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1 Introduction

Investors fly to safety at times of elevated risk.! They are on high-powered incentives to do so
quickly if their liquidity demand exercises a negative externality as a result of a liquidity spiral
(Pedersen, 2009; Brunnermeier, 2009). This channel could make markets fragile and, in the
extreme, cause financial instability.?

To study if and how flight to safety and market fragility are related requires studying market
dynamics at high frequencies. We analyze an exhaustive 2007-2021 sample of all NASDAQ
trading messages for four exchange-traded funds (ETFs). We analyze how VIX shocks affect
trading in equity and bond ETFs at a five-minute frequency.

To characterize market dynamics, we estimate generalized impulse response functions. The
impulse is a surprise shock in VIX and the response variables include initiator net volume,
midquote return, trading volume, bid-ask spread, order book depth, and the Amihud (2002)
illiquidity ratio (JLLIQ). We compute these variables for the following ETFs: SPY for the
S&P 500 equity index, HYG for junk bonds, LQD for investment-grade corporate bonds, and
TLT for government bonds. For ease of exposition, we talk about asset classes instead of
referring to ETF codes in the remainder of the manuscript.

Our most salient and most robust finding is that VIX impulses lead to active selling of
equities and active buying of government bonds, both contemporaneously and in the hour that
follows the shock. Prices drop for equities and increase for government bonds, although only
contemporaneously. These price responses revert partially in the subsequent hour, in spite
of continued selling of equities and buying of bonds. Market liquidity also responds to VIX
impulses, but magnitudes are negligible on all dimensions: bid-ask spread, depth, and ILLIQ.

To study the channel that drives the flight to safety dynamics, we decompose VIX changes

into two canonical components:
1. changes in risk aversion, often referred to as variance risk premium (VRP), or
2. changes in cash-flow risk, referred to as expected realized volatility (ERV).

Although both components could, in principle, cause a flight to safety, we conjecture that VRP

changes are the most likely triggers. This is in line with a strand of literature that finds time-

ISee, e.g., Longstaff (2004), Beber et al. (2009), Adrian et al. (2019), Baele et al. (2019).

2Central banks worry about market liquidity as part of their focus on liquidity risk management after the
global financial crisis (BIS and IOSCO, 2012). The SEC worries about the ramifications of liquidity spirals as
evidenced by their 2016 rule that requires each registered open-end management investment company, including
open-end exchange-traded funds (ETFs), to establish a liquidity risk management program (SEC, 2016). European
regulators share the worry but stopped short of imposing regulation (ESMA, 2019).



varying risk aversion being positively predictive of required returns (Campbell and Cochrane,
1999; Bekaert and Hoerova, 2014; Bollerslev et al., 2015).

To decompose five-minute VIX changes, we develop a high-frequency version of the method-
ology proposed by Bekaert and Hoerova (2014). We then study how both components relate to
all trading variables, both contemporaneously, and subsequently the shock. The findings can
be summarized as follows. First off, we find that the two components of VIX changes are close
to orthogonal at a five-minute frequency. This is a reassuring result because it allows us to
identify potentially different market responses. This turns out to be the case as the responses
to the two types of VIX shocks differ markedly. Shocking VRP leads to a market response that
mirrors the response to VIX shocks. Shocking ERV, on the other hand, lead to active buying
of equities and to fragile market liquidity, albeit only contemporaneously. The fragility only
shows through a sizeable jump in ILLIQ (18% on a one-standard deviation impulse). We find
that the bid-ask spread jumps and depth drops, but these changes are economically negligible.?

Reassuringly, we find that these patterns are consistent with institutional trading. For 2009
through 2013, we use standard Abel Noser data on institutional order flow to redo the impulse-
response analysis. We find statistically significant institutional selling of equities on VIX and
VRP shocks and significant buying on ERV shocks.

In summary, we find evidence relating VIX shocks to flight to safety and to market fragility,
but these are due to separate channels. Shocks to risk aversion (VRP) seem to trigger active re-
allocation from equities to government bonds, without impairing market liquidity. Shocks to
cash-flow risk (ERV), do not seem to trigger active re-allocation, but they do impair market
liquidity, at least contemporaneously. The surprising finding is the active buying of equities
that accompanies this market fragility.

This finding along with all other findings are rationalized in the last part of the manuscript
by adding risk shocks to the model proposed by Vayanos and Wang (2012), which, itself, is an
extension of Grossman and Stiglitz (1980). We add two types of risk shocks to those seeking
liquidity. Liquidity demanders either become more risk averse (VRP channel), or they enter
a market with elevated cash-flow risk (ERV channel). In the latter case, only the uninformed

experience the increased uncertainty (i.e., the liquidity suppliers). This feature is in line with

3These findings suggest that standard, readily observable liquidity metrics such as spread and depth are impre-
cise measures for the cost of executing large orders. A better proxy for their transaction cost might be the price
elasticity of net volume. This is in line with Hendershott and Menkveld (2014) who have an orthogonality result
for the size of the bid-ask spread and the elasticity of (midquote) price elasticity to market-maker inventory, which
both are endogenously derived in a dynamic inventory control model. Price elasticity in their model is the extent
to which a market maker skews the bid and ask quote to mean-revert out of non-zero inventory. This might be the
more relevant liquidity metric for liquidity demanders who trade large orders. This price elasticity might be what
ILLIQ picks up in our analysis.



Grossman and Stiglitz (1980) where the uninformed bear additional uncertainty (simply be-
cause they know less).

Formal analysis of the two types of shocks in the model yields patterns that are consistent
with the empirical findings. The results for the risk-aversion (VRP) channel are unsurpris-
ing. Investors who suddenly become more risk averse re-allocate risk to those who do not,
hence the active selling of equities and buying of government bonds. Equity prices drop since
the average investor becomes more risk-averse. Liquidity is unaffected, as the risk-aversion
shocks are isomorphic to the endowment risk shocks that trigger trade in the core Grossman
and Stiglitz (1980) model. These type of shocks do not affect liquidity which is offered per-
fectly competitively. Liquidity is costly in this model because of information asymmetry and
the adverse-selection costs this imposes on uninformed liquidity suppliers. Risk-aversion or
endowment risk shocks, however, do not change the level of information asymmetry.

The findings for the cash-flow risk (ERV) channel yield novel insights into the observed
market dynamics. Active buying of the risky asset is an equilibrium result. The uninformed
experience the additional cash-flow risk for the simple reason that they are uninformed. They
understand that there is news and they realize that others have access to it. They therefore prefer
to reduce their risky asset holdings. The informed observe the news and, therefore, bear less
posterior risk. They sell on bad news, they buy on good news, but asymmetrically so, because,
on average, they are buyers in equilibrium. The reason is that the cash-flow risk shock increases
the wedge between the risk that the informed experience relative to the risk that the uninformed
experience.

Not only does the cash-flow risk shock cause net buying of equities, it also makes the trans-
fer costly because of increased information asymmetry. The uninformed liquidity suppliers
experience higher adverse-selection costs and liquidity thus deteriorates. The cash-flow risk
channel (ERV) therefore generates, on average, net buying by liquidity demanders on impaired
liquidity supply, in line with our empirical findings.

Our findings that the root cause of risk shocks matters for how the market responds, add to
a rapidly growing asset-pricing literature on the role of volatility. Ait-Sahalia et al. (2021), for
example, motivate their model by quoting a New York Fed President who, in 2017, wondered:
“You would think if uncertainty was high, you’d have a bit more volatility.” In their paper,
they rationalize asset-price dynamics by introducing two disconnected stochastic processes:
One that drives (realized) volatility and another that drives risk (aversion). Models in the same
spirit are Liu et al. (2004), Drechsler (2013), and Brenner and Izhakian (2018). Similarly, in
our analysis, the effects of heightened (experienced) uncertainty as measured by VIX shocks,

depend on the underlying channel: Elevated risk aversion or elevated cash-flow risk.
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The manuscript is organized as follows. Section 2 presents the data and the intraday VIX
shock decomposition. Section 3 discusses the estimation of impulse-response functions, along
with appropriate confidence intervals. Section 4 presents the main empirical findings: Market
responses to VIX (component) impulses. Section 5 provides a deeper understanding of these

findings by exploring a Grossmand-Stiglitz model. Section 6 concludes.

2 Data

2.1 NASDAQ message data

We collect message-level snapshots of the NASDAQ limit order book for four actively traded
ETFs that provide exposure to different underlying baskets: S&P 500 (SPY), junk bonds
(HYG), investment grade corporate bonds (LQD) and government bonds (TLT).* We retrieved
and evaluate the entire available order book message history from July 1st, 2007 until April 7th,
2021 from data provider LOBSTER. Our sample contains a record for each message (submis-
sions, adjustments, and cancellations of market and limit orders) and reconstructed snapshots
of the complete order book for the first 50 levels.’

We restrict our analysis to order book activity during regular trading hours to avoid idiosyn-
crasies associated with opening and closing auctions. Therefore, we only consider messages
between 10 a.m. and 3.30 p.m. EST (or 30 minutes after the opening auction and until 30 min-
utes before the closing auction if NASDAQ deviates from regular opening and closing hours,
e.g., due to holidays). The entire dataset comprises more than 30 billion order book messages.
We aggregate the order book messages for each ticker into the following six variables, mea-

sured at 5-minute intervals.

1. Initiator net volume (in million USD) which is the net of buyer and seller initiated shares
transacted during the last 5-minute interval. We sign transactions as +1 if they are exe-

cuted against a sell-side limit order and -1 if they are executed against a buy-side limit

4SPY tracks a basket of assets representing the S&P 500 index, HYG represents a basket of BBB to CCC rated
corporate bonds with maturity less than 10 years and LQD represents a basket of more than 240 US corporate
bonds with 5 to 20 years maturity which are A to BBB rated. TLT holds a 99% weight in US Treasury bonds with
a maturity longer than 20 years

>We do not trim or winsorize any variables in our sample. After careful analysis we decided to remove two
extreme and short-lived events from our analysis: A 10-minute episode during the Flash Crash period in the
interval from May 6th, 2010 from 14:40 until 14:50 for which NASDAQ order book indicates unreasonably
large order book imbalances and a 10-minute episode on April 29th, 2008 from 13:30 until 13:40 during which
NASDAQ recorded a 1.5 Billion USD SPY buy market order which is more than 15 times the size of the second-
largest observed buy order in the entire sample.



order. For execution against a hidden limit order, we impose the sign +1 if the transaction
executes at a price that exceeds the last observed midquote and -1 if the transaction price
is below the last observed midquote. To make the values comparable across assets, we
multiply the aggregate net number of traded shares with the rolling 12-month average

midquote computed for each ticker.

. Return (in basis points) computed as log(p, ) —1log(p,.-1) where ¢ corresponds to the trad-
ing day and 5-minute timestamps are 7 € {0, ..., 78} which range from 09:30 a.m. (7 = 0)

until 4:00 p.m. (7 = 78). p, . is the last observed midquote on day ¢ before timestamp 7.

. Trading volume (in million USD) which is the cumulative trading volume during each
S-minute interval. We compute trading volume as the number of traded shares times the

transaction price.

. Bid-ask spread (in basis points) computed as the time-weighted average difference be-
tween the best prices quoted at the sell and buy side of the order book during each 5-
minute interval. For every order book snapshot, we compute the bid-ask spread relative

to the current midquote.

. Depth (in million USD) measured as the number of posted shares in visible limit orders
5 basis points from the current best price on both sides of the order book. We take the
time-weighted average depth during each interval to aggregate depth from message level
into 5-minute intervals. To make the values comparable across assets, we multiply the
number of available shares with the rolling 12-month average midquote computed for

each ticker.

. e ) log(pr.)-log(pr-
. Amihud illiquidity measure, computed every five minutes as ILLIQ, . := w.

