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Abstract

We discuss portfolio allocation when one asset exhibits phases of locally explosive behavior. We model
the conditional distribution of such an asset through mixed causal-non-causal models which mimic well the
speculative bubble behaviour. Relying on a Taylor-series-expansion of a CRRA utility function approach, the
optimal portfolio(s) is(are) located on the mean-variance-skewness-kurtosis efficient surface. We analytically
derive these four conditional moments and show in a Monte-Carlo simulations exercise that incorporating
them into a two-assets portfolio optimization problem leads to substantial improvement in the asset allo-
cation strategy. All performance evaluation metrics support the higher out-of-sample performance of our
investment strategies over standard benchmarks such as the mean-variance and equally-weighted portfolio.
An empirical illustration using the Brent oil price as the speculative asset confirms these findings.
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1. Introduction

A close look at the dynamics of various asset prices, that are sometimes called speculative

assets, reveals the presence of phases of locally explosive behaviors, i.e. increasing patterns

followed by a burst. Called rational asset pricing bubbles when due to rational deviations from

the fundamental value [see Blanchard and Watson, 1982, Tirole, 1985], these phenomena have

been detected more and more accurately in the financial markets across the world together with

the more traditional properties of heavy-tailed marginal distributions and volatility clustering.
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A rich theoretical literature has been focusing on two aspects of this phenomenon: the invest-

ment problem and the financial economic implications, [see e.g. Davis and Lleo, 2013]. To explain

how a bubble originates in the market, researchers generally relied on standard martingale theory

of bubbles [Biagini et al., 2014, Jarrow et al., 2010, Protter, 2012], or added further assumptions

such as portfolio constraints or defaultable claims, [see Biagini and Nedelcu, 2015, Hugonnier,

2012, Jarrow et al., 2012]. The impact of bubbles on economic growth [Martin and Ventura, 2012,

Carvalho et al., 2012] or on unemployment [Hashimoto and Im, 2016, 2019, Miao et al., 2016] has

also been scrutinized recently.

But this phenomenon has not been thoroughly gauged so far through the lens of portfolio al-

location, although optimal portfolio selection has been a major topic in finance since the works of

Markowitz [1952]. The scarcity of this literature may be explained by the distributional specifici-

ties of bubble asset prices and the risk they incur although, from a financial perspective, investors

are certainly interested in constructing portfolios hedging bubble burst risk. Indeed, traditional

portfolio theory is consistent with expected utility and its von Neumann-Morgenstern axioms of

choice when either asset returns are normally distributed (i.e., higher moments are irrelevant),

or investors have a quadratic utility function [see e.g. Samuelson, 1967]. But these assumption

were shown not to be empirically justified [see Mandelbrot, 1963, Ang et al., 2006, Massacci, 2017,

Ingersoll, 1975, Scott and Horvath, 1980, among others].

This lead researchers and practitioners to intensively work on new portfolio allocation strate-

gies, which, among others, pay attention to higher order moments, namely asymmetry and

fat-tailness [see Briec et al., 2013, Kolm et al., 2014] for literature reviews). A wide variety

of approaches have been proposed in this literature: Taylor expansion of the expected utility

[Jondeau and Rockinger, 2006, 2012, Guidolin and Timmermann, 2008, Martellini and Ziemann,

2010], Gram-Charlier expansion of downside risk measures [Favre and Galeano, 2002, León and

Moreno, 2017, Zoia et al., 2018, Lassance and Vrins, 2021], the shortage function of [Briec et al.,

2007, 2013, to name but a few].

A portfolio strategy based on an accurate characterization of the mechanism generating fi-

nancial bubbles seems necessary to avoid misleading outcomes. However, neither ARMA nor

(G)ARCH / stochastic volatility models, traditionally used to characterize the predictive distri-

bution of returns, are able to mimic such bubble behaviours. To our knowledge, only the paper

by Ghahtarani [2021] discusses portfolio allocation in bubble conditions. The author introduces
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a new portfolio risk measure and shows that it can perform better than classical risk measures

in bubble situations. To this aim, he uses a fuzzy neural network model to compute scenario

paths of end-horizon market value. But the approach is not specifically designed for portfolio

allocation, it operates in multiple steps and requires accounting for uncertainty surrounding the

fundamental and market value predictions.

We contribute to this literature by documenting the attractiveness of portfolio strategies that

account explicitly for the distributional characteristics of bubble assets. More precisely, we exploit

very recent theoretical results on non-causal models to appropriately characterize the conditional

distribution of asset prices exhibiting bubble behaviour. Indeed, non-causal autoregressive pro-

cesses with stable distributed errors appear to be fit to model speculative financial bubbles as

they mimic well locally explosive patterns [see e.g. Gourieroux and Zakoian, 2017].

Our approach is anchored in the classical theoretical rational-expectations bubble framework

proposed by Blanchard and Watson [1982]. A bubble occurs when prices temporarily deviate

from the fundamental value. But if Blanchard and Watson’s model features successive bub-

ble/burst cycles, the non-causal model may generate more realistic price dynamics where bubble

events intersperse calmer periods. Besides, the gradual collapse in the dynamics of mixed causal-

noncausal model (hereafter MAR) reconciles the rational expectations bubbles with regular vari-

ation tail indexes above 1, a well-documented statistical property of financial data, [see Lux and

Sornette, 2002].5 Most importantly, they exhibit surprising features such as a predictive distribu-

tion with lighter tails than the marginal distribution, which allows one to obtain predictions of

higher-moments that are expected to be of crucial importance for the (non-)investment decision.

Indeed, this framework relaxes the finite variance constraint while insuring the stationarity of the

process, [see Gourieroux et al., 2020, on the existence of multiple stationary nonlinear equilibria

in bubble models].

By relying on the results of Fries [2021], we derive the first four conditional moments of an

α-stable MAR(1,1) process and show that incorporating them into a two-assets portfolio optimiza-

tion problem can lead to substantial improvement in the asset allocation strategy. For this, we

consider the standard Taylor-series-expansion of a CRRA utility function approach à la Jondeau

5We defer the reader to Fries [2021] for further discussion on the link between non-causal models and rational bubbles
à la Blanchard and Watson [1982].
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and Rockinger [2006, 2012], [see also Martellini and Ziemann, 2010]. The optimal portfolio(s)

is(are) located on the mean-variance-skewness-kurtosis efficient surface in the sense that no other

portfolio can dominate it on all four moments. But since there is evidence that standard utility

functions are locally quadratic and higher-order moments may not significantly impact portfolio

selection [see e.g. Markowitz, 2014], we also consider, as a robustness check, a polynomial-goal-

programming (PGP) problem so as to find a portfolio on the higher-moment efficient surface

without the need to specify a utility function. The economic value of our strategy is compared

with standard benchmarks such as the mean-variance and equally-weighted portfolios.

