1 -0.51*** -0.4*** -0.66*** -0.61*** -0.12 -0.15

(-6.57) (-3.96) (-5.5) (-4.26) (-0.61) (-0.68)
Factor 2 0.2*** 0.22*** -0.04 -0.05 0.49*** 0.51***

(5.27) (4.81) (-0.64) (-0.51) (4.82) (4.23)
Factor 3 0.45*** 0.33*** 0.33** 0.49*** 0.06 -0.04

(6.31) (4.93) (2.42) (3.27) (0.46) (-0.25)
alpha 8.18*** 4.67*** -16.62*** -13.71*** 25.14*** 18.61***

(5.13) (3.28) (-6.82) (-4.7) (6.94) (5.22)

This table shows the factor exposure for equally (EW) and value weighted portfolios (VW)
constructed based on the highest (lowest) 10% calculated probabilities of outperformance.

Table 9: Large capitalized firms:

Portfolio (decile) CAGR Vola SR alpha MV
MSCI World 5.20 15.52 0.33
Top EW 13.80 11.69 1.18 6.75*** 31.240
Top MVW 12.09 11.95 1.01 5.25*** 31.240
Bottom EW -0.70 18.33 -0.04 -1.34 27.630
Bottom MVW 0.01 17.07 0.00 -1.56 27.630
TB EW 13.23 12.84 1.03 11.94*** 29.435
TB MVW 10.73 12.58 0.85 10.1*** 29.435

Performance metrics for portfolios of large firm (larger than $10
billion) only.

39



Table 10: Large capitalized firms:

Portfolio (decile) CAGR Vola SR alpha MV
MSCI World 5.20 15.52 0.33
Top EW 14.91 11.70 1.27 8.23*** 13.89
Top MVW 12.93 11.74 1.10 6.27*** 13.89
Bottom EW -3.78 17.94 -0.21 -4.89* 9.71
Bottom MVW -3.74 17.50 -0.21 -5.38** 9.71
TB EW 17.99 11.63 1.55 16.2*** 11.80
TB MVW 15.92 11.78 1.35 14.91*** 11.80

Performance metrics for portfolios of large firm based on a relative
size threshold. We define large stocks as those that represent at
least 0.01% of the overall market capitalization.

Table 11: Optimized randomly drawn portfolios:

Shorting Portfolio CAGR Vola SR alpha NZP
MSCI World 5.20 15.52 0.33

No EW 6.00 13.27 0.45 2.26 50
MVW 5.88 12.90 0.46 2.16 50

No MeanVPret 3.38 21.09 0.16 -3.81 12
MeanVPproba 11.34 11.19 1.01 6.38** 12

Yes MeanVPret 7.35 60.94 0.12 -1.0 49
MeanVPproba 16.73 25.07 0.67 13.7* 49

We randomly select stocks with a market capitalization of more than
$10 billion and compare different portfolio strategies. MeanV Pret is
a mean-variance portfolio using past returns as proxy for future re-
turns, MeanV Pproba is a mean-variance portfolio using shifted outper-
formance probabilities as a measure of future returns. NZP: is the
amount of non-zero weights of fifty investment options.
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Table 12: Regional differences:

Region CAGR Vola SR alpha MV Firms

LS Equal Weights
USA 21.33 13.77 1.55 19.04*** 3.775 1956
Europe 22.97 10.50 2.19 20.18*** 4.585 1163
Pacific 37.26 15.16 2.46 32.95*** 3.245 979
Emerging 26.75 13.17 2.03 23.35*** 2.78 2803
LS Value Weights:
USA 18.27 14.97 1.22 15.06*** 3.775 1956
Europe 14.54 13.45 1.08 14.18*** 4.585 1163
Pacific 25.90 18.65 1.39 24.12*** 3.245 979
Emerging 23.50 15.33 1.53 18.07*** 2.78 2803

Equally and Value weighted portfolios based on stocks issued in different
regions using the MSCI classifications. We subdivide the dataset into
regions and then apply a decile based on the outperformance probability
split. We then simulate long-short portfolios and present the results
here.Firms is the average total amount of investment options.
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Table 13: Portfolio performance within different time periods

Group EW Top VW Top EW Bottom VW Bottom EW TB VW TB
Volatility index
low 8.76*** 5.29*** -2.83 -1.33 14.93*** 10.89**

(5.51) (3.41) (-0.74) (-0.29) (3.23) (2.27)
high 13.21*** 8.54*** -18.65*** -12.55** 31.31*** 20.69***

(4.16) (2.59) (-4.15) (-2.24) (6.23) (3.85)
Spread
low 9.1*** 4.8*** -0.81 1.04 13.54*** 9.31**

(4.91) (3.26) (-0.21) (0.21) (2.91) (2.07)
high 12.94*** 7.91*** -17.74*** -13.67*** 31.63*** 22.98***

(4.78) (2.66) (-5.27) (-3.1) (7.56) (4.65)
Sentiment
low 10.47*** 6.24*** -10.6*** -8.06** 24.75*** 19.1***