ILLIQ, . corresponds to the absolute midquote log return divided by trading volume Viz
executed on NASDAQ (in million USD). High values indicate large price impacts per
unit traded and are thus associated with illiquidity (Amihud, 2002). In our empirical

analysis, we set ILLIQ, ; to missing for timestamps for which trading volume is zero.

Figure 1 illustrates the dynamics of the six variables for each ticker during the 14-year sample

period. The figure shows the high dispersion of returns (measured, e.g., as the interquantile-

range) during the global financial crisis and the COVID-19 market turbulence. In line with

Angel et al. (2015) we confirm that quoted bid-ask spreads decreased considerably during the

last years across all asset classes. At the same time, however, we document that depth also

decreased for our selected ETFs. While Figure 1 illustrates this trend for depth measured
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5 basis points around the current best price, Table Al in the Appendix provides additional
summary statistics and indicates parallel trends deeper in the order book but also at the best
level.

It should be noted that LOBSTER covers messages executed on NASDAQ only. Thus, trad-
ing volume V, ; is not a market-wide measure. Therefore, interpreting time trends for the ILLIQ
time-series in our sample makes sense only under the assumption that NASDAQ market share
has not changed over time. We do, however, expect a very high correlation between ILLIQ and

a measure of illiquidity computed with market-wide trading volume at high frequencies.

2.2 Intraday VIX decomposition

Our starting point to investigate how a fear impulse ripples through the market is the CBOE
Volatility Index (VIX), which is the implied volatility of the S&P 500 index. Besides its well-
known role as a volatility index, VIX is often referred to as a fear gauge (Carr, 2017). The
market prices of out-of-the-money puts and calls written on the S&P 500 index with maturity
of one month determine the value of the VIX index. The construction of the VIX index value is

such that the option-implied variance 1V, ; of the S&P 500 index on trading day # and timestamp
VIXZ,
120,000

In the asset pricing literature the difference between the implied variance as the risk-neutral

T expressed in monthly percentages is IV, ; =

expectation of the future return variation and the expected realized variance as its “physical”
counterpart (i.e., computed under the actual physical probability measure) is of major impor-
tance. Defining ERV,. as an estimate of the conditional expected realized variance of the
S&P 500 index over the next month (i.e., until market closure 22 trading days ahead) and 1V, ,
as the option-implied variance of the S&P 500 index expressed in monthly percentages, we
obtain

VRP,; =1V, — ERV,, (1)

as the so-called variance risk premium with respect to next month’s return variation. Boller-
slev et al. (2009, 2012, 2014) introduce this definition under the simplifying assumption that
the realized variance follows a martingale process. Accordingly, in their definition, ERV, ; is
replaced by the (observed) ex post realized variance through the previous month. This assump-
tion, however, is challenged by Bekaert and Hoerova (2014) who exploit the predictability in
realized variances and suggest Equation (1) on the basis of a prediction model for ERV, ;.
Though Equation (1) is a common way to define the variance risk premium, the litera-

ture also suggests alternative definitions. A seminal contribution is Carr and Wu (2009) who
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illustrate that the average variance risk premium corresponds to the sample average of the dif-
ference between the variance swap rate and the realized variance. According to this definition,
the variance risk premium is typically negative and Equation (1) can be seen — strictly spoken
— as an estimate of the negative variance risk premium. Alternative approaches define and esti-
mate the variance risk premium under explicit stochastic volatility models, see, e.g., Bollerslev
et al. (2011). Concepts of variance risk premia — though not necessarily explicitly defined —
can also be found in earlier work, see, e.g., Rosenberg and Engle (2002), among others. Fi-
nally, some literature uses an alternative terminology. While we follow the terminology to call
VRP,, a ’variance risk premium”, Bekaert et al. (2013, 2021) associate VRP, ; with “’risk aver-
sion” (RA) and ERV,, with "uncertainty” (UC). Accordingly, in their notation, the definition
in Equation (1) reads as RA,; = IV, — UC,; but is conceptually identical.

Our approach extends the framework of Bekaert and Hoerova (2014) and Bekaert et al.
(2021) by predicting the realized variance not only based on daily information, but also by
utilizing intraday information. This makes our notation more complex, as we have to explicitly
differentiate between intraday trading periods and overnight non-trading periods. We define the
sequence of 5-minute timestamps 7 € {0,..., 78}, which range from 09:30 a.m. (7 = 0) until
4:00 p.m. (r = 78). We label the corresponding 5-minute returns as r,; = log (p;.) —log (p;+-1)
for r > 0, where p, . is the S&P 500 index value on the day ¢ at timestamp 7. With a slight
abuse of notation, we define r, o = log (p,o) — log (p,—1.78) as the overnight return. We define

T

RV, := >, )

k=0
as the realized variance of the S&P 500 index, computed from the closure on day ¢ — 1 to the
end of the 7-th 5-minute interval at day ¢ (i.e., including the squared overnight return). Then,
RV, := RV .78 defines the realized variance of the full trading day, measured from closure at day
t — 1 to closure on day ¢. Accordingly, the future realized variance, measured from the end of

the 7-th 5-minute interval at day ¢ to market closure d trading days ahead, is defined by

78

d d
RVt(,i) = Z rt2,k + Z RVH.h = Z RVt+h - th,‘r- (3)

k=T+1 h=1 h=0

An empirically well-established and widely used model for the prediction of future realized
variances is the heterogeneous autoregressive (HAR) model introduced by Corsi (2009). It
builds on the high persistence of daily realized volatility, revealed by a slowly decaying au-

tocorrelation function. The HAR model captures this behavior in a simple but empirically



powerful way. Specifically, we model future realized variances based on averages of past real-
ized variances, aggregated through different time horizons. A natural choice is to explain the
future realized variance based on the last day’s, last week’s and last month’s (average) realized
variance. While Bekaert and Hoerova (2014) use the HAR framework based on daily data, we
extend this framework to incorporate also intraday information. Accordingly, we model the log
one-month-ahead realized variance, RV,(,ZTZ), measured from the end of the 7-th 5-minute interval

at day ¢ to market closure 22 trading days ahead, as
(22)\ _ (21) P/ (4) 237,
log (RVZ) = ¢, + B 1og (RVZ), o + RV,2) + - log (RV, | + RV )
+ 0. log (ﬁ/ ,,T) + &1, 4)

. . . d—1
where &, is zero mean white noise and (RVZ(_ 4 0)

ance measured from market opening d trading days ago until the closure on the previous day

+RV ,,T) is the sum of the realized vari-

(RVt(f;}))) and the realized variance measured from closure on the previous day until the most
recent observation on day ¢ in intraday interval T (ﬁ/ ,,T). For the special case 7 = 78, these
components collapse to RVl(f’;j)) + RV, = RVt(f’ZLO, corresponding to the d-day realized vari-
ance measured from the opening d days ago until the closure on the current day. Likewise,
RV 78 = RV, collapses to the realized variance measured from previous day’s to current day’s
closure. In this case, Equation (4) resembles the initial HAR model by Corsi (2009) including
realized variances of the most recent day, the previous 5 days and the previous 22 days and
nests the daily regression setup of Bekaert and Hoerova (2014).

We use this framework as a natural starting point for predicting future realized variances
using information up to day ¢, timestamp 7. An obvious extension is to incorporate not only
lagged realized variances (and squared overnight returns), but also information from other trad-
ing variables and from other assets. In our sample we find that expanding the relevant set of
conditioning information to contemporaneous VIX levels and limit order book data does only
marginally increase the predictive performance leaving Equation (4) as a parsimonious and
powerful benchmark.

Note that the regression coeflicients in Equation (4) depend on the timestamp 7, i.e., the
predictive power of past realized variances differs depending on the intraday period. Intuitively,
we expect that the importance of RV + Increases, as the trading day progresses. In order to avoid
imposing assumptions on the intraday evolution of ¢, B, y., and ¢,, we estimate the parameters
in Equation (4) for each value of 7 € {1,...,78}, yielding 78 individual regressions. To avoid
look-ahead biases, we conduct rolling estimation windows with estimation length of 12 months.

For that purpose, we extract S-minute S&P 500 index values and 5-minute VIX index levels

9



from the data provider pitrading. Our sample starts already in July 2006 such that we obtain
estimates of the predictive regression for the entire period for which order book information
from LOBSTER is available.
Estimation of the parameters in Equation (4) for 7 € {1, ..., 78} by least squares yields the
sequence {C-, ,@T, Vs 3,} and thus
E,T (RVt(’iz)) = exp (6, +f3; log (RVS;O +RV ,,T) +
9-1og (RV) |+ RV,;) + - log (RV..)). (5)

Accordingly, for each day ¢ and timestamp 7 we obtain the estimated variance risk premium
Wﬁ’m as

VRP,, = IV,. - E,.(RVY). (6)

Figure 2 illustrates the time series of the implied variance /V, ; and the realized variance RV,(,ZTZ)
for the next 22 days. Note, that in line with Bollerslev et al. (2015), the average implied variance
exceeds the average realized variance, which suggests that the unconditional mean of the vari-
ance risk premium is positive. The figure reveals two extreme periods of elevated variance-risk
premia during the last 14 years: the global financial crisis and the market turbulences related to
the outbreak of the COVID-19 pandemic in March 2020.

The figure largely resembles the findings of Bekaert et al. (2021) and illustrates persistent
variations of the variance risk premium during volatile market periods. In line with Bekaert
et al. (2021) we find that V/R\Pm is positive after large shocks for a while but tends to zero
during periods of minor shocks. This suggests that the representative investor is risk averse
in periods following shocks, but close to risk-neutral if no further large shocks hit the market
for an extended period. The two components, VRP and ERV are close to orthogonal at a five-
minute frequency.®

The regression results itself indicate the relevance of intraday data even for long run fore-
casts of the realized variance. Figure A1 in the Appendix illustrates the goodness-of-fit and the
estimated regression coeflicients of the predictive regression in Equation (4). We find that the
average full-sample adjusted R? of the predictive regression in Equation (4) is 35%. Omitting

RV .~ in Equation (4) and setting 6, = 0 yields a smaller average adjusted R? of 33%. The

%The sample correlation between the two components is negative in the data, but we believe this is spurious
and due to imperfect estimation of the ERV change. Given that we compute the VRP component as the residual
component, a positive measurement error in ERV mechanically becomes a negative measurement error in VRP.
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Figure 2: Time-series of the implied variance and the expected realized variance time series (all in monthly percentages). To compute the
implied variance (IV), we convert VIX index values as VIX,ZJ/ 120,000. ERYV is the predicted realized variance E; - (RV;(22)) as of

Equation (4) and VRP is the estimated variance risk premium (/V — ERV) where the realized future variance RV,(YZTZ) is the sum of squared
5-minute S&P 500 returns from the current point in time until the market close 22 trading days ahead.

upwards slope for our benchmark model indicates that as the trading day progresses, future re-
alized variances can be explained considerably better than at the beginning of the trading day.
At the same time, ignoring intraday information by omitting RV +- 1n the regression indicates
that as the trading day progresses, the predictive performance for future realized variances be-
comes worse, presumably because RV(2 20 and RV(4) 5 are based on information that becomes
more and more outdated.

The sequence of estimated regression coefficients indicates that Rfo;O plays the most im-
portant role to predict future realized variance. It is important to note, however, that &, is
significantly different from zero for each regression specification. We thus find that intraday
information receives substantially higher weights towards the end of the trading day relative to

the static model.