In contrast to Ghahtarani [2021], if his machine learning framework were to be used for

portfolio allocation, our approach is not scenario-depedent. Besides, the non-causal framework

also presents the advantage of ease of interpretability, in the sense that the solution(s) of the

portfolio allocation problem can be traced back to the conditioning value of the bubble asset

dynamics and the higher-order moments of the conditional return distribution.

A set of Monte-Carlo simulations emphasizes the reliability of our approach. Indeed, the

portfolio strategies obtained when estimating the MAR(1,1) parameters are clustered around the

theoretical optimal ones, i.e. based on the true parameters, and their dispersion reduces quickly

as the sample size increases. This indicates that estimation uncertainty does not affect much the

portfolio allocation problem. Note, however, that the starting value of the speculative asset Xt = x

matters a lot in the selection of the optimal investment share and horizon, which is not the case

of the no-bubble asset. This is expected to lead to investment strategies that outperform standard

benchmarks such as the mean-variance and equally-weighted portfolios. We study this intuition

by simulation and rely on several performance evaluation measures to gauge the out-of-sample

relative performance of our approach. All methods used, i.e. terminal wealth, opportunity cost,

Sharpe and modified Sharpe ratios, support the superiority of our portfolio allocation strategy.

The difference is particularly significant when the conditioning values Xt = x are in the tails of

the marginal distribution of the process, i.e. when the first asset is indeed close to the peak of a

bubble period, which is of outmost importance for the investor.

An empirical illustration using the Brent oil price as the speculative asset confirms these

simulation-based results. As a preliminary step to select candidate assets, we test for the presence

of bubbles in asset price dynamics by relying on the recent generalized-sup ADF test of Phillips
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et al. [2015] that is appropriate for rational bubble frameworks, among others.6 The pseudo-

out-of-sample performance of our portfolio allocation approach is then compared to that of the

two benchmark models. The test by Ardia and Boudt [2015] is particularly useful to statistically

assess the significance of the difference between the modified Sharpe ratios. All findings support

the superiority of our approach.

The paper is structured as follows. In Section 2 we introduce the proposed allocation problem.

Section 3 introduces a Monte Carlo study that discusses the impact of parameter uncertainty on

the optimal strategies. In Section 4 we conduct a simulation-based out-of-sample horce-race with

standard benchmarks to evaluate the relative economic value of our approach, while Section 5

details the empirical illustration.. Finally, Section 6 concludes and the Appendices include proofs

of results and additional results.

2. Bubble-riding allocation problem

Hedging bubble asset risk is nowadays a particularly important issue for an investor handling

speculative assets. In this section, we provide a unified framework to solve the allocation problem

in presence of an asset exhibiting a bubble behaviour. First, we formally introduce the portfolio

allocation problem and then provide the necessary quantities to compute the conditional mo-

ments of portfolio return distribution when the speculative asset price is modeled as a mixed

causal-noncausal process. Finally, we briefly review the methods that will be used to evaluate the

economic value of the optimal portfolio strategies.

2.1. Optimal portfolio allocation

We investigate the asset allocation problem in the context with a speculative asset price Xt,

for which the dynamics of higher order conditional moments is of particular importance, and a

safer one, St. Two approaches that account for higher-order moments in the choice of the optimal

portfolio have gained investors’ attention to date and are considered in our analysis. The first

is based on a Taylor expansion of the expected utility function, while the latter consists in the

Polynomial Goal Programming (PGP) model. We privilege the CRRA utility function because it

6Early tests for rational bubbles relied on Shiller [1981]’s variance bounds test, West [1987, 1988]’s two step procedure
or cointegration tests, but these approaches are subjected to multiple issues.
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is probably economically the most relevant preference family, as it realistically assumes that risk

aversion is relatively constant over wealth levels, [see also Jondeau and Rockinger, 2006, 2012,

and references therein]. A complementary analysis, based on the PGP model, is available in

Appendix B [see De Athayde and Flôres Jr, 2004, for arguments in favour of this approach].

We consider an investor endowed with wealth Wt at present date t, who allocates her portfolio

constituted of these two assets to maximize the expected utility U(W) over her end-of-period

wealth Wt+H . The initial wealth is innocuous to the optimization problem and arbitrarily set to

one. The investor has an investment horizon H: at date t, she will decide of the share ω (resp.

1−ω) to invest in the speculative asset (resp. safer asset), and of the intermediate horizon h ≤ H

at which she commits to liquidate its holding of speculative asset and to invest the proceedings

in the safer asset until t + H. Short selling is allowed, hence portfolio weights can take both

positive and negative values. This leads to an optimization problem of the terminal wealth Wt+H

or, equivalently, of the overall return Rt+H = (Wt+H −Wt)/Wt in both the allocation ω and the

intermediate horizon h.

We assume that the speculative asset’s price Xt follows a mixed causal-noncausal stable AR

process, i.e. MAR(1,1), with a non-zero location parameter. This choice is motivated by the

recent econometric literature that proved non-causal models to be a convenient way to model

locally explosive phenomena such as speculative bubbles, while featuring heavy-tailed marginals

and conditional heteroscedastic effects generally encountered in financial data [see e.g. Cavaliere

et al., 2020, Fries and Zakoian, 2019, Gourieroux and Jasiak, 2018, Gourieroux and Zakoian,

2017]. The safer asset is assumed to follow a geometric Brownian motion dynamics with drift υ

and volatility ς. The price processes (Xt) and (St) will be assumed independent, which provides

a nice framework for hedging purposes.7

For a given strategy (ω, h), the terminal wealth can be expressed as

Wt+H =
St+H
St+h

(
ω

Xt+h
Xt

+ (1−ω)
St+h

St

)
,

7In this framework, the independence hypothesis does not appear as a strong assumption. As we focus on investment
during periods where an asset price exhibits a bubble behaviour, its dynamics cannot be correlated over this time-interval
with that of a safe(r) asset. In practice it is reasonable to think of the second asset as a well-diversified portfolio whose
constituents do not exhibit any bubble behaviour. This makes the second asset an attractive hedge against the risk of
bubble collapse in the first asset.
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or alternatively, in terms of returns,

Wt+H = 1 + Rt+H ,

where the terminal portfolio return Rt+H writes

Rt+H =
(

1 + rS
t+h,t+H

)(
ωrX

t,t+h + (1−ω)rS
t,t+h + 1

)
− 1,

with rS
t+h,t+H := St+H/St+h − 1, rS

t,t+h := St+h/St − 1, and rX
t,t+h := Xt+h/Xt − 1, the asset’s

returns in-between the key investment events.