(4.56) (2.96) (-3.14) (-2.0) (5.77) (4.6)
high 13.91*** 9.2*** -8.59** -5.29 21.5*** 14.75***

(4.47) (2.94) (-2.13) (-0.95) (3.78) (2.44)
Time
2011-2018 9.87*** 5.14*** -4.28 -1.6 16.68*** 12.32***

(5.35) (2.78) (-1.1) (-0.31) (4.0) (2.96)
2004-2011 11.65*** 7.33** -14.92*** -12.08*** 27.72*** 20.12***

(4.07) (2.3) (-5.02) (-3.12) (6.74) (4.18)

We conduct median splits based on variables like volatility, sentiment, spread and time
to assess the performance of different portfolios in different periods of time. We consider
investments into 10% of the stocks with the largest (lowest) outperformance probabilities.
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Table 14: Portfolio strategies vs. Benchmark index, 100 stocks max.

Portfolio AER TC CAGR Vola SR Alpha
Long 83.32 7.3 20.19 11.17 1.81 14.27***
Low AER Long 6.83 0.59 12.20 8.85 1.38 8.85***
Short 86.63 7.59 16.18 20.84 0.78 15.34***
Low AER Short 23.41 2.05 10.2 19.98 0.51 11.42***

We compare the performance of two equally weighted investment
strategies with a portfolio size of 100 for both long and short legs
We denote the average exit rate of a portfolio in as AER. The yearly
transaction costs TC are estimated by multiplying the average bid-
ask spread with the monthly AER and then scaling it to yearly
estimates by multiplying the result by 12. We thus denote the
estimated relative costs of implementing the portfolio strategy. All
of these measures are denoted in percent.
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Table 15: List of features

Acronym Description/Source
1 avg. 50 Return of the last 50 trading days
2 avg. 100 Return of the last 100 trading days
3 avg. 200 Return of the last 200 trading days
4 sharpe ratio Yearly return divided by yearly volatility, assuming risk free rate of 0.
5 adj sharpe ratio Yearly return divided by yearly volatility corrected for skewness.
6 skewness Skewness of daily returns
7 kurtosis Kurtosis of daily returns
8 max spread Maximum difference between largest and smallest daily return
9 avg return Average daily return
10 short vola Daily volatility during last 50 trading days.
11 long vola Daily volatility during last year.
12 difference vola Difference between short- and long-term daily volatility.
13 trade days Number of trade days within the last year
14 volume adi https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volume-indicators
15 volume obv https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volume-indicators
16 volume cmf https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volume-indicators
17 volume fi https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volume-indicators
18 volume mfi https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volume-indicators
19 volume em https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volume-indicators
20 volume sma em https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volume-indicators
21 volume vpt https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volume-indicators
22 volume nvi https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volume-indicators
23 volume vwap https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volume-indicators
24 volatility atr https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
25 volatility bbm https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
26 volatility bbh https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
27 volatility bbl https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
28 volatility bbw https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
29 volatility bbp https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
30 volatility bbhi https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
31 volatility bbli https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
32 volatility kcc https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
33 volatility kch https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
34 volatility kcl https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
35 volatility kcw https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
36 volatility kcp https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
37 volatility kchi https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
38 volatility kcli https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
39 volatility dcl https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
40 volatility dch https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
41 volatility dcm https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
42 volatility dcw https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
43 volatility dcp https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
44 volatility ui https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#volatility-indicators
45 trend macd https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
46 trend macd signal https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
47 trend macd diff https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
48 trend sma fast https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
49 trend sma slow https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
50 trend ema fast https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
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Table 16: List of features (continued)

Acronym Description/Source
50 trend ema fast https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
51 trend ema slow https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
52 trend adx https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
53 trend adx pos https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
54 trend adx neg https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
55 trend vortex ind pos https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
56 trend vortex ind neg https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
57 trend vortex ind diff https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
58 trend trix https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
59 trend mass index https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
60 trend cci https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
61 trend dpo https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
62 trend kst https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
63 trend kst sig https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
64 trend kst diff https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
65 trend ichimoku conv https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
66 trend ichimoku base https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
67 trend ichimoku a https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
68 trend ichimoku b https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
69 trend visual ichimoku a https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
70 trend visual ichimoku b https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
71 trend aroon up https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
72 trend aroon down https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
73 trend aroon ind https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
74 trend psar up https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
75 trend psar down https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
76 trend psar up indicator https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
77 trend psar down indicator https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
78 trend stc https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#trend-indicators
79 momentum rsi https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
80 momentum stoch rsi https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
81 momentum stoch rsi k https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
82 momentum stoch rsi d https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
83 momentum tsi https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
84 momentum uo https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
85 momentum stoch https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
86 momentum stoch signal https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
87 momentum wr https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
88 momentum ao https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
89 momentum kama https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
90 momentum roc https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
91 momentum ppo https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
92 momentum ppo signal https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
93 momentum ppo hist https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#momentum-indicators
94 others dr https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#others-indicators
95 others dlr https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#others-indicators
96 others cr https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#others-indicators
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