3 Quantifying impulse responses

3.1 Local projections

Our aim is to quantify the responses of the time series in our sample to an implied variance (/V)

shock or its components, i.e., the variance risk premium VRP (related to risk aversion) or the
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expected realized variance ERV (related to future cash flow risks). Denote the (N X 1) vector
of observations at time point 7 by y. = (yr.1,...,V-y). We assume that y. follows a vector

autoregressive (VAR) model of the form
P
yo= Y Ao+, (7)
j=1

where A; are (N X N) coeflicient matrices and u, are (N X 1) vectors of white noise vari-
ables with variance-covariance matrix X,. Impulse response functions (IRFs) measure the re-
sponse of the variable y.,,; to a shock d of the error term vector u, in period 7. By defining
¥+ = {¥s,...,y1}, the common definition of an IRF is the difference between the conditional
expectations E (yripley = d, Fr-1) and E (yripilter = Oy, Fr_1), where Oy denotes a (N x 1) vec-
tor of zeros. In case of VAR models, this definition is equivalent to

ir; (e, h,d) := E (Yrspiltte = d, F7r_1) = E (Yesnil Fr-1) )

where in the latter term the variables u, are integrated out. This concept is referred to as
generalized impulse response function according to Koop et al. (1996).

Denote e; as the (N X 1) selection vector with unity as i-th element and zeros otherwise. In
the given VAR model according to Equation (7), the IRF can be obtained from the correspond-
ing moving average representation y,., = Yoo ®#r+s-, Where ®y = I is the (N X N) identity
matrix and ®,; are the MA coefficient matrices corresponding to ®; = dy,,;/0u’. Then, the IRF
is obtained by

ir; (e, h,d) = e;®,d. 9)

Estimating the IRF requires backing out estimates of ®,; from the estimates of underlying VAR
coefficients A, j = 1,..., p. As aresult, estimates are prone to estimation errors and sensitive
to the choice of the underlying VAR model.

Estimating ir; (u., h, d) in a "direct’ way by local projections as proposed by Jorda (2005)

avoids these difficulties. To illustrate the idea of local projections, we re-formulate Equation (7)

for y,,»; and express the process — by backward substitution — in terms of y., y._1, ..., Yr—p-1):
p-1
Veeni = BCARY Yo + > 81(A D) Yoy + vy (10)

=1

Here, Bi(A, h) denotes the (N x 1) vector of local projection coeflicients, and corresponds to a
function of the VAR coefficient matrices A, ..., A,. Likewise, 6;,(A, h) is a (N X 1) vector of
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coeflicients associated with y,_;, [ > 1. Finally, &;; = Z?zl Bi(A,h—1)u,,; is the model-implied
h-step-ahead forecasting error. For example, in the special case of a VAR(1) model, we have
0,(A,h)=0forl>1andBi(A,h) = (A’l’)’e,-, corresponding to the (transposed) i-th row of the
matrix A”.

Local projection coefficients 8;(A, h) correspond to the derivatives 0y 4/ 0y: = 0Yripi/O0u, =
(Oy-+n/0u,)e; and thus we have B;(A,h) = ®,e;. Consequently, an alternative formulation of
ir;(u-, h,d) = e®,d is

ir; (., h,d) = B;(A,h)'d. (11)

It is straightforward to estimate the local projection coefficients ;(A, #) by means of a linear

’ ’

regression of y..p; on X := (Y., ¥, _|,...,y._ . ), yielding the OLS estimates

A -1
ﬁ,(h)) [T—h /) T—-h
A = XXz XrYrth.is (12)
[%(h) Zl Z] '
where B,-(h) is the (N X 1) vector of OLS coefficients associated with y,. As shown by Mon-
tiel Olea and Plagborg-Mgller (2021), ﬁ,-(h) is a consistent estimator of fB;(A,h), and thus
f;,- ., j,d) = ,@,-(h)’d is a consistent estimator of the impulse response function ir;(u., i, d).

Likewise, we obtain estimates of the cumulative impulse response function from

h

h
cirdue,h,d) = ) iriur, j,d) = ) Bi(j)'d, (13)

J=0 J=1

since f)’,-(O) =1Iy.

3.2 Lag-augmentation

While the least square estimator Bi(h) is consistent, it is not easy to compute standard errors
since the residuals &,; based on Equation (12) are serially correlated. This requires the con-
struction of a heteroscedasticity and autocorrelation consistent (HAC) estimator of the error
covariance matrix, which is not straightforward and renders inference challenging.

As an alternative, Montiel Olea and Plagborg-Mgller (2021) propose estimating B;(A, h) by
lag augmentation, which keeps the estimator consistent but removes the serial dependence in
the residuals. The idea of lag augmentation is to augment the regressors x, by one additional
lag, y._,, which serves as an additional control variable.

’ ’

Hence, in the lag-augmented regression, we regress yr.; on X; := (¥, ¥._, ..., y;_,) yield-
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ing

B T—-h L ron
(g;ih;] = ( f-,—i;] Z j‘ry‘r+h,i5 (14)
i =1 =1

where ﬁf(h) is of dimension (N X 1). Montiel Olea and Plagborg-Mgller (2021) show that
,@;‘(h)’d is also a consistent estimator for ir;(u., h, d), while the residuals resulting from this
regression are serially uncorrelated. Thus, standard errors of B?(h) can be computed using the
Eicker-Huber-White heteroscedasticity-robust covariance estimator without the need of con-

trolling for serial correlation.

3.3 Choice of the shock size

Contemporaneous correlations of the errors u., i.e., a non-diagonal covariance matrix X, ren-
der it impossible to attribute a shock exclusively to a single variable. A traditional solution, as
proposed by Sims (1980), is to orthogonalize the errors based on a Cholesky decomposition of
X,. The orthogonalized errors then depend recursively on the original errors, which makes the
approach sensitive to the ordering of the variables.

To overcome the need of imposing an (often arbitrary) ordering of the variables, Pesaran
and Shin (1998) and Koop et al. (1996) make use of the definition of a IRF as of Equation (8)
and the fact that under the assumption of multivariate normality of u., it follows that d =
E u,; = 6) = Xye jO';/.lé, where o j; is the j-th diagonal element of X, and 6 # 0 denotes
the shock in element j. Intuitively, a shock on the j-th error with size ¢ implies instantaneous
adjustments in all other errors due to contemporaneous correlations as reflected by X,. This
yields IRFs which are insensitive to the initial ordering of the variables.

By choosing ¢ as a one-standard-deviation shock, ¢ = \/Ejj, we therefore obtain
d = E (ulur; = No ) = Zuej0; . (15)
Given a consistent estimate ﬁ‘.,,, the IRF is then estimated as
ir; (e, h,d) = Bi(hy E,e;67)". (16)

We implement this approach in three steps. First, we determine the lag length of the underlying
VAR process using the AIC criterion. Then, ﬁf(h) results from corresponding lag-augmented
local projections as of Equation (14). Finally, we obtain £, from maximum likelihood estimates

based on the residuals of a VAR(p) process.
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3.4 Standard errors

We show in the Appendix that for 7 — oo

— u A 2
\NT (ir,- (e, b, d) = ir; (ur, h,d)) * N (0, d'AV[Bi(h))d + —UP (L, ®L,) U’) , (17)
JJ

where AV[[??(h)] is the asymptotic variance of \T, Bf(h), e; denotes an (N X 1) selection vector,
= (e, ®B(hy) - 1/207"ir; (u.. h.d) (¢; ® ¢}), and P = Dy(DyDy) "' D}, is the (N? x N?)

projection matrix based on the duplication matrix Dy.
Then, using the (Eicker-Huber-White heteroscedasticity-robust) estimates V[B?(h)] result-
ing from the local projections and the maximum likelihood estimates £, yields the standard

errors for E,- (u., h,d) given by

_ o o o o\
SEr; (e, h, d) = Vi, (er, b, d)' = (Tld’V[,B?(h)]d +5UP(L 0%, U’) . a8)
Ji
where d = f‘.,,ejé';.jl/z, and U = (e ® B(hy ) 1 A_”zlr, (e, h,d) (e Qe )
Likewise, as we also show in the Appendix, standard errors of the estimated cumulative

impulse response function cirduy, h, d) can be computed by Equation (18) with ﬂf @ replaced
by Y1, ﬁf(h) and ‘A/[/Ai'f(h)] replaced by Y7_, V[ﬁf(h)].

4 Market responses to a VIX impulse

In this section we estimate IRFs to quantify market responses to an implied variance (V') shock.
Then, to understand the driving channels of the responses we separately analyze responses to a
shock in the variance risk premium (VRP) or the expected realized variance (ERV).

The response variables are always the time-series of 5-minute observations of the six aggre-
gated order book variables (initiator net volume, return, trading volume, bid-ask spread, depth
and ILLIQ) for each of the four ETFs (which track S&P 500, Junk Bonds, Corporate Bonds,
and Government Bonds).

To characterize responses, we estimate IRFs based on Equation (16). To compute confi-
dence intervals, we rely on the standard errors of ;;i (u., h,d) and El\'r,- (u., h,d) in Equation (18).
When lagging variables, we only include observations from the same trading day such that we
exclude overnight effects from the analysis.

We always report the estimated cumulative impulse response functions for initiator net vol-
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ume (in million USD) and return (in basis points). We report impulse response functions for
trading volume and depth (all in million USD), bid-ask spreads (in basis points) and the Ami-
hud (ILLIQ) measure.

4.1 Responses to a VIX shock

Figure 3 illustrates the estimated instantaneous (0 minute), 20 minute, 40 minute and 60 minute
responses to a positive shock in implied variance (IV) changes.” The estimated IRFs therefore
reflect how a risk shock, materialized as a sudden VIX increase, ripples through financial mar-

kets at different frequencies. Our main insights as follows:

Strong initiated sell-side volume for risky assets. Investors initiate net selling of the S&P 500,
Junk Bonds and Corporate Bonds as a response to an IV shock. Within the first 5 minutes after
the IV shock, net selling of S&P 500 worth more than USD 3 million shock hits the market.
While the sell-off of the risky assets starts as soon as the /V shock hits, negative cumulative
net initiated increases within the hour by almost 40%. Asset prices react, even substantially
faster than initiated selling to the predictable portfolio re-balancing triggered by the IV shock.
The second row of Figure 3 indicates that the immediate price impact of the initiated selling
in the S&P 500 is about six basis points. The effects are economically meaningful: The in-
stantaneous initiated sell side volume in the S&P 500 corresponds to a negative 0.25 standard
deviation response. Prices of Junk Bonds and Government Bonds also decline, consistent with
the initiated selling of risky asset. The negative return response for the S&P 500 is larger than
0.6 standard deviations. The response functions indicate that the immediate response to the
unpredictable shock in IV is stronger than the long-run responses. This finding is in line with
market makers anticipating the predictable orderflow and thus reflect a liquidity premium for
immediate responses to a sudden IV shock (e.g., Capponi et al., 2021). More specifically, the
return effect of the shock declines by about 20% in the subsequent hour. The effect is present

only to a limited extent for Junk and Corporate Bonds.

Flight to safe government bonds. The IV shock triggers net initiated buying of safe gov-
ernment bonds. We interpret the response as a re-allocation from risky assets to government

bonds in the sense of a flight to safety. The initiated net buying of government bonds amplifies

"We do not report the response of (cumulative) IV changes in the main figures. IV shocks are persistent, in
the sense that a one standard deviation /V shift triggers a further 8% increase during the next 20 minutes and then
slowly decays again.
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as the IV shock triggers continued buying of government bonds within the hour. Prices for
Government Bonds instantaneously increase by 1.2 basis points and reflect the sudden demand

shock and increase.

Liquidity remains stable after IV shock. Liquidity responses to an /V shock are of minor
economic magnitudes. Rows three to six of Figure 3 illustrate the responses in terms of bid-ask
spread, depth and ILLIQ to a sudden /V shock. While trading volume across all asset classes
increases significantly, both instantaneously and within the hour, bid-ask spreads, order book
depth and the ILLIQ measure responses are of minor economic magnitudes. The instantaneous
responses indicate that the bid-ask spread increases slightly for S&P 500 in response to an
IV shock but remain unchanged or even narrow slightly for the remaining assets. Order book
depth decreases across all asset classes. Surprisingly, we find that illiquidity for the S&P 500
decreases in response to an IV shock, while it increases for Corporate Bonds and remains
constant for Government Bonds and Junk Bonds. Within the hour, order book depth drops
across all assets that exhibit initiated net selling and bid-ask spreads widen.