In this framework, we follow Jondeau and Rockinger [2006, 2012] to approximate the alloca-

tion problem.8 The CRRA utility maximization program of the fourth order Taylor approximation

around the expected terminal wealth is

max
(ω,h)

E[U(Wt+H |Xt, St)] ≈
4

∑
k=0

U(k)(Wt+H)

k!
E
[
(Wt+H −Wt+H)

k|Xt, St

]
, (1)

with U(c) = c1−γ/(1− γ) for a risk aversion parameter γ > 0 and Wt+H = E
[
Wt+H |Xt, St

]
.

The investor’s preference (or aversion) toward the kth moment is directly given by the kth deriva-

tive of the utility function. The effects of the third and fourth moments on the approximated

expected utility are positive and negative, respectively, and correspond to financial theory [see

Scott and Horvath, 1980]. The expected utility also depends on the central conditional moments

of the distribution of terminal wealth, which can be expressed in terms of conditional moments

of the portfolio return distribution as E
[
(Wt+H −Wt+H)

k|Xt, St

]
= E

[
(Rt+H − Rt+H)

k|Xt, St

]
,

since Wt+H = 1 + Rt+H with Rt+H := E[Rt+H |Xt, St]. It is just a matter of algebra using the

independence between (Xt) and (St) to express the objective functions in terms of the conditional

moments of the speculative asset price, E
[

Xp
t+h|Xt

]
, p = 1, 2, 3, 4, that are detailed in the next

subsection, and the parameters (see Appendix A.1 for further computational details).

8Lhabitant et al. [1998] has shown that the infinite Taylor series expansion converges to the expected utility in the
CRRA case for wealth levels between 0 and 2W that appear to be large enough for stocks and bonds regardless of the
degree of non-normality, in particular when short-selling is prohibited.
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2.2. Conditional moments of MAR(1,1) α-stable processes

In this subsection we discuss the existence and derivation of the first four conditional moments

of the speculative asset price. As the econometric literature has identified MAR processes to be

appropriate for financial bubble modelling, we rely on them, [see e.g. Hecq and Voisin, 2021, and

references therein].9

Let (Xt) be the α-stable solution of the MAR(1,1) process Xt = ϕ◦Xt+1 + ϕ•Xt−1 + εt, with

i.i.d. α-stable errors, εt
i.i.d.∼ S(α, β, σ, µ) and α , 1 (for simplicity), β ∈ [−1, 1], and σ > 0. The

process is well defined and strictly stationary for |ϕ◦| < 1, |ϕ•| < 1, and ϕ◦ , ϕ•. It then has

a MA(∞) representation Xt = ∑k∈Z akεt+k, whose coefficients satisfy ∑
k∈Z

|ak|s < +∞ for some

s ∈ (0, α) ∩ [0, 1]. Without loss of generality, in the following we assume that the shift µ is null,

but in practice we handle the possibility of µ , 0 by relying on a simple transformation of the

conditional moments obtained with zero location parameter to those associated with a non-null

shift [see Section 2 in Fries, 2021].

Now let Xt = (Xt, Xt+h) denote the bivariate stable vector obtained from Xt for horizon h ≥ 1.

Proposition 3.1 i) in Fries [2021] then applies and states the condition of existence of higher-order

conditional power moments, although the marginal variance of the process Xt is infinite. In

particular, the conditional moments up to integer order p, E[|Xt+h|p|Xt], may exist as long as

ν ≥ 0 exists such that ∑
k∈Z

(a2
k + a2

k−h)
α+ν

2 |ak|−ν < +∞ and 0 ≤ p < min(α + ν, 2α + 1), where

(ak, ak−h) are the coefficients of the infinite moving average representation of the process. The

more anticipative, i.e. noncausal the process, the larger ν ≥ 0, which insures the existence of all

conditional moments up to order 2α+ 1 at all prediction horizons when (ak) decays geometrically

or hyperbolically for e.g..

Proposition 1. For α , 1, the moments E[Xp
t+h|Xt], p ≤ 4, when they exist, are given by Theorems 2.1

and 2.2 in Fries [2021] as a function of four quantities, σα
1 , β1, κp, and λp and a family of functions H.

9More generally, any MARMA model could be used, but this would engender a cost related to the numerical approx-
imation of the MA(∞) coefficients [see Fries, 2021]. We prefer a more parsimonious approach for which we can obtain
the formulas for these coefficients in closed form.
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We demonstrate that in the case of a MAR(1,1) process these constants are equal to

σα
1 =σα 1− |ϕ◦ϕ•|α

(1− ϕ◦ϕ•)α(1− |ϕ◦|α)(1− |ϕ•|α) ,

β1 =β
1− ϕ◦<α>ϕ•<α>

1− |ϕ◦|α|ϕ•|α
(1− |ϕ◦|α)(1− |ϕ•|α)

(1− ϕ◦<α>)(1− ϕ•<α>)
,

κp =
ϕ•hp(1− |ϕ◦|α) + (ϕ◦−hp|ϕ◦|hα)(1− |ϕ•|α)

1− |ϕ◦ϕ•|α

+
(ϕ•hp|ϕ◦|α(ϕ•ϕ◦)−p − ϕ◦−hp|ϕ◦|αh)(1− |ϕ◦|α)(1− |ϕ•|α)

(1− |ϕ◦|α(ϕ•ϕ◦)−p)(1− |ϕ◦ϕ•|α) ,

λp =
ϕ•hp(1− |ϕ◦|<α>) + (ϕ◦−hp ϕ◦<α>h)(1− ϕ•<α>)