Our IRFs thus reveal that investors fly to safety in times of elevated risk. An IV shock trig-
gers fast net selling of risky assets and simultaneous initiated net buying of government bonds.
The responses reveal that such portfolio re-allocation at the high-frequency level does not to
trigger liquidity spirals immediately as a response. Liquidity provisioning remains largely un-

changed and thus absorbs the demand for fast re-allocation.

4.2 Delineating the VIX impulse responses

As outlined in Section 2.2, a shock of IV indicates an increase in volatility under the risk-
neutral measure but does not reveal whether heightened future cash flow risk or an increase
in the variance risk premium causes the change. We use our intraday decomposition of the
implied variance from Equation (6) as the sum of expected realized volatility (ERV, related to

cash flow risks) and the variance risk premium (VRP, related to risk aversion)
IV, = E,-(RV?’) + VRP,, (19)

and shock the two components individually.
For that purpose, we include the 24 time series from our limit order book sample together
with changes in E,T (RVI(,ZTZ) ) and changes in V/Iﬁ’m into our IRF estimations. As in Section 4.1,

we compute the responses of the limit order book variables. Figure 4 illustrates the responses
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to the individual shocks. The shock sizes are always a positive standard deviation, which
corresponds either to an increase in the variance risk premium (VRP) or the expected realized
variance (ERV). To make the responses comparable, we include the purple bar (IV) which
corresponds to the responses based on imposing a positive shock on /V already presented in

Figure 3.

4.2.1 Responses to an VRP shock

The responses to an VRP shock are unsurprising and mirror the response to a VIX shock. Thus,
a variance-risk premium increase triggers a flight to safety on largely unchanged liquidity: In
a response to a VRP shock, markets respond with net selling of the S&P 500, Corporate Bonds
and Junk Bonds and simultaneously net buying of government bonds. Prices adjust in line
with net initiated trading direction: As a response to VRP shock, equity market valuation drops
by about 4 basis points (0.6 standard deviations) and government bonds appreciate by about 1
basis point (0.2 standard deviations) in value.

Liquidity remains largely unchanged and is in line with the responses to an /V shock. Depth

slightly deteriorates across all asset classes and spreads widen but only at small magnitudes.

4.2.2 Responses to an ERV shock

Initiated buying of equity. A shock in the ERV triggers positive initiator net volume for
S&P 500. Thus, after the expected realized variance increases, liquidity demanders start buying
of the risky assets. Such buying is in stark contrast to the flight to safety dynamics in response
to an VRP shock: Liquidity demanders seem to become net buyers of risky assets after the
ERV shock arrives. The responses indicate initiated net selling of Junk Bonds and less clear

responses in Corporate Bonds.

Liquidity deteriorates. In response to an ERV shock, ILLIQ increases substantially, which
suggests higher price impact on volume. Thus, trading becomes more expensive and markets
more fragile. Trading volume, depth and bid-ask spread responses also react mainly to ERV
shocks. Figure 4 indicates that spreads increase for all asset classes within the first 5 minutes
after an ERV shock. Thus, the slight decrease in bid-ask spread after an /V shock can be fully
attributed to the responses after a VRP shock. In contrast, a textERV shock seems to impact
liquidity providers such that liquidity deteriorates. Similarly, depth declines substantially for
all asset classes after an ERV shock, strongly exceeding the liquidity adjustment in response to
an VRP shock.
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4.2.3 Cirisis periods

Figure A2 in the Appendix provides a comparison of the (instantaneous) standardized response
coeflicients based on different sample periods: We impose a positive one standard deviation
shock on IV changes during the Global Financial Crisis (GFC) (September 1st, 2008 until
September 1st, 2009), COVID-19 (February 15th, 2020 until February 15th, 2021) and the
period in between (September 2nd, 2009 until February 14th, 2020). Similarly, we compute
the responses to shocks in the VRP or the ERV, respectively. The ILLIQ measure decreases
after an ERV shock. The response is particularly pronounced during the two crisis periods in
our sample. We do find close to zero but negative instantaneous initiated net volume except for
the Global Financial Crisis. This finding is in contrast to the surprising finding of net buying
of the risky asset after an ERV shock. While such net selling is not an equilibrium result of
our model we nevertheless attribute the large difference between the responses to a VRP and an
ERV shock.

4.3 Institutional client response to a VIX shock

In order to shed light on the channels which drive the initiator net volume dynamics, we exploit
institutional transaction data to compute explicitly responses in signed volume which is caused
by orders of institutional clients. For that purpose, we retrieve all available client transactions
from data provider Abel Noser for the period from January 2009 until April 2013 which trade
one of the four ETFs in our sample. The Abel Noser sample is a proprietary dataset of in-
stitutional trading transactions and provides specific client trading execution which includes
the side, execution price, the number of shares traded, intraday timestamps marking the order
placement (when the institutional trader places the order with an external broker) and order
execution.®

We retrieve the Abel Noser client transaction data and compute a measure for client net
volume for each trading day and 5-minute interval for each of the tickers. We provide details
for the construction of the measure in the Appendix. Client net volume measures the executed
net initiated volume from institutional clients in million USD. We thus merge the order book
and the client net volume data to estimate the responses of institutional client net volume to an
1V shock as well as a shock in VRP and ERV. To that end, we re-estimate the coeflicients of
the impulse response function based on the entire available sample period (January 2009 until
April 2013 for Abel Noser data) which include the 24 order book variables from Section 4 and

8For a detailed description of the Abel Noser dataset, consult Hu et al. (2018).
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the 5-minute time series of initiated net volume.

In the same spirit as in Section 4, we impose a shock of one positive standard deviation in
changes of either IV, or ERV, . or VRP, ;. Figure A3 in the Appendix illustrates the resulting
response coefficients. The responses of client net volume largely mirror initiator net volume
and thus reinforce our findings regarding the general dynamics. Specifically, we find that in-
stitutional trading responds to an IV shock with initiated selling of equity at large magnitudes
as well. The flight to safety can be entirely attributed to a shock in VRP. Further, institutional

client net volume turns positive after an ERV shock.

5 A model to disentangle the responses

Our empirical results provide evidence relating a VIX impulse to flight to safety and to market
fragility, but these are due to separate channels. Increases in risk aversion as measured by a
VRP impulse trigger active re-allocation from equities to government bonds, without market
liquidity becoming impaired. Changes in cash-flow risk as measured by an ERV impulse, do
not trigger a flight-to-safety, but do seem to impair market liquidity, at least contemporaneous.
The surprising finding is that active buying of equities accompanies this market fragility.
Inspired by Grossman and Stiglitz (1980), Vayanos and Wang (2012) propose a simple,
unified model to study how a variety of frictions affect asset returns and market liquidity. We
extend their model along two dimensions: i) we include risk aversion shocks by letting some
agents experience an increase in their coefficient of absolute risk aversion (“VRP channel”), and
i1) we model a market with elevated cash-flow risks (“ERV channel”’). We compare the extended
set of equilibrium results to rationalize our findings on how risk aversion shocks or cash flow
risk shocks affect prices due to initiator net volume and liquidity in form of price impact.
We present the baseline model of Vayanos and Wang (2012) succinctly before introducing the

model extensions.

5.1 Baseline model

The model features three periods indexed by ¢ € {0, 1, 2}. The market consists of a riskless and
a risky asset. The riskless asset is in supply of B shares and pays one unit of consumption in
Period 2. The risky asset is in supply of  shares and pays D ~ N(D, 0%) units of consumption
in Period 2. Using the riskless asset as numéraire, let S, be the risky asset’s price in Period r.
By definition, S, = D.
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There is a measure one of risk averse agents with exponential utility function, who derive

utility from consumption C in Period 2:
U(C) = —exp (-a(), (20)

where a > 0 is the coefficient of absolute risk aversion. Agents are identical in Period 0 and
endowed with identical supply of the assets.

We generate trade as follows: Just before Period 1, a fraction r of the agents learns that they
will receive an endowment z(D — D) of the consumption good in Period 2, with z ~ N(0, 0'?),
where z is independent of D. Since this endowment shock is perfectly correlated with D, the
endowment creates hedging demand for the shocked agents in Period 1. For z > 0, for example,
the agents can hedge this risk by selling the risky asset. These agents therefore initiate trades
in Period 1 and are considered liquidity demanders. The remaining agents accommodate these

trades and are considered liquidity suppliers.

5.2 Model extensions: Risk shocks

We add a risk aversion shock to the baseline model by letting the fraction 7 of agents that
receive the endowment shock simultaneously experience an increase of their risk aversion to
@’ > a. Even absent of an endowment, the sudden risk aversion shock triggers re-allocations,
which are absorbed by liquidity providers.

We model an increased cash flow risk for the (identical) agents in Period 0, where it is
common knowledge that liquidity demanders learn additional information in Period 1 when

observing a private signal:
s=D+e¢g, 20

where £ 1s normal with mean zero and variance oﬁ, and & is independent of D and z. Note that
we do not land in a no-trade theorem, since these agents also trade due to an endowment shock
(Milgrom and Stokey, 1982). To consider the case of a Period O risk cash flow risk increase

211

from the baseline model o to o’ > o2, we set:

2 1
g~
o= —, (22)
g -

Given the joint normality of (D, €) the posterior risk for liquidity demanders after observing the
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signal s in Period 1 becomes:

o2
o (D|s) = —=—0"? = o, (23)

o+ 02
which is the baseline model cash flow risk. The liquidity demander who received the signal in
Period 1 therefore experiences the same risk as the baseline model. The increased cash flow risk
is experienced by the uninformed liquidity suppliers in Period 1, and, therefore, by all agents
in Period O before they learn their type (i.e., liquidity demander or supplier). The uninformed
experience the additional cash-flow risk for the simple reason that they are uninformed. They
heard there is news. They understand others have access to the news. Ergo, in equilibrium,
they prefer to reduce their risky asset holdings. The informed have observed the news and,
therefore, bear less posterior risk. An alternative interpretation of the cash flow risk shock is
that the more precise the signal (lower signal variance &), the higher the relative information

asymmetry between liquidity demanders and providers.

5.3 Equilibrium quantities and comparative statics

To investigate how equilibrium responses depend on risk aversion shocks and cash flow risk
shocks, we focus on initiator net volume, which we define as the signed volume of liquidity
demanders in Period 1 and the price impact of the liquidity demanders’ trades in Period 1. We
refer to price impact as A, the coefficient of a regression of the price change between Periods
0 and 1 on the signed volume of liquidity demanders in Period 1. Intuitively, when A is large,
trades have large price impact, and we consider the market illiquid. Proposition 1 characterizes
the relevant equilibrium quantities for the baseline model and the two distinct model extensions

with cash flow risk and risk aversion shocks, respectively.

Proposition 1. (Equilibrium quantities). The equilibrium quantities for the baseline model,
the model with a risk aversion shock, and the model with a cash flow risk shock are summarized
below. The equilibrium quantities in the risk aversion-shock case are denoted by a prime, and

the ones in the cash flow-risk case are denoted by a double prime. The initiator net volume
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results are:

v=—-n(l-mz

V’ZV—T[(l—g)(ﬂ'Z'*'é),

al
7 (1 _b) 0-”25 (ﬁs _b) — bC
vi=n = + 7 02 (s—D)—nl—EZ
where o > @ := 1 > @ and

(I-mi+nt

_ 70 (DIS ) Bs + (1 = m) 0P

702 (D|S)) + (1 —n) o?
2

c=ao;
0_2
ﬁs == 1272
0_//2
Be =

b
0" + 02 + c?0?

o (DIS ) = B¢ ((Tﬁ + czaf) .

The equilibrium price impacts are given by

1220
C1-n
, ao?
o 1—7r+7r( —;—’)
v - o (DIS))
Tn (-5

We provide all proofs in the Appendix.

(24)

(25)

(26)

(27)
(28)

(29)

(30)

€1y

(32)

(33)

(34)

We derive our main empirical predictions based on the equilibrium quantities in Proposition 1

for initiator net volume and the price impact measure. Note that the expected interim liquidity

shock equals to z = E(z) = 0 and, for the cash flow risk model, the interim signal is s = E(s) =

D.

In expectation, trading decisions therefore do not reflect hedging needs due to endowment

or information asymmetries, but only rely on either a change in the risk aversion for liquidity

demanders or to a cash flow risk shock for liquidity providers.

Corollary 1. (Initiator net volume). The expected equilibrium quantities for initiator net vol-
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ume, defined as the signed volume of liquidity demanders are such that
EWV)<EW=0<E(") (35)

Note first, that the expected initiator net volume for the baseline model is zero, E (v) = O.
Intuitively, this reflects that only the endowment of liquidity demanders, which is centered
around zero, generates trading. In contrast, Corollary 1 shows that initiator net volume E (v')
is negative in response to a risk aversion shock: Upon realizing a shock in their preferences,
liquidity demanders re-allocate their portfolio and dispose of the risky asset. The re-allocation
results in initiated net selling of the risky asset and net buying of the numéraire (safe asset). In
other words: After a risk aversion shock, liquidity demanders are net sellers of the risky asset
(and they pay an additional liquidity premium to incentivize liquidity providers for holding
more units of the risky asset).

For the cash flow risk shock, receiving the signal triggers net initiated buying of the risky
asset. Upon receiving the signal, liquidity demanders experience a reduced uncertainty with
respect to future cash flow risks relative to liquidity providers. As a result, liquidity demanders
re-allocate their portfolio by increasing their holdings of the risky asset. Liquidity providers
learn that their uncertainty with respect to D did not get resolved and are willing to dispose of

the asset.

Corollary 2. (Price impacts). The equilibrium quantities for price impact are such that
0<Aa=2 <" (36)

Price impact is positive for each model, such that return responses reflect the direction of ini-
tiated net volume. Corollary 2 illustrates for the risk aversion shock, that, irrespective of the
choice of ', the price impact A" remains the same as for the benchmark model, A. Thus, risk
aversion shocks do not imply that trades have larger price impact. For cash flow risk shocks,
on the other side, initiator net volume moves prices more relative to the benchmark case with-
out any information asymmetries. Thus, although liquidity providers learn about the signal
from observed order flow, their information is less precise as that of the liquidity demanders.
Therefore, liquidity providers require a higher compensation relative to the benchmark model.

To conclude, the theoretical framework provides the following main insights, in line with

our empirical findings:

1. Risk aversion shocks trigger net selling of the risky asset and simultaneously net buying

of government bonds as a response to re-allocations triggered by the shift in preferences.
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Liquidity remains largely unaffected.

2. Cash flow shocks generate positive initiator net volume because they resemble a relative

increase in risk for liquidity providers that did not receive a signal.

3. Price impact increases in response to cash flow risk shocks.

6 Conclusion

We set out to study the connection between flight-to-liquidity and market fragility. Our key
contribution over a mature literature in both areas, is to analyze their joint intraday dynamics.
We believe that any hope for unraveling their interrelationship requires a high-frequency anal-
ysis. Among the various approaches one could take, we picked one where a risk shock hits the
market: A surprise increase in VIX or, shorter, a VIX impulse. Is there a flight to liquidity?
Does market liquidity deteriorate?

The empirical analysis of 2007-2021 NASDAQ ETF trading yields some surprising results.
While we find that a plain-vanilla VIX impulse leads to active re-allocation from equities to
government bonds, there is no economically meaningful deterioration in liquidity. However,
if we decompose VIX impulses into those driven by risk-aversion increases and those driven
by cash-flow risk increases, then we do find a liquidity fragility result. The responses to risk-
aversion increases largely resemble those of overall VIX impulses. The responses to cash-flow
risk increases, however, are worse liquidity and net buying of equities (instead of net selling in
the risk-aversion case). For a sub-period for which we have institutional flow data, we confirm
this result of net buying after a cash-flow risk shock, but net selling after a risk-aversion shock.

We offer a way to understand our surprising finding by endowing a Grossman and Stiglitz
(1980) trading model with the two types of risk shocks: A risk-aversion shock or a shock in
cash-flow risk. Equilibrium trading replicates the unsurprising finding of flight-to-safety on a
risk aversion shock, but also generates net-buying of risky assets and impaired liquidity on a
cash-flow risk shock. The intuition for the latter result is that, in equilibrium, liquidity suppliers
are least informed of news driving cash-flow risk shocks, therefore bear higher posterior risk,
and thus prefer to hold relatively less of it. Liquidity demanders become the net buyers. The
increased information asymmetry between suppliers and demanders of liquidity that drives this
result is also the reason for worse liquidity. Liquidity suppliers experience larger adverse-
selection costs and thus equilibrium liquidity supply deteriorates. In a way, this result tells

us that if there is a cash-flow risk increase out there, then there are likely to be some who
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learn whether the news is good or bad for cash flows, and these are unlikely to be the liquidity
suppliers.

Our findings add both evidence and an understanding to the debate on how markets respond
to risk shocks and, relatedly, how to make them more resilient. We believe that more research
on high-frequency dynamics is warranted: Do retail investors respond the same way to the two
types of shocks as institutional investors? How do market makers respond? Do our findings
hold internationally? The current trend of mandatory disclosure of transactions to trade repos-
itories makes more data available. This “big data” build-up along with rapid development in
machine-learning techniques to unravel potential non-linearity, enables further study to deepen
our understanding of how markets respond to risk shocks. Such understanding we deem to be

of first-order importance, not only to academics, but also to industry participants and regulators.
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Ie

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total

Amihud Measure  0.07 (0.06) 0.08 (0.08) 0.12 (0.09) 0.11 (0.09) 0.12/(0.1) 0.11 (0.09) 0.12 (0.09) 0.13(0.11) 0.17 (0.15) 0.21(0.18) 0.16 (0.15) 0.17 (0.15) 0.15(0.12)  0.2(0.16) 0.14(0.12)  0.14(0.13)
Transaction size  2.14 (0.23) 148 (0.51) 1.06 (0.21) 1.12(0.18) 0.98 (0.2) 1.24 (0.17) 12(0.15) 1.14 (0.17) 0.98 (0.18) 0.92 (0.17) 1.17 (0.13) 0.82 (0.18) 0.77(0.13)  0.65(0.15)  0.76(0.12)  1.08(0.36)
Depth (Best Level)  3.46 (1.58) 233 (1.14) 2.13(0.71) 2.85(1.14) 1.93 (0.95) 2,69 (1.06) 2.49 (0.95) 241 (1.11) 129 (0.87) 0.85 (0.32) 1.1(0.42) 0.61 (0.33) 0.63(037)  035(0.19)  045(0.2) 171 (1.24)
Depth (50bp) 330.36 (126.27) 20475 (91.82) 149.01 (51.53) 23659 (7891)  125.04(55.99)  96.82(32.87)  112.52(52.48) 126.72(51.05) 50.97 (1495 3558(7.05)  4123(7.06)  31.02(7.8) 35.94(939) 2191(5.09) 21.23(3.62)  104.9 (94.03)

S Depth (5bp) 140.96 (55.09) 84.27 (46.25) 41.22(11.07) 69.15 (15.3) 49.97 (17.61) 50.89 (13.71)  70.41(30.83) 87.99(3331) 31.45(10.3)  19.96(5.04) 2834 (4.93) 2039 (649)  22.26(6) 1333(4.95)  1545(341) 4838 (37.54)

£ Depthimbalance  -0.05 (8.85) 0.28 (4.64) 0.15 2.91) 0.01 3.91) 025 (2.72) 0.07 (1.96) 0.29 (3.39) 0.01 3.67) 027352 -001(136)  0.17(2.02)  0.07(1.44) 0.02(1.86)  -0.08(1.22)  0.06(1.15  -0.02(3.27)

% Retumn -0.05 (10.53) -0.08 (20.97) 0.08 (13.66) 0.03 (9.15) -0.02 (10.75) 0.06 (6.33) 0.08 (5.58) 0(6.01) 0.03 (7.41) 0.06 (6.91) 0.05 (3.67) 20.09(931)  0.08(6.23) 0.01(1526) 0.07(8.68)  0.02(10.38)
Initiator net volume 046 (30.94) 246 (30.74) -0.65 (16.04) 0.08(13.17)  -0.49 (14.4) 0.04 (9.2) 0.16(7.26)  0.1(7.19) 035 (9.1) 0.17(553)  0.12(5.15) 0.2(8.14) 0.06(7.67) 021 (885  -02(699)  0.12(13.8)
Bid-ask Spread 0.8 (0.09) 1(0.25) 1.16 (0.19) 0.91 (0.06) 0.85 (0.1) 076 (0.04) 0.65 (0.04) 0.58 (0.04) 0.57 (0.05) 0.56 (0.06) 046 (0.04) 0.48 (0.15) 0.41(0.05)  0.5(0.16) 034(0.06)  0.68(0.25)
Trade ratio 0.01 (0) 0.01 (0) 0.02 (0) 0.01 (0) 0.01 (0.01) 0.01 (0) 0.01 (0) 0.01 (0) 0.01 (0) 0.01 (0) 0.01 (0) 0.02 (0.01) 0.01 (0) 0.01(0.01)  0.01(0) 0.01 (0.01)
Trading volume 130.05 (106.14) 172.77 (120.91) 88.22 (61.11) 68.71(58.93)  68.25(5479)  47.71(34.94) 3834(3225) 3596 (30.56) 34.87(29.7)  24.57(20.76) 18.89(15.67) 39.97(35.54) 32(27.73) 4691 (44.62) 48.77(39.33) 57.83 (67.15)
Amihud Measure  2305.56 (14446.31)  1370.56 (12876.92) 630.8 (10737.48) 156.89 (2238.3) 130.25 (1498.62) 25.18 (154.42) 17.37(185.35) 15.63 (217.82) 9.44 (228.44) 644 (125.83) 3.35(26.45)  2.57(25.28)  222(5626) 195(4.09)  2.13(24.08)  136.17 (4037.61)
Transaction size  0.21 (0.17) 031(0.2) 0.17 (0.05) 0.18 (0.05) 0.2 (0.05) 0.24 (0.06) 0.29 (0.06) 0.36 (0.09) 039 (0.09) 0.41 (0.08) 0.53(0.12) 0.62 (0.12) 0.85(02)  051(024)  055(0.09)  038(0.23)
Depth (Best Level) 0.1 (0.13) 0.29 (0.37) 0.08 (0.11) 0.08 (0.12) 0.11(0.1) 0.13 (0.1) 0.19 (0.12) 0.25 (0.16) 0.3 (0.18) 0.36 (0.14) 0.6 (0.25) 0.82(0.39) 239 (1.1) 135(1.08)  12(0.81) 0.53 (0.78)

.. Depth (50bp) 0.22(0.2) 1.87 (1.32) 0.61 (0.51) 1.29 (0.86) 2,01 (1.39) 261 (0.98) 3.43(0.88) 3.15(1.14) 337(1.39) 335(0.62) 579(1.3) 1144 (444)  2485(7.76) 1451(6.17) 13.1(529)  5.9(7.36)

T Depth (Sbp) 0.11 (0.14) 0.43 (0.47) 0.14 (0.16) 0.26 (0.34) 043 (0.37) 0.61 (0.31) 0.99 (0.41) 13(051) 1.43 (0.58) 154 (0.39) 252 (0.64) 3.57(1.19) 9.6(3.46)  476(3.08)  425(2.34)  2.08(2.85)

& Depthimbalance  -0.02 (0.14) 0.25 (0.45) -0.05 (0.16) -0.03 (03) 0.1(0.34) 20.02(026)  -0.01(0.38)  0.03(0.45) 0.01 (0.38) 0.01 (0.31) 0.06 (0.56) 0.03 (0.82) 0.33(1.95)  0.11(112)  027(1.11)  0.01(0.74)