1− ϕ◦<α>ϕ•<α>

+
(1− ϕ◦<α>)(1− ϕ•<α>)

1− ϕ◦<α>(ϕ•ϕ◦)−p
(ϕ•hp ϕ◦<α>(ϕ•ϕ◦)−p − ϕ◦−hp ϕ◦<α>h)

1− ϕ◦<α>ϕ•<α> ,

where y<α> = sign(y)|y|α for any y ∈ R. σ1 and β1 denote the scale and asymmetry parameters of

the marginal distribution of Xt, whereas the constants κp and λp, p > 2, generalize standard dependence

measures invoked in the literature to powers of Xt and Xt+h in the asymmetric case. At the same time,

H contains functions related to the marginal density of the stable random variable Xt and for n ∈ N,

θ = (θ1, θ2) ∈ R, x ∈ R is defined as

H(n, θ; x) =
∫ +∞

0
e−σα

1 uα
un(α−1)(θ1 cos(ux− αβ1σα

1 uα) + θ2 sin(ux− αβ1σα
1 uα)

)
du.

Proof. See Appendix A.2 �

Remark 1. The conditional moments can be easily computed for p ≤ 4 and h ≥ 1 once the functions

H(n, θ; x) are evaluated for n = 2, 3, 4 by following the approach discussed by Fries [2021] and originally

proposed by Samorodnitsky et al. [1996] for the conditional expectation.

Remark 2. The asymptotic expressions for the conditional moments with respect to the conditioning

variable, i.e. when Xt becomes large, given in Proposition 2.1 of Fries [2021] and stated below, remain

valid in the MAR(1,1) case when σα
1 , β1, κp, and λp are replaced by the expressions given in Proposition

1 above. To be more precise, if the conditional moment of order p of a bivariate α-stable vector exists and
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|β1| , 1, then,

x−pE[Xp
t+h|Xt = x] →

x→∞

κp + λp

1 + β1
, x−pE[Xp

t+h|Xt = x] →
x→−∞

κp − λp

1− β1
. (2)

2.3. Performance evaluation measures

Several investment ratios, e.g. the Sharpe, Sortino, and Omega ratios, and relative perfor-

mance measures, e.g. the opportunity cost or performance fee (OC) and the Graham–Harvey

metric, have been used in the literature to evaluate portfolios’ performance, [see e.g. Jondeau and

Rockinger, 2006, 2012, González-Pedraz et al., 2015]. But since standard ratios ignore investors’

positive preferences for odd moments and aversion to even moments, they are not appropriate for

investments with non-normal returns. Several alternatives have been proposed, such as the mod-

ified Sharpe ratio (mSharpe) of Favre and Galeano [2002], Gregoriou and Gueyie [2003], which

uses as a risk measure an estimator for Value-at-Risk based on the Cornish–Fisher expansion and

the first four moments of the return distribution.

In this paper we employ the OC measure to evaluate the out-of-sample performance of our

strategy relatively to two traditional benchmarks, the equally-weighted portfolio (EW) and the

standard mean-variance (MV) portfolio. This corresponds to the amount that needs to be added

to the return of a competing benchmark strategy so that the investor becomes indifferent to the

portfolio decision based on our framework. We also report the mSharpe ratio and, for comparison

reasons, the Sharpe ratio. In the simulation-based analysis we test the equality of their medians

over the out-of-sample for the various competing portfolio strategies, while in the empirical

illustration, will rely on the mSharpe ratio comparison test proposed by Ardia and Boudt [2015]

to further compare the different allocation strategies in out-of-sample.

3. Monte Carlo experiments

As the investor does not have perfect knowledge of the parameters of the distribution of the

speculative asset, we investigate the impact of parameter estimation on portfolio allocation in a

Monte-Carlo experiment. We adopt a parametric plug-in estimation approach and proceed in
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two steps.10 First, we gauge the sensitivity of the conditional moments of returns to parameter

estimation and then we look into the variability this induces in the optimal portfolio strategy.

We simulate M = 2000 trajectories of N = {1000, 2000, 5000} observations from the MAR(1,1)

process (1 − 0.9F)(1 − 0.3B)Xt = εt where εt
i.i.d.∼ S(1.8, 0.5, 0.1, 2). We then estimate the con-

ditional power moments by replacing the theoretical constants σα
1 , β1, κp, λp. in Proposition

1 by their empirical counterparts computed by plugging-in the MAR(1,1) parameter estimates

obtained by Maximum Likelihood.11

The results are displayed in Figure 1 for prediction horizons h = 1, 3, 5, 10 and conditioning

values x ∈ (24.5 − 36.2) that correspond to the 0.05% and 99.95% quantiles of the marginal

distribution of Xt. They take the form of a pointwise 5% - 95% interquartile interval of the

conditional moment estimators for each sample size N. Notice that the theoretical conditional

moments, based on the true values of the parameters and represented by a black line, always

belong to the empirical interquartile range. More precisely, the interquantile intervals are very

narrow around most of the true conditional moments curves, even for small sample sizes. They

are slightly larger for higher-order moments and large horizons when N = 1000 but narrow

down fast as the sample size increases. Overall, the plug-in method appears to be a good way to

estimate the conditional moments even when the conditioning values Xt = x are in the tails of

the marginal distribution of the process.

In the second step we hence investigate the impact of parameter estimation on the selected

portfolios. The simulated conditional moments of returns obtained from the ML estimates of the

MAR(1,1) process are plugged in the CRRA portfolio optimization program to get the optimal

portfolio strategi(es) in the form of couples (ω∗, h∗), which define the part of the wealth to invest

in the bubble asset and the horizon of this investment given that the overall investment horizon

is fixed to H = 250 periods, i.e., a year of daily trading activity. To be more precise, we search

for optima (ω∗, h∗) in the set [−1, 1]× [0, 250], thus allowing short strategies. As the optimization

program is likely non-convex, several strategies may lead to the same terminal wealth, and in this

10A model-free non-parametric approach could also be envisaged, but it would engender a dramatic loss in efficiency,
especially for conditioning values Xt = x far away from the central values of the process (Xt), [see Fries, 2021, Supple-
mentary Material].

11To facilitate the estimation, we initialize the parameters of the α stable distribution by relying on the approach of
McCulloch [1986]. Provided the ML estimator is consistent, which is the case for the one used here [see Andrews et al.,
2009], the plug-in estimators of the conditional moments will also be consistent.