€ Retm 0.1 (11.37) 0.01 (15.08) 0.07 (13.27) 0.03 (6.43) 0.05 (6.08) 0.02 (3.27) 0(3.04) 0.02(273) 001 (3.24) 0.09 (3.82) 0.01 (1.81) <001 (259  0.05(208) 001(7.38) 0251 0.02 (6.99)

= Initiator net volume 0 (0.03) 0.02 (0.16) 0.01 (0.16) 0(0.2) 0(0.23) 0.01 (0.26) -0.01(035)  -0.01(039)  0(0.6) 0(0.66) 0.01 (0.65) 0(0.85) 0.02(143)  0.02(1.53)  -0.02(126)  0(0.72)

Bid-ask Spread 77.83 (48.23) 32.12(35.01) 16.63 (16.49) 541 (4.99) 473 3.81) 2(1.28) 1.37 (0.47) 1.24(03) 1.25(0.32) 1.26 (0.14) 1.16 (0.06) 118 (0.04) L17(003)  129(038)  LI8(0.05  8.01(21.26)
Trade ratio 0.08 (0.22) 0.11 (0.23) 0.04 (0.05) 0.02 (0.02) 0.03 (0.03) 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0.02 (0.01) 0.01 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01(001)  0.01(001)  001(0.01)  0.03(0.07)
Trading volume 0(0.03) 0.04 (0.15) 0.1(0.18) 0.1(0.25) 0.15(0.3) 03 (0.39) 037 (0.57) 0.43(0.7) 0.8 (1.18) 115 (131) 0.89 (1.26) 125 (1.67) 1.84(244) 295296  2.16(238)  0.79(1.57)
Amihud Measure  843.5 (4746.57) 960 (9204.07) 142,37 (1266.37)  107.53 (785.24) 113.88 (1066.7)  43.54 (426.51) 64.56 (574.19) 77.79 (687.11) 68.08 (2132.8) 22.36(327.71) 10.68(139.55) 11.16 (241.98) 4.63 (114.2) 224(542)  2.02(321)  124.75(2533.65)
Transaction size  0.26 (0.14) 03 (0.16) 0.26 (0.08) 0.25 (0.09) 0.33 (0.13) 033 (0.1) 0.28 (0.08) 0.26 (0.08) 0.28 (0.07) 0.33 (0.07) 045 (0.11) 0.54 (0.13) 0.52(0.1)  044(0.13)  042(0.06)  035(0.14)

. Depth (Best Level)  0.31 (0.34) 0.23(0.27) 0.14(0.2) 0.1(0.14) 0.18 (0.36) 0.22 (0.36) 0.13 (0.25) 0.1(0.11) 0.1(0.09) 0.18 (0.11) 042 (0.17) 047 (0.17) 0.54(02) 041025  061(0.2) 0.26 (0.27)

2 Depth (50bp) 221 (0.87) 1.75 (1.06) 227 (1.4) 2.96 (1.88) 3372 3.25(1.89) 447 (3.1) 114 (0.5) 1.47 (0.7) 228 (0.93) 7.48 (2.01) 6.89 (2.23) 8.85(228) 9.55(487)  137(6.19) 436 (3.78)

& Depth (Sbp) 0.69 (0.53) 051 (0.44) 033 (037) 0.56 (0.52) 0.75 (0.8) 0.97 (0.82) 0.62 (0.43) 0.42 (0.26) 051 (0.34) 1.02 (0.42) 3(1.04) 2,61 (0.81) 357(0.99)  208(1.36)  3.03(0.72)  1.31(1.29)

2 Depthimbalance  -0.38 (0.58) 0.26 (0.47) 0.13(0.37) 0.02 (0.47) -0.13 (0.85) 0.1 (0.8) 0.04 (0.41) 0(0.19) 0(0.14) 001025  -0.07(0.85  0(051) 0.04(0.61)  -0.04(0.52)  -0.05(0.58)  -0.06 (0.55)

S Retumn 0,01 (5.25) 0.09 (13.77) 0.06 (7.82) 0.01 351 0.06 (3.91) 0(2.62) -0.01(2.98)  0.02(2.5) 0.01 3.11) 0.03 (2.72) 0.04 (1.93) 20.03(199)  003(227)  -001(698) 0.063.13) 001 (537)

£ Tnitiator net volume 0,01 (0.09) 0.04 (031) 0.01 (0.29) 0.01(0.23) 0.01 (0.52) 0.01 (0.44) -0.02 (0.4) 20.01(022)  0(031) 0.01 (0.32) 20.01(048)  0(0.62) 0(0.66) 0.02(0.88)  0.05(0.92)  0(0.48)

“ Bid-ask Spread 18.45 (11.67) 20.24 (19.25) 9.47(9.7) 321(3.07) 3.81(2.62) 223 (1.25) 2,66 (1.81) 226 (1.47) 1.66 (1.28) 1.03 (0.86) 0.86 (0.1) 0.9 (0.13) 0.85(007)  1.07(1.24)  079(0.07)  435(8.63)
Trade ratio 0.02 (0.06) 0.02 (0.04) 0.02 (0.03) 0.02 (0.02) 0.01 (0.01) 0.02 (0.02) 0.02 (0.03) 0.02 (0.02) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01(001)  0.02(001)  001(0.01)  0.02(0.02)
Trading volume 0.03 (0.09) 0.11 (0.35) 0.18 (0.38) 0.14 (0.33) 0.25 (0.65) 027 (0.56) 0.25 (0.55) 0.16 (0.31) 0.27 (0.47) 0.44 (0.65) 055 (0.85) 0.82(1.16) LI3(1.53)  1.99(1.92)  174(1.73)  0.51(1.04)
Amihud Measure ~ 50.09 (547.08) 61.48 (1521.52) 20.87 (152.52)  7.31(32.68) 274 (5.1) 7.02(346.01)  4.32(7.85) 3.83 (5.45) 3.36 (4.37) 4.36 (6.77) 265 (3.31) 25(3.22) 213 (241)  1.82(1.92)  1.53(1.59)  10.86 (435.1)
Transaction size  0.48 (0.14) 039 (0.12) 0.25 (0.04) 0.29 (0.04) 0.32 (0.04) 035 (0.06) 0.43 (0.06) 0.36 (0.05) 0.29 (0.04) 0.34 (0.07) 043 (0.07) 0.51(0.07) 0.44(0.09  035(0.05 038005  037(0.1)

2 Depth (Best Level)  0.37 (0.3) 031(0.3) 0.23 (0.14) 0.61(03) 0.55 (0.33) 0.24(0.1) 0.38 (0.15) 0.36 (0.13) 0.29 (0.13) 0.26 (0.1) 037 (0.26) 0.44 (0.22) 045(023)  025(057)  0.4(0.2) 0.37 (0.28)

£ Depth (50bp) 6.13(1.75) 10.5 (6.22) 7.83 (2.78) 19.88 (11.66) 1759 (10) 6.63 (2.52) 12.85 (4.5) 12.84(3.2) 11.99(2.56)  12.15(428)  1623(583)  1672(6.04)  1226(4.7)  827(3.03)  14.66(3.66) 12.55(6.95)

% Depth (5bp) 2.87 (1.12) 2.4 (1.56) 2,13 (1.06) 9.85 (5.45) 9.73 (5.65) 3.18 (1.09) 6.89 (2.1) 7.09 (1.67) 6.31 (1.49) 537(1.5) 6.46 (1.51) 6.53 (1.43) 5742190 379(175)  647(1.57)  572(3.5)

é Depth imbalance ~ 0.03 (1.55) 0.04 (1.62) 0.07 (0.54) 0.15 (1.05) 0.03 (0.54) 0.02 (0.59) 0.08 (1) 20.07(098)  -0.04(0.55)  0.02(0.56) 0.04 (1.09) 0.05 (1.01) 20.02(047)  0.01 (0.8) 0.01(0.54)  0.03(0.92)

£ Retun 0.08 (5.53) -0.03 (8.98) -0.04 (10.13) 20.01 (7.57) 0.18 (8.93) 20.05(6.67)  -0.07(6.05  0.05(5.26) 0.04 (681)  0(6.14) 0.07 (4.66) 0.02(473)  0.01(524)  -0.06 (1045 0.06(6.89)  0.01 (7.24)

2 Initiator net volume ~ 0.02 (0.61) 0(0.79) 0.02 (0.57) 20.01(0.73) 0(0.97) 0.01 (0.67) 0.01 (0.76) 0.01 (0.6) 0.03 (0.72) 0.02 (0.69) 0.01 (1.05) 001 (1.05)  0(0.86) 0.01(127)  0.06(1.5) 0.01 (0.85)

G Bid-ask Spread 1.82 (0.54) 3.48 (2.98) 221 (1.04) 1.19 (0.33) 1.34 (0.59) 1.35 (0.38) 1.28 (0.54) 0.98(0.2) 0.97 (0.27) 0.97 (0.14) 0.9 (0.09) 0.9 (0.07) 0.87(0.09)  1.02(093)  0.78(0.09)  135(1.17)
Trade ratio 0.01 (0.01) 0.01 (0.01) 0.01 (0) 0(0) 0.01 (0) 0.01 (0) 0.01 (0) 0.01 (0) 0.01 (0) 0.01 (0) 0.01 (0) 0.01 (0) 0.01(0.01)  0.01(0.01)  0.01(0) 0.01 (0.01)
Trading volume 0.5 (0.98) 0.77 (1.24) 0.92 (1.31) 1.95 (2.89) 3.84 (4.94) 256 (3.39) 1.83 (2.17) 1.63 (1.93) 225 (1.96) 1.62 (1.68) 2,06 (2.35) 229 (2.78) 269(3.19)  409(5.15)  445@9D)  217(3.0)
VIX change 0.13 (62.21) -0.53 (54.16) 0.6 (37.98) 0.64 (49.41) 025 (53.79) 016 (47.27)  -024(40.13)  0.17(61.83)  -0.55(69.47) -0.73(58.48) -0.42(61.89) 0.37(91.15)  -1.44(63.77) -0.33(78.28) -0.99 (86.35) -0.38(61.27)

Table AI: Sample summary statistics. The values denote the sample means, values in brackets are the corresponding standard deviations. Transaction size is the average transaction size during
each 5-minute window for each ticker in 100 thousand USD. We compute transaction sizes as the number of shares multiplied by the share price. Market orders that affect multiple levels of the
order book are reported as individual messages with identical timestamp by NASDAQ, but are aggregated before computing the transaction sizes. Depth denotes the aggregate available number of
shares within the best level, 5 or 50 basis points from the current best price (in million USD). Depth Imbalance is the net of buy limit orders and sell limit orders in the order book, 50 basis points
around the best price of each side (in million USD) Return denotes the 5-minute log returns in basis points. Initiator net volume corresponds to the average aggregate initiator net volume during
each 5-minute interval in million USD. We compute the aggregate number of shares multiplied by one if the transaction corresponds to an execution above the current midquote and minus one if
the transaction executes at a price lower than the current midquote. bid-ask spread is the time-weighted average bid-ask spread in basis points. Trade ratio is the ratio of trade executions relative
to the number of all messages. Trading volume is the executed transaction volume during each 5-minute window (in million USD). Amihud (ILLIQ) measure is computed by dividing the absolute
value of 5 minute log returns (in basis points) by trading volume (in million USD). To make the values comparable, we always multiply the aggregate number of traded shares with the rolling
12-month average midquote computed for each ticker. The tickers denote the major ETFs tracking corporate bonds (LQD), S&P 500 (SPY), Junk Bonds (HYG) and government bonds (TLT). VIX
change denotes the 5S-minute log change of the VIX (CBOE Volatility Index) in basis points.



#0rders Volume (mean) Volume (median) Volume (95%) Duration (mean) Duration (25%) Duration (median) Duration (75%) Duration (95%)

Junk Bonds 8816 0.213 0.010 0.237 13.816 5 5 5 35
Corporate Bonds 9569 0.176 0.016 0.311 27.507 5 5 5 205
S&P 500 75619 1.235 0.034 5.485 11.518 5 5 5 25
Government Bonds 3708 0.647 0.012 2.409 48.863 5 5 30 275

Table AIl: Summary statistics for the Abel Noser transaction message data. We restrict the sample to transactions with reported placement
and last trade timestamps within regular NASDAQ trading hours. # Orders is the total number of transactions within the sample. Volume is
the total transaction size in million USD (computed as total traded shares multiplied with average transaction price per share). Duration is in
minutes and denotes the reported duration of the transaction from placement date until last trade date.
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Figure A1: Panel 1 shows the estimated regression coefficient of the predictive regression

log (RV}YZTZ)) = c; + B log (th(i)z,o + RV,,T) + vy log (RV;:‘Z.’O + RV,,T) + 6, log (RV,,T) + &r. The x-axis denotes the 5-minute intervals during
the day, and the error bars correspond to 95% confidence intervals. The red dotted line indicates the regression coefficients when assuming
that ¢, 8, y and 6 are constant across timestamp 7. The second panel illustrates the adjusted R? of two different predictive regression models
for the future realized variance. Benchmark corresponds to our main specification that predicts future realized variance. The restricted model

omits RV 1 in the regression and thus only incorporates information from past trading days.

32



cum. Init. Net Vol. (S&P 500)

cum. Init. Net Vol. (Junk Bonds) cum. Init. Net Vol. (Corp Bonds) cum. Init. Net Vol. (Gov. Bonds)

[m]
n
2
S
i cum. Returns (Corp. Bonds)
.......................... 0-wers ——
g N A | ) 0o -
s -2 ~« I
-10 -3
-15 -4 2
Trading Volume (S&P 500) Trading Volume (Junk Bonds) Trading Volume (Corp. Bonds) 5
15 §
8 10 g'f 0.10 02
=) 0 ... ... 0.0 e ... 0.05 0.1
= 0 " o | 0,00+ sapg -+ = e B .{.1_ .......
Spread (S&P 500) 08 Spread (Junk Bonds) o Spread (Gov. Bonds)
0.004 04 0.0 - 005
& oo S - - 83 0,00 S
e mal g 08 35 B |
[a) Depth (S&P 500) Depth (Junk Bonds) Depth (Corp. Bonds) Depth (Gov. Bonds)
17} 0.05 0.00 -+ o RS Sy . 0.01
2 0w B ST o S % ____ 000 ﬁ =~ _H.. .......
g % 0.02 0005 -0.01
Amihud (S&P 500) Amihud (Junk Bonds) Amihud (Corp. Bonds) Amihud (Gov. Bonds)
o oo 39 400 40
2 o0 00 - 200 2
= 00— 4 o I . 0o _I* .................................
= - 7200 e -20
GFC BetweenCOVID-19 GFC BetweenCOVID-19 GFC BetweenCOVID-19 GFC BetweenCOVID-19
HvBve ERV

Figure A2: Estimated impulse response functions for the three different measures of risk, /V are the standardized implied variance changes,
ERYV is the standardized change in expected realized volatility and VRP is the standardized change in the variance risk premium, measured as
\7130,,, =1V, - Em (RV;ZTQ)). We always impose a positive shock of size one standard deviation. Returns and initiator net volume responses
denote cumulative responses, whereas for trading volume, depth and bid-ask spread we report impulse responses. We report Return bid-ask
spread and ILLIQ responses in basis points, and denote the remaining variables in million USD. We only report instantaneous responses. The
sample periods correspond to the Global Financial Crisis (GFC) (September 1st, 2008 until September 1st, 2009), COVID-19 (February 15th,

2020 until February 15th, 2021) and the period in between (September 2nd, 2009 until February 14th, 2020).
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Figure A3: Estimated impulse response functions based on the entire sample period where Abel Noser data is available. We shock changes
in IV, +, ERV; and VRP; . by one standard deviation. Initiator net volume, client net volume and Return responses denote cumulative values,
trading volume, depth, bid-ask spread and ILLIQ are the standard impulse responses. We report Return and bid-ask spread responses in basis
points and denote all remaining variables in million USD. Horizon denotes the instantaneous (0 minute), 20 minute, 40 minute and 60 minute
responses. The error bars illustrate 95% confidence intervals.
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I Proofs and Lemmas

Proof. (Equations (17) and (18)) Under the assumption that ﬁ?(h) and £, are asymptotically
independent, Equation (17) follows directly from Appendix A in Pesaran and Shin (1998). In
fact, Equation (17) is a special case of (A.15) in Pesaran and Shin (1998) if only estimates of
PBi(h) = D e; (estimated through local projections) and their asymptotic covariances AV[ﬁ?(h)]
are available. The asymptotic independence of ﬁ?(h) and £, is implied by the assumption of
multivariate normality of the VAR errors u, and the interpretation of B?(h) and £, as corre-
sponding maximum likelihood estimators. From (17) we straightforwardly obtain the standard
errors in (18) by correspondingly inserting the estimates f??(h) and £,.

The computation of the asymptotic variance of Ei\ri(uf, h,d) = ?:1 ﬁi( j)'d is simplified by
noting that

Cov (Bi(h). Bih + ))) = E ((Bi(h) = B(A. 1) (Bih + )) - BiA h + ))))

= E(uul)E (i £ty i fsu;]

N

T-h s—h
= E(uu,)E (Z gt Y EE (W ), )] = 0.

Consequently, we have AV[Z?:1 Bf( Nl = Z?:l AV[B?( J]. Accordingly, the asymptotic vari-
ance of ch?’i(uT, h,d) = Z?:o ﬁ,-( J)'d follows from Equation (17), with ﬁf(h) replaced by Zzzl ﬁf(h),
ir;(u., h, d) replaced by cir;(u., h,d) and AV[ﬁ;‘(h)] replaced by ZZ:1 AV[ﬁj’(h)]. O

Proof. (Proposition 1) For ease of exposition, we derive the equilibrium quantities provided in
Proposition 1 individually within the Lemmas below: Lemma 1 summaries price impact and
net initiator volume for the baseline model, Lemma 2 derives the equivalent quantities for the
risk aversion shock model and Lemma 3 concludes with the equilibrium quantities from the

cash flow risk model. O

Proof. (Corollary 1) Follows directly from Proposition 1, Equations (24) - (26). Setting z = 0
and s = Dwe getv=0,v = (1 - £)8 < 0and v = 72 1t holds that (1 - b) > 0
because 0 < B, < 1 and 0 < B, < 1 by definition for "> such that 0 < b < 1. O

Proof. (Corollary 2) Follows from Proposition 1, Equations (32) - (34). First, 4 > 0 form < 1
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is trivial. Then, note that

, aoc? aoc? o? ac?
/l = 2 = 1 5 = 1 - = 1 ~ = /l (1)

1—7r+7r(1—;) Ny 3Ty %
where in the second-to-last term we made use of @ := m The final statement, 1 < 1",
resembles the statement in Proposition 3.4 in Vayanos and Waflg (2012). O

For ease of exposition, we start by presenting the equilibrium quantities of the baseline
model as of see Section 2 of (Vayanos and Wang, 2012) (henceforth abbreviated to VW12).
We always denote liquidity demanders with subscript d and liquidity suppliers with subscript

S.

Lemma 1. (Baseline model) Equilibrium quantities of the baseline model are

yv=—-n(l-rm)z
2

ao
A=

1-n

Proof. (Lemma 1) VW12 provide all proofs. Specifically, the following quantities are of rele-
vance:

Agents’ demand functions for the risky asset in Period 1 are 6¢ = D =1 and ¢ = D—_521 -z
1 ao 1 ao

where market clearing implies that the period 1 equilibrium price is S| = D — ac? (9 + JTZ).

Total initiator net volume as of VW12, Equation (2.15) is:

v:j‘((D_Sl—Z—é):—ﬂ(l—ﬂ')Z. (2)

ao?
The price in Period 0 which includes the equilibrium discount for anticipated illiquidity is:

_ _ _ _ M _
So=So(8,a,0%7.D,0%) = D~ ac?d - 1_7;—+7TMA10, 3)
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where

_ 1 + Agr?
M = exp (%Q’A292) gﬂ , 4)
1+Ag(1-m)° —a?c?%0?
Ao = a*o?o?, (5)
ao? Aot
A= > : (6)
1+Ag(1-m)" —a?0?%0?

2

A
Ay = il (7)

1+Ag(1 - 7)* - @200

The price impact of the total initiator net volume is:

_ Cov(S; =S, _ COV(CL’O'ZJTZ,JT(l —7T)Z) _ ao?

A =
Var (v) o2n* (1 - n)? l-nm

(8)

O

Lemma 2. (Risk aversion shock) Equilibrium quantities of the model with a risk aversion shock

are

v'=v—ﬂ(1—§)(ﬂz+é),

Proof. (Lemma 2) A risk aversion shock is added to the baseline model by letting the fraction
m of agents experiences a change of risk aversion from « to @’. The optimal holding of these
agents after experiencing the shock becomes (VW 12, Equation 2.4b):

dr D B S’l
91 = W -3, (9)
where a prime is added to equilibrium quantities that change. The holdings for the liquidity
providers remain like in the baseline model (WV12, Eq. 2.4a):
D-5;

ao?

o) = (10)
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Market clearing requires that demand equals supply such that

6" + (1 -n) 6 = 6. (11)
Plugging in delivers the Period 1 price:

St =D-ac®(0+nz), (12)

where
1

= (13)
(1-mi+nd

Note that the inverse of the economy’s risk aversion coefficient in Period 1, 1/@, is the weighted

average of the inverted risk aversion coefficients of the two types of agents.

Total initiator net volume becomes

’ ﬂ(@f’—é):ﬂ(D_Si —Z—é)

Y= a’'o?
:ﬂ(g(é+ﬂz)—z—é) :ﬂ((g - 1)(9+7rz))—7rz(1 — )
:v—n(l—i)(nwé). (14)
@

Notice how for a sudden risk aversion shock, @’ > a, initiator net volume becomes negative
even in the absence of an endowment shock, and it becomes more sensitive to endowment
shocks. If one sets the interim liquidity shock to its expectation, z = 0, initiator net volume in
the baseline model becomes zero but turns negative for @’ > «. In other words: After a risk
aversion shock, liquidity demanders are net sellers of the risky asset, and they pay an additional
liquidity premium of size (@’ — &) 0?6 > 0 to incentivize liquidity providers for holding more

units of the risky asset.
Expected utility liquidity supplier. To extract the Period O price we follow the same steps

as VW12 and update their equations as follows. First, note that W; = W, + 6, (S; - 56) =
Wo + 6y (D -S (’)) — ao?, (9 + nz). The expected utility of the liquidity supplier in Period 1
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becomes (VW 12, Equation 2.8):

= —E (exp (—a [W; + 6 (D - S)]) (15)
= —exp (—a W + 6y (D - SQ) — %cw'z (Hf/)z]) (16)
= —exp (—a [Wo + 6, (D - SE)) — a6, (é + 7TZ) + %%0'2 (é + ﬂZ)z]) . (17)

With the help of VW12 Lemma A.1, we compute the expected utility of a liquidity supplier
before observing z (VW12, Equation A.2). The updated variables to be used when applying

Lemma A.1 are (only changed variables are mentioned):

A=Wy +6,(D - S) - ac0ed + L0 P, (18)
B = O'Zﬂ(%é - c’y@o) , (19)
C' = %20'27T2. (20)

The expected utility of a liquidity supplier becomes:

1
U" = —exp (—aF”) , 21
JLt @i
where )
B _ o otoin? (26 - ad
F" = Wo+ (D - Sp) - ac’60f + 10?0 — a— (5 ) (22)

2 (1 + c‘xzazo'gﬂz)

Expected utility liquidity demander. Following the same steps, we work towards computing
the expected utility of a liquidity demander prior to observing z (VW12, Eq. A.4). Then, the
expected utility of the liquidity demander in Period 1 is:

— exp (—a [W{ + 6 (D -~ S’l) - la'o? (Qf' + z)z]) , (23)

where the adjusted alpha o’ is used to compute the expected utility of Period 2 cash flow
risk. Notice how any remaining uncertainty with respect to Period 1 price (due to z) is being
evaluated with the unadjusted risk aversion a because this uncertainty will be experienced from
Period O to Period 1 where agents have not yet learned their type (demander or supplier) and

risk aversion therefore is alpha for both.
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Inserting the equilibrium expressions for 95" from (9) and S| from (12), yields:
—exp (—a [Wo + 6 (D - S{)) —ao’ 6y +2) (9 + nz) + %Z—fcz (@ + ﬂz)z]) , (24)

where 7 is the only addition to the expression for the liquidity supplier in Equation (17). The
expected utility before observing z becomes is computed from Lemma A.1 (VW12) with the

following updated variables:

A =Wy +6,(D - S§) - ac0ed + L0 P, (25)
B =0 77( 0 — a@o) o0, (26)
C’ = ac? ( @ 2 27r) (27)

where A’, B, and C’ are the same as the expressions for the liquidity supplier, except for the
addition of the last term for B” and C” (which is the result of the additional z in Equation (24)).