11



Figure 1: Conditional moments of return distribution
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rameters are estimated by Maximum Likelihood and plugged in the formulae of Proposition 1. The results are displayed
for three horizons, h = 1, 3, 5, 10 and three sample sizes, N = 1000, 2000, 5000.
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case they are all labeled as optimal strategies. We round ω∗ to the closest percentage point and

report h∗ in weeks. Besides, by convention, if either ω∗ = 0 or h∗ = 0, we report (ω∗, h∗) = (0, 0).

For the safer asset, we set υ and ς so that the annual return and volatility equal 2%.

Figures 2 and 3 propose a visualization of the optimal investment strategies if the DGP were

known and of the impact of parameter estimation on the selected optimal portfolios for a CRRA

investor with risk aversion parameter γ = 10. For each starting value of the speculative asset

Xt = x defined by a specific quantile of its distribution and each sample size N, we plot the mass

repartition of the estimated strategies across the 2000 simulations in the share-horizon space.

The bigger and redder the dots, the larger the mass of portfolios falling in that area. Roughly

speaking, a red circle corresponds to more than 1000 identical strategies, a violet one indicate

more than 500 identical ones, whereas the smallest blue dots represent between 5 and 50 identical

strategies.12 The optimal strategies under the hypothesis that the investor knows the parameters

of the speculative asset dynamics are denoted by black target symbols.

While the starting value of St does not matter, the starting value of Xt deeply modifies the

investment landscape. The first figure looks into the case of conditioning values in the lower

conditional quantiles of Xt. The CRRA investor bets on a rising value of the speculative asset and

opts for a full investment in it (ω∗ = 1) over a short horizon, h∗ < 5. This long strategy is the

only optimal portfolio allocation in this setup, i.e., the equilibrium is unique. The optima from

the simulated strategies, denoted by colored dots, are generally concentrated in the vicinity of

the true optimal strategies, which indicates that estimation uncertainty does not affect much the

portfolio allocation problem. As the sample size N increases, the estimation becomes even more

accurate and more mass gathers around the true optima.

The second figure depicts the case of conditioning values at the median and in the upper

conditional quantiles of Xt. The long strategy, characterized by a share close to 1 invested over

very short intervals, is optimal as we move from the center of the distribution towards the bubble

zone. Multiple optimal strategies arise as we move towards the inflation phase of the bubble.

This comes in hand with different investors betting on different scenarios according to their risk

adversity. Investing all wealth in the bubble asset over a 2-period horizon appears to be as

12We do not report the precise values as they vary from one subplot to another due to the multiple equilibrium issue
discussed earlier and the plot would become too dense to be easily readable.
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Figure 2: Optimal portfolio strategies (lower quantiles)
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Notes: Mass repartition of the optimal portfolio strategies for the CRRA utility function with γ = 10 when the speculative
asset’s parameters are estimated by ML across 2000 simulated trajectories of length N = 1000, 2000, 5000 trading days
and for several starting values defined by the quantiles, Q., of the true marginal distribution of Xt. The DGP for the

speculative asset price is a MAR(1,1) process (1− 0.9F)(1− 0.3B)Xt = εt with εt
i.i.d.∼ S(1.8, 0.5, 0.1, 2). The results are

displayed in the share (vertical axis) - horizon (horizontal axis) space. The larger and redder the dots, the bigger the
proportion of selected portfolios falling in that area across the 2000 simulations. A black target symbol indicates a true
optimal portfolio, i.e. obtained for the true values of the parameters.14



Figure 3: Optimal portfolio strategies (upper quantiles)
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Notes: Mass repartition of the optimal portfolio strategies for the CRRA utility function with γ = 10 when the speculative
asset’s parameters are estimated by ML across 2000 simulated trajectories of length N = 1000, 2000, 5000 trading days
and for several starting values defined by the quantiles, Q., of the true marginal distribution of Xt. The DGP for the

speculative asset price is a MAR(1,1) process (1− 0.9F)(1− 0.3B)Xt = εt with εt
i.i.d.∼ S(1.8, 0.5, 0.1, 2). The results are

displayed in the share (vertical axis) - horizon (horizontal axis) space. The larger and redder the dots, the bigger the
proportion of selected portfolios falling in that area across the 2000 simulations. A black target symbol indicates a true
optimal portfolio, i.e. obtained for the true values of the parameters.15



optimal as investing a very small share of wealth in this asset but over a longer horizon, between

7 and 10 periods. Besides, the suboptimal no-investment strategy defined by convention as (0,0)

is rarely visited. Next, as the starting value increases and crosses the 0.95 quantile, we get into

an explosive regime, where the optimal strategy is to completely short the bubble asset over a

one-period horizon. Finally, above the 0.99 quantile, i.e. as the explosive regime becomes more

evident, the optimal strategy consists in a fair short position over 3 periods, which is consistent

with the increasing bubble crash risk.

Additionally, the dispersion of simulation-based strategies around the true ones rapidly shrinks

with the sample size, suggesting that the true optima can indeed be consistently retrieved after

parameter estimation. For the quantiles furthest in the tail, the dispersion is in the horizon dimen-

sion rather than in the share dimension. Estimation uncertainty on the verge of a bubble crash

thus mainly impacts the holding horizon. The results are robust to the choice of the risk-aversion

parameter and to changes in the speculative asset price data generating process.13

4. Economic Value

In this section, we illustrate the usefulness of our approach to provide high-performing port-

folio allocation strategies. As discussed previously, in our framework, the optimal investment

strategies vary according to the conditioning values Xt = x of the marginal distribution of the

process. For this reason, they are expected to outperform standard mean-variance and equally-

weighted portfolios, that cannot take into account the current state of the nature at the moment of

investing. We study this intuition in the same Monte Carlo setup as in the previous section. More

precisely, we generate 1000 trajectories of N = 2000 observations from the MAR(1,1) process.