The expected utility of a liquidity demander becomes:

1

, (28)
\/1 + aao?o? (%ﬂ - 27r)

U = —exp (—a/Fd’)

where

F¥ = W, + 6, (D S/ ) @020,0 + L1 Z 52

(72 (0‘27r (" 0 — a@o) 0029)2
-a . (29)
2 (1 + a@o?o? ( L2 — 27r))

Equilibrium price at time 0. The Period 0 agents chooses 6, to maximize:
U=(0-mU"+aU" (30)

The associated first-order condition is:

dF" 1
(1 —m)exp(—aF?” (—a )
p( ) doy | \J1 + a’o?oin?
dF? 1
d _
+ mexp (—aF )(—a 460 ) =0 (31

\/1 + a@o?o? ((%712 - 271)
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Let us compute the various parts of this equation and evaluate them in equilibrium (i.e., at

90 = é)

dF* _ _ arctetnt(@-a).
=D-S)-aoc’0+ o )
do,

F =W0+(D—Sé)é—c'w'292+

1 + a?c?02n?

—2 -
%“—0'292+
(07

_ 2
orointal (g - 1)
b4 a )

2 (1 + @zﬁzofﬂz)

dF Do - 0%+ ac‘yazagn (O‘zﬂ(i—?_— d/) - &0’2)9
dfy 1 + aao?o? (%ﬂz - 27r)
F¥ =Wy +(D-54)0-ac’® + 120°%
o’ (0'27r (g—z - d/) - @0’2)2 _
2 (1 + aao?o? (%ﬂz - 271))
Let us simplify notation in the spirit of VW12:
dF"  dFY
a6, ~ a6, %
Fd/ = FY — %A,zéz,
where
. @otoin(@-a) ac’oln (c'w'z —-o’n (‘;—2 - 07))
T ool B 1 + aao?o? (%ﬂz - 27r) ,
o’ (0'27r (Z—z - c'v) — c'w'z)z clointa’ (g - 1)2
A =a B . - 202022
1 + aao?o? (%7‘(2 - 271) I +atooin
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(35)

(36)

(37)

(38)

(39)
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so that, inserting (37) and (38) into (31) yields (notice how, among others, the factor exp (—aF*’)

drops out which avoids ending up with a non-linear equation in S):

dF* 1-1m N Texp (%CX’A’zéz) B
0 | J1+@002n \/1 + a@o?o? (%712 - 271)
T exp (%aA’zéz) _

A7, (41)

\/1 + a@o?o? ((%nz - 271)

which can be simplified to

dFSI _
20 (1 -m+aM’)=aM' A6, (42)
0
where
M = ex (l N 1 + &*c?02n?
= exp (ya’A%0 ) - ) (43)
1 + aao?o? ((%nz - 271)
Inserting (32) in (42) yields:
_ _ atoteint(a-a)- aM’ _
S/ |=D—-ac’d+ : - ND 44
0 @ 1 + a’c%02n? l—nm+aM ! @4
_ _ _ _ a’olo’n? _ M’ _
_ 2 2 ) z - 2 ,
—D-I—(QO'@—CZO'9)-&0’9+m(0’-&)0’9-mA19 (45)
_ _ _ a’ololn? _ oM’ _
=D-ac’d-(a- 2+ —— (a- - —— N6 46
@7 @-a)o 1 +a?c?o2n? @-a)o l—nm+aM ! (46)
b-actis (22T a-myeti- —Mni 47
= — +|—F — — -
v 1 + &?c?02n? TvT l—nm+aM ! @7
_ _ ¥ — 20 M’ _
= D-actg- 2D " NG (48)

1 +a?c?0?n®> 1 —n+aM’

Notice that this expression closely resembles VW12 Eq. (2.10) with the exception that the third

term is an additional one.

Price impact. With the expression for initiator net volume and equilibrium prices, we can
now compute the price impact A’ that liquidity demanders pay for their demand:
Cov (81 -Sp.v')
A=
Var (v')

(49)
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Inserting (12), (14), and (44) into this expression we get:

@ a\?
Var (V') =Var (—Zﬂ(l - n—,)) = ofnz (1 - n—,) (50)
a a
aoc? o2 ao?
A = — = = . 51
l-zn% 1-Z 1-n G

O

Lemma 3. (Cash flow shock) Equilibrium quantities of the model with a cash flow shock are

_ 120 _
v”:n(l ba 9+7r(ﬁs b)(s—l_))—ﬂ(l—ﬁ)z

o? @o? ao?
V- ac? (DIS )
= 5
(1-m(1-5%)
where @' > @ := m > a and
_ 10” (DIS ) By + (1 — 1) B¢
no?(D|S)) + (1 —m)o?
c=ao?
2
o
Bs=1- ﬁ’
//2
o
Be

o+ 02+ 2o

o (DIS 1) = B¢ (oﬁ + czof) .

Proof. (Lemma 3)
We model the case of increased cash flow risk as one where dividend risk is increased for
the (identical) agents in Period 0, and it is common knowledge that liquidity demanders learn

the additional information in Period 1 when observing a private signal:
s=D +e¢, (52)

where & is normal with mean zero and variance o2, and is independent of D and z. Note
that we do not land in a no-trade theorem, since these agents also trade due to an endowment

shock (Milgrom and Stokey, 1982). The equilibrium quantities are presented in this subsection
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and denoted with a double prime. These quantities are developed in VW12 Sec. 3 where the
baseline case corresponds to the no-information case discussed in VW12 Sec. 3.2). To consider

211

the case of a Period O risk increase from the baseline model o to o>’ > o=, we set:

2 12
2 [oaon

T — (53)
so that the posterior risk for liquidity demanders after observing the signal s in Period 1 be-
comes (VW12 Equation 3.2b):

0_2

o*(D|s) = sz—jo_go"'z = o2, (54)
which is the baseline model cash flow risk. The liquidity demander who received the signal in
Period 1 therefore experiences the same risk as the baseline model. The increased cash flow
risk is experienced by the uninformed liquidity suppliers in Period 1, and, therefore, by all
agents in Period 0 before they learn their type (i.e., liquidity demander or supplier).

With this reparametrization the equilibrium quantities are taken straight from VW12 Sec. 3

by, in their expressions, using:

o’ =0 (55)
The equilibrium price in Period 1 is:
Slza+b(s—D—cz), (56)
with
a=D-a(l-b)o?, (57)
_ 7> (DIS ) Bs + (1 = 1) 07B; (58)
 n102(DIS)) + (1 =n)o?
c= aoﬁ (59)
O_//Z
s = ——, 60
P 0"+ 02 (60)
/12
g
_ , 61
Pe 0" + 0%+ c?0? 61
o (DIS1) = B¢ (02 + o2). (62)
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The initiator net volume due to liquidity demanders is:

v’ :ﬂ(éﬁl—é) =—(1 —ﬂ)(@f —9)
D+ Be/b(S7 —a)- S

- (- iy 63
(1-n) 202 (DIS ) (63)
The Period O price is
_ - oM’ -
"o _ D - iy A// 4
0 aoc’’ 0 T aear ™ 0, (64)
where M is given by (4) with the deltas replaced by:
(b —ﬂg)z (o"'2 + 0'3 + 020'5)
Ay = , 65
° DS (©
a’bo’"? (0"’2 + 0'?) 0'3
! (66)

= 2
1+ A(/)/ (1 _ 71_)2 _ a,20-//20-§

AV 0_//2 0_2
0,’30'”40'3 (1 + (Bs—b) ((72 + s))
A) = — 5 ) (67)
1+ A (1 -m)° —a’0""%02

The price impact is:

. __ac®(DIS)
1-m(1-%)

(68)

II Details on the computation of Abel Noser institutional or-

der flow

Abel Noser data does not provide information on the timing and volume of child orders as well
as the types of orders executed by the broker. We discard all client transactions with recorded

placement and execution times outside the regular (NASDAQ) trading hours.” Further, we only

9This requirement eliminates roughly 60% of all recorded client transactions. The remaining sample contains
more than 220,000 executed client transactions. Institutional clients can choose to reveal timestamps associated
with the execution of the meta order. If clients chose not to provide this information, Abel Noser defines placement
to the opening auction and execution to the closing auction (e.g. Hu et al., 2018).
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keep transactions which are executed within one trading day in our sample. Such a conservative
constraint allows us to keep estimation error of actual intraday client net volume small.

Because Abel Noser client transactions only reveal the meta orders submitted to the clients
brokers but not the actually executed transactions and corresponding timestamps, we have to
rely on a proxy for client net volume,.; on a trading day ¢ during the last 5-minute interval
up to the timestamp 7 for ticker i. We compute the total trading volume of each client meta
order [ as V; = shares) - price; where shares; is the number of shares of the meta order and
price, 1s the average reported execution price per share. Then, we define the duration of a client
meta order with identifier / from order placement time s; until order execution e; in minutes as
A; = e¢; — s;. Table All in the Appendix provides summary statistics for the client transactions.
We assume that the execution is in proportion to the duration A; until execution such that net
trading volume of transaction / on execution date ¢ within each minute is simply

V, - side,

net volume;, = ——— for 7 € [, ¢;] and O otherwise. (69)
!

Finally, aggregated client net volume, ; is the net of buy and sell client volumes for each client
transaction active in ticker i during the last 5-minute interval before timestamp 7 such that if

N, ; is the number of recorded client transactions for ticker i on day 7, we define

Ny
client net volume, .; := Z net volume; . (70)

I=1
We merge the NASDAQ order book and the Abel Noser dataset to illustrate the responses of
institutional client net volume to a VIX shock as well as a shock in VRP and ERV. To that end,
we re-estimate the coefficients of the impulse response function based on the entire available
sample (January 2009 until April 2013) where we impose a shock of one positive standard

deviation in changes of either IV, or ERV,, or VRP, ;.

45



	Introduction
	Data
	NASDAQ message data
	Intraday VIX decomposition

	Quantifying impulse responses
	Local projections
	Lag-augmentation
	Choice of the shock size
	Standard errors

	Market responses to a VIX impulse
	Responses to a VIX shock
	Delineating the VIX impulse responses
	Responses to an VRP shock
	Responses to an ERV shock
	Crisis periods

	Institutional client response to a VIX shock

	A model to disentangle the responses
	Baseline model
	Model extensions: Risk shocks
	Equilibrium quantities and comparative statics

	Conclusion
	Proofs and Lemmas
	Details on the computation of Abel Noser institutional order flow