For each trajectory, we use the first two thirds of the data, {1, 2, . . . , T}, labeled as in-sample,

to estimate the conditional moments of returns and identify the optimal investment strategies in

the form of couples (ω, h) for conditioning values covering the whole marginal distribution of

Xt implied by the DGP. The remaining one third of the data, {T + 1, . . . , T + k, . . . N}, labeled

as out-of-sample, is used as conditioning values for a new investment. This means we assume

the investor wishes to invest his wealth in the two assets at a certain date, say T + k, within the

13The results are qualitatively similar to those obtained when using a non-causal AR(1) as a DGP, but the latter seems
to be quite restrictive in practice as it imposes a sudden crash of the bubble. We prefer the more general MAR(1, 1)
specification and accept a loss in efficiency in the case where the causal parameter should actually be null.
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out-of-sample period. To select the optimal share of the bubble asset in the portfolio, ω, and

the duration of this risky investment, h, out of the H = 250 periods of the overall investment,

she searches for the closest quantile of the theoretical distribution of Xt just below the actual

conditioning price at the selected date. The couple(s) (ω, h) estimated in-sample for this quantile

by using the CRRA utility function with γ = 10 will then be used to construct the portfolio

strateg(y/ies). For each strategy, the portfolio is rebalanced one, at period T + k + h. Consisting

only in an investment in the no-bubble asset, it is then hold constant up until date T + k + H.

For comparison reasons, we compute also the mean-variance and the equally-weighted port-

folios over the same periods. In the case of the MV benchmark portfolio, we use the in-sample

data to estimate the optimal investment share in the bubble asset. Then, we use it to construct

a buy and hold strategy over H periods for each out-of-sample starting date T + k. Finally, the

computation of the EW portfolio for the same investment horizon is immediate.

To compare the economic value of these strategies we rely on the methods introduced in

Subsection 2.3. As our approach may lead to multiple optimal strategies for a given conditioning

value, we report three statistics: the average one, labeled MARmean, the one leading to the highest

terminal wealth, labeled MARmax, and the one leading to the lowest terminal wealth, labeled

MARmin.

Table 1 reports the results for the five portfolio strategies in terms of average, µ, and standard

deviation, σ, of each performance measure over the 1000 simulated out-of-sample trajectories.

Asteriks (∗/∗) associated with the estimated µ of each of our strategies indicate that the mean of

the performance measure is statistically different from that of the (EW/MV) portfolios according

to Wilcoxon’s test.

The average wealth for the three MAR-based portfolios is similar and always well above that

of the benchmark portfolios. Wilcoxon’s test always rejects the null of equal averages, suggesting

that our approach performs best in terms of terminal wealth. The results are similar when relying

on the Sharpe ratio instead of wealth. Notice that the standard deviation is inflated in this case,

but it largely diminishes when using the more appropriate modified Sharpe ratio that accounts

for higher order moments of portfolio return distribution. Regardless of the measure used, our

approach performs significantly better than the EW and MV ones, and this holds even in the

worst case scenario, i.e. MARmin. The positive averages of the opportunity cost also support

these findings. A smaller amount needs to be added to the MV strategy than to the EW one to
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provide the same expected utility as our MAR strategies.

Table 1: Relative performance of portfolio strategies

Strategy
MARmean MARmin MARmax EW MV

Wealth
µ 1.022∗/∗ 1.019∗/∗ 1.023∗/∗ 1.010 1.016
σ 0.023 0.024 0.024 0.020 0.018

Sharpe
µ 0.063∗/∗ 0.059∗/∗ 0.065∗/∗ 0.015 0.040
σ 0.064 0.065 0.064 0.020 0.030

mSharpe
µ 0.085∗/∗ 0.081∗/∗ 0.095∗/∗ 0.035 0.064
σ 0.029 0.029 0.029 0.017 0.071

EW vs MV vs
MARmean MARmin MARmax MARmean MARmin MARmax

OC
µ 0.012 0.009 0.013 0.005 0.004 0.007
σ 0.021 0.023 0.023 0.014 0.016 0.015

Notes: Our MAR(1, 1)-based strategies are compared with the equally weighted (EW) and mean-variance (MV) ones
in terms of terminal wealth, Sharpe ratio and modified Sharpe ratio. The opportunity cost (OC) relatively to the two
benchmark portfolios is also provided. The results take the form of out-of-sample average and standard deviation
over the 1000 simulations. Asteriks (∗/∗) indicate the rejection of the null hypothesis of Wilcoxon’s test of equality
of medians at the 95% level relatively to each of the two benchmark strategies, EW and MV, respectively.

As our approach is specifically designed for investors that wish to take advantage of bubble

periods, in Table 2 we focus on this setup. We assume that one invests only when the uncondi-

tional price process seems to exhibit a locally explosive behaviour, i.e. the conditioning values

XT+k = x are above the 95% quantile of the theoretical distribution of the process. The average

terminal wealth for our strategies are bigger than in the case when all the marginal distribution

is considered, whereas that of the benchmark strategies is lower. The modified Sharpe ratio be-

haves similarly. The opportunity cost remains positive, relatively constant for the EW strategy

and lower than in Table 1 for the MV portfolio. All in all, these results indicate that our method

may prove useful for the investor that includes a bubble asset in her portfolio.

The results are robust to eliminating the (0, 0) strategies that were defined by convention, and

which do not include the bubble asset at all. They hold when investigating the case of negative

bubbles, i.e. looking only at conditioning values beyond the 95% quantile of the theoretical

distribution of the process. Finally, they are qualitatively similar when fixing the risk-aversion
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Table 2: Relative performance of portfolio strategies in positive bubble period

Strategy
MARmean MARmin MARmax EW MV

Wealth
µ 1.032∗/∗ 1.028∗/∗ 1.034∗/∗ 0.960 0.990
σ 0.047 0.046 0.048 0.030 0.020

Sharpe
µ 0.053∗/∗ 0.048∗/∗ 0.050∗/∗ -0.024 0.002
σ 0.068 0.070 0.067 0.020 0.040

mSharpe
µ 0.092∗/∗ 0.085∗/∗ 0.093∗/∗ -0.190 -0.026
σ 0.018 0.017 0.018 0.026 0.089

vs EW vs MV
MARmean MARmin MARmax MARmean MARmin MARmax

OC
µ 0.010 0.010 0.010 0.002 0.002 0.002
σ 0.021 0.021 0.021 0.019 0.019 0.019

Notes: see note to Table 1. The results are based only on the cases where the investment is performed while the first
asset exhibits a bubble period, i.e. XT+k = x is beyond the 95% quantile of the theoretical distribution of the price
process.

parameter γ to 5.

5. Empirical illustration

This section illustrates the performance of the proposed portfolio allocation strategy by using

Brent oil data for the bubble asset. Weekly data ranging from 2006-01 to 2022-01 have been

obtained from EIA and splitted into an in-sample part (2006-01 to 2016-01) and an out-of-sample

one (2016-02 to 2020-01). At the same time, we use Moody’s Seasoned Aaa Corporate Bond Yield,

Percent, Daily, Not Seasonally Adjusted from FRED database as the safer asset.

Figure 4 displays the dynamics of the two series, the gray region corresponding to the out-

of-sample. The presence of locally explosive behaviour in the Brent data is easy to notice and

confirmed by the generalized-sup ADF test of Phillips et al. [2015], see Table 3. At the same time,

the Moody’s Aaa Corporate Bond yield does not exhibit bubble behaviour according to the same

test.

As the oil series seems to exhibit nonstationarity, a trending time varying fundamental part

must be extracted before estimating the MAR model on the in-sample data. Two detrending
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Figure 4: Data
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Notes: The shaded area corresponds to the out-of-sample data.

methods have gained interest in this literature. A polynomial function has been used by Hencic

and Gouriéroux [2015] and by Hecq and Voisin [2019], while Hecq and Voisin [2021] use the

Hodrick- Prescott filter. As the first approach is more direct to implement in the out-of-sample,

we follow Hecq and Voisin [2019] and use a polynomial trend of order four to capture trending

patterns before estimating the MAR parameters on the detrended series. Besides, we rely on

the procedure of Lanne and Saikkonen [2011] based on the AIC information criterion to perform

model selection on causal-non-causal models and identify the MAR(1, 1) as the best specification.

The one-year investment horizon is defined by fixing H = 52.

Table 3: GS-ADF Test

Finite Sample Critical Value

Test Stat. 90% 95% 99%

Brent 2.62
1.95 2.17 2.58

Moody’s Aaa 0.64

Notes: Generalized-sup ADF test for the presence of multiple bubbles developed
by Phillips et al. [2015]. The critical values are based on 2000 simulations.
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Table 4 reports the estimation results. The coefficients of the polynomial trend function are

significant, supporting the use of this strategy. Most importantly, the non-causal component

dominates the causal one, revealing the forward-looking steady increase in the oil-price data fol-

lowed by quite abrupt bubble bursts. Next, we compute the quantiles and conditional moments

of the detrended series, the latter being fed to the CRRA portfolio optimization program (γ = 10)

to obtain portfolio strateg(y/ies) in the form of couples (ω, h).

Table 4: Estimated MAR(1,1) +trend on Brent data

Detrending method: polynomial of order 4

Intercept τ1 τ2 τ3 τ4

1.258e+02∗ -1.764e+00∗∗ 1.660e-02∗∗ -5.025e-05∗∗∗ 4.652e-08∗∗∗

α-stable MAR(1,1)

ϕ• ϕ◦ α β σ µ

0.981∗∗ 0.281∗∗ 1.82∗∗ 0.075∗∗ 1.96∗∗ 1.06∗∗

Notes: Estimated parameters of the polynomial trend function and of the α-stable MAR(1,1) process
associated with the detrended Brent series for the period 2006-2016. Asterisks ∗, ∗∗, and ∗∗∗ indicate
significance at the 90%, 95% and 99% level, respectively.

To evaluate the performance of these strategies, we turn to the out-of-sample data. First, we

rely on the polynomial coefficient estimates to extend the trend dynamics and remove it from

the data. This allows us to match each out-of-sample detrended value that plays the role of

a conditioning price, Xd
T+k, with the closest floor empirical in-sample quantile of the detrended

series and identify the associated portfolio allocation strateg(y/ies). The associated out-of-sample

terminal wealth is computed by applying the couple(s) (ω, h) to the out-of-sample non-detrended

price data.

The results are reported in Table 5. As in Tables 1-2, they display the average and the standard

deviation of various performance measures over the out-of-sample period for each of the five

portfolio strategies. Asteriks (∗/∗) associated with the estimated µ of each of our strategies

indicate that the median terminal wealth is statistically different from that of the (EW/MV)

portfolios according to Wilcoxon’s test. To compare the Sharpe and the mSharpe ratios of our

approach to those of the benchmark portfolios, we rely on the tests of Ardia and Boudt [2015]
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Table 5: Relative performance of portfolio strategies for Brent

Strategy
MARmean MARmin MARmax EW MV

Wealth
µ 1.007∗/∗ 0.998 1.019∗/∗ 0.995 0.993
σ 0.067 0.077 0.094 0.065 0.064

Sharpe
µ 0.058∗/∗ -0.032 0.065∗/∗ -0.019 -0.050
σ 0.45 0.45 0.42 0.43 0.41

mSharpe
µ 0.218∗/∗ 0.178/∗ 0.267∗/∗ 0.195 0.150
σ 0.55 0.78 0.80 0.81 0.86

EW vs MV vs
MARmean MARmin MARmax MARmean MARmin MARmax

OC
µ 0.012 0.012 0.019 0.0021 -0.005 0.026
σ 0.043 0.062 0.065 0.021 0.041 0.081

Notes: Our MAR(1, 1)-based strategies are compared with the equally weighted (EW) and mean-variance (MV) ones
in terms of terminal wealth, Sharpe ratio and modified Sharpe ratio. The opportunity cost (OC) relatively to the two
benchmark portfolios is also provided. The results take the form of out-of-sample average and standard deviation.
Wilkoxon’s test is used for the terminal wealth and we rely on the tests by Ardia and Boudt [2015] for the (m)Sharpe
ratios. Asteriks (∗/∗) indicate the rejection of the null hypothesis of each test at the 95% level.

Table 6: Relative performance of portfolio strategies for Brent in positive bubble period

Strategy
MARmean MARmin MARmax EW MV

Wealth
µ 0.996∗/∗ 0.996∗/∗ 0.996∗/∗ 0.966 0.965
σ 0.064 0.064 0.064 0.037 0.035

Sharpe
µ -0.005∗/∗ -0.010 0.035∗/∗ -0.088 -0.100
σ 0.50 0.47 0.50 0.41 0.46

mSharpe
µ 0.188∗/∗ 0.185∗/∗ 0.297∗/∗ 0.148 0.169
σ 0.95 0.90 0.93 0.50 1.06

EW vs MV vs
MARmean MARmin MARmax MARmean MARmin MARmax

OC
µ 0.021 0.014 0.032 0.001 -0.01 0.038
σ 0.05 0.08 0.08 0.02 0.05 0.10

Notes: see note to Table 5. The results are based only on the cases where the investment is performed while the Brent
exhibits a bubble period, i.e. XT+k = x is beyond the 95% quantile estimated with the in-sample data.
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with asymptotic HAC standard errors.14.

The results indicate a positive gain in using our approach relatively to the standard MV and

EW portfolios. Indeed, the terminal wealth indicates a return on investment of about 2% for our

MARmax and 0.7% for the MARmean, whereas the benchmark strategies are loosing more than our

MARmin. The (m)Sharpe ratios are always higher for the MAR strategies, while the opportunity

cost is positive. Besides, the comparison tests generally indicate a significant difference in the

average performance which is in favor of our approach. All results hold when focusing only on

the case of a positive bubble period, i.e. conditioning values beyond the 95% quantile. These are

displayed in Table 6.

6. Conclusion

In this paper we propose an asset allocation strategy particularly designed for the case of an

investors wishing to include a bubble asset in his/her portfolio. For this, we account explicitly for

the distributional characteristics of bubble assets through a MAR(1,1) model, which seems to be

appropriate to capture locally explosive behaviours. The higher-order conditional moments of the

return distribution are then plugged in the Taylor-series-expansion of the CRRA utility function

and the PGP algorithm, respectively. The economic value of our strategy is compared in out-of-

sample with standard benchmarks such as the mean-variance and equally-weighted portfolios

based on well-known performance measures such as the opportunity cost, the Sharpe ratio and

the modified Sharpe ratio. Both simulation-based analyses and empirical results using Brent

data support the superiority of our approach. This is particularly the case when the conditioning

values Xt = x are in the tail of the marginal distribution of the process, meaning that the bubble

is growing and approaching its peak. This is of outmost importance for investors, as the risk of

bubble crash is the highest.

14The results are similar when the i.i.d. bootstrap approach is used to compute the standard errors.
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Appendix A. Proofs

Appendix A.1. Conditional moments of returns

For the bubble asset we have the non-central moments of returns

E(rX j

t,t+h|Xt) =
1

Xt
E(Xp

t,t+h|Xt), for p ≥ 1,

where the conditional moments of the price series are defined through Proposition 1.

For the second asset, using the properties of the geometric brownian motion, one obtains

E(rS
t,t+h|Xt) = eυh − 1

E(rS2

t,t+h|Xt) = e2υh+ς2h − 2eυh + 1

E(rS3

t,t+h|Xt) = e3υh+3ς2h − 3e2υh+ς2h + 3eυh − 1

E(rS4

t,t+h|Xt) = e4υh+4ς2h − 4e3υh+3ς2h + 6e2υh+ς2h − 4eυh + 1,
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and similar expressions, using H − h instead of h, can be derived for E(rS
t+h,t+H |Xt). Making

use of the mapping relations between central and non-central moments and the independence

between the two assets, one can subsequently express E
[
(Rt+H − Rt+H)

k|Xt, St

]
as a function of

these moments.

Appendix A.2. Derivation of the constants σα
1 , β1, κp, and λp

Fries 2021 shows that if Xt is a α-stable two-sided MA(∞) process with 0 < α < 2,α , 1,

β ∈ [−1, 1], and σ > 0 as defined in Section 2.2, i.e. well defined, stationary process with α-stable

errors, and for h ≥ 1 then one can obtain the conditional moments of the process Xt for p ≤ 4

with

σ1 = σα ∑
k∈Z

|ak|α, β1 = β

∑
k∈Z

a<α>
k

∑
k∈Z

|ak|α
, κp =

∑
k∈Z

|ak|α(
ak−h

ak
)p

∑
k∈Z

|ak|α
, λp =

∑
k∈Z

a<α>
k (

ak−h
ak

)p

∑
k∈Z

|ak|α
,

where y<α> = sign(y)|y|α for any y ∈ R. Using his results together with the fact that the

coefficients of the MA(∞) representation of a MAR(1,1) process, Xt =
∞
∑

k=−∞
akεt−k, satisfy

ak =
ϕ◦k

1− ϕ◦ϕ•
if k ≥ 0,

ak =
ϕ•−k

1− ϕ◦ϕ•
otherwise,

and calculus based on geometric series, one can easily obtain the results in Proposition 1.

Appendix B. PGP optimisation framework

We follow Aksarayah and Pala (2018) to implement the PGP model based on the first four

conditional moments of the return distribution. This approach is not subjected to a Taylor ap-

proximation (as the CRRA utility function case), but the weights it attributes to the portfolio

moments cannot be precisely related to the parameters of a utility function. In this case, the

wealth Wt of the investor is allocated at time t by solving conflicted multi objectives such as max-

imizing expected return and skewness and minimizing variance and kurtosis that are weighted
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with investor preferences. The PGP model can be defined as

min
(ω,h)

(
1 + |d1 − R∗|

)γ1
+
(

1 + |d2 −V∗|
)γ2

+
(

1 + |d3 − S∗|
)γ3

+
(

1 + |d4 − K∗|
)γ4

, (B.1)

s.t. R(ω,h) + d1 = R∗, V(ω,h) − d2 = V∗, S(ω,h) + d3 = S∗, K(ω,h) − d4 = K∗, di ≥ 0,

where R(ω,h), V(ω,h), S(ω,h), and K(ω,h) denote respectively the expectation, variance, skewness

and excess kurtosis of the returns Rt+H conditional on the price level Xt = x for a given strategy

(ω, h) defined as

Rω,h := E
[

Rt+H |Xt, St

]
, Vω,h := E

[
(Rt+H − Rω,h)

2|Xt, St

]
,

Sω,h := E
[
(Rt+H − Rω,h)

3/V3/2
ω,h |Xt, St

]
, Kω,h := E

[
(Rt+H − Rω,h)

4/V2
ω,h|Xt, St

]
− 3,

Besides, R∗, V∗, S∗, K∗ denote the optima of the subprograms max(ω,h) R(ω,h), min(ω,h) V(ω,h),

max(ω,h) S(ω,h), min(ω,h) K(ω,h), and the γi’s are non-negative parameters weighting the prefer-

ence of the investor to pursue optimality of one moment over the others.
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