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Abstract

This paper introduces a new multivariate model, dubbed Generalized Conditional Autore-
gressive Beta (GCAB) GARCH, for jointly modeling the time-varying slope coefficients in a
multiple regression conditionally heteroskedastic system. The model, which implies a structure
tailored to the linear asset pricing framework, allows the coexistence of constant and time-
varying betas, simplifies testing (or imposing) cross-sectional restrictions and, introduces new
mechanisms of propagation of shocks, namely beta spillovers, in a coherent, explicit and parsi-
monious way. We derive conditions for stationarity and uniform invertibility and, to mitigate
the problem of parameter proliferation in large dimensions, we provide estimators for beta
and covariance tracking. We propose a variety of parallel and sequential maximum likelihood
estimators and, we investigate their finite sample properties of by means of extensive Monte
Carlo experiments. Finally, the GCAB is used in the Fama-French three factors asset pricing
framework using real data.
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1 Introduction

The drawbacks of testing asset pricing models with constant parameters have been long estab-

lished in the literature. Wrongly assuming parameters constancy may lead to model misspec-

ification, inefficiency and bias in the measurements of risk exposure and premia, potentially

resulting in model rejection. Due to its intuitive appeal and ease of implementation, the 2-Pass

Cross-Sectional Regression approach, introduced by Fama and MacBeth (1973), still represents

a workhorse in the asset pricing literature. Time variation in the beta coefficients is attained

by least square estimation of a linear factor asset pricing model on a rolling sample, resulting in

dynamic properties of the conditional betas heavily determined by the estimation window size.

Furthermore, the rolling OLS makes it difficult to distinguish between sampling variability and

actual time variation in the beta coefficients.

To overcome these issues González et al. (2012) propose a linear beta pricing model with time-

varying risk exposures based on a mixed frequency approach. The conditional betas are estimated

using a kernel-based weighted realized variance estimator, which exploits high-frequency infor-

mation. The model does not require specifying the dynamics of the conditional betas, making it

unsuited for forecasting. Furthermore, the model assumes orthogonality of the risk factors, which

is often rejected in practice.

Hansen et al. (2014) also construct a model based on mixed frequencies which exploit additional

information coming from non-parametric realized measures of variances and correlations. How-

ever, because they model correlations directly, individually, and independently from the variances,

they cannot explicitly enforce restrictions ensuring positive definiteness of the covariance matrix

of the factors-assets system beyond the bivariate dimension.

Recently Engle (2016) proposed to model dynamic conditional betas using dynamic conditional

correlations (DCB-DCC). In the DCB-DCC model, the betas are recovered as a (non-linear)

transformation of the conditional covariance matrix of the joint factors-assets system. While

easy to implement, this indirect specification does not allow to identify the relevant drivers of the

betas’ evolution. Also, this modeling approach makes the coexistence of dynamic and constant

betas challenging because constancy of the betas, or some of them, requires constraints on the

structure of the conditional covariance matrix itself and not simply on the parameters govern-

ing its dynamics. Indeed, the constancy constraint is imposed a priori and, then statistically
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validated ex-post, rather than via testable parameter restrictions on the conditional covariance

dynamics.

In a recent paper, Darolles et al. (2018) propose a model for time-varying betas based on the

Cholesky decomposition of the conditional covariance matrix of the factors-assets system. In

their model, dubbed Cholesky-GARCH (CHAR), they explicitly specify the dynamics of the

conditional betas by means of a parametric model. This simplifies the coexistence of constant

and time-varying betas which can be recovered via simple parameter restrictions. The authors

show that the CHAR proves superior to the DCB-DCC in terms of forecasting and beta hedging.

However, in asset pricing applications, the CHAR model shows limitations stemming from the

plain triangular Cholesky decomposition and more so when the cross-sectional dimension of the

number of assets is large. Indeed, the CHAR is subject to dependence on the causal ordering of

the coordinates implied by the Cholesky factorization. This means imposing a structure not just

between factors and assets (which is natural), but also within the set of factors and the set of

assets (which instead is arbitrary). As a consequence, the model is not invariant to permutation

of the elements within each set. Also, because of the structure imposed within the set of assets,

a linear asset pricing interpretation of the conditional mean of the assets is straightforward only

when the system considered consists of possibly multiple risk factors but only a single asset.

When multiple assets are considered, the triangular structure of the model introduces nuisance

conditional betas, merely accounting for the correlation between assets, whose number increases

quadratically with the number of assets. The presence of nuisance betas is not only unnatural

in the asset pricing framework, but also inevitably rises the problem of parameter proliferation

in large systems.1 In asset pricing applications, Darolles et al. (2018) avoid the problem by

marginalizing the distribution of the multi-asset system iteratively, isolating risk factors and a

single asset at the time. Although valid, this approach limits the type of hypotheses on the asset

pricing model that can be tested, particularly restrictions on the cross-section of assets.

Inspired by the recent literature, we introduce a new model tagged Generalized Conditional Au-

toregressive Beta (GCAB). The GCAB achieves orthogonalization between two sets of variables,

in the asset pricing context the risk factors and the investment assets, via a Block-Cholesky de-

1For instance, in a system with k risk factors and n assets, the CHAR requires (k+n)[(k+n)−1]/2 conditional
betas, kn of which are ”relevant” betas, i.e. measuring the exposure of assets to risk factors, while n(n− 1)/2 are
”nuisance” betas linking assets to assets (as well as k(k − 1)/2 betas are nuisance conditional betas linking risk
factors to risk factors).
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composition of the system covariance matrix. This provides several direct advantages.

First, the GCAB entails a causal ordering between the sets of factors and assets, i.e. it preserves

the natural hierarchy existing between risk factors and assets, without imposing a structure within

each set of variables. Consequently, the model is invariant to permutations of the coordinates in

each set.

Second, in the asset pricing framework, the GCAB allows for a coherent and parsimonious multi-

variate evaluation of a multi-asset system. More precisely, the GCAB only requires modeling the

conditional betas measuring the exposure of assets to risk factors, whose number grows linearly

in the number of assets. Co-movements between variables, in each block, are instead modeled

explicitly via time-varying covariances or correlations.

Third, a consequence of the triangular decomposition of the CHAR is that the magnitude of the

orthogonalized innovations tends to vanish by construction as the size of the system increases and

the higher the system’s correlation. Because such innovations drive the conditional betas, this

can potentially impact their dynamics in an undesirable way. The block orthogonalization of the

GCAB, instead, only underlies a reduction of the magnitude of the orthogonalized innovations

between the two blocks, while preserving it within each block independently of their size.

Fourth, our model introduces spillovers effects in the conditional beta dynamics in an explicit,

symmetric and immediately interpretable way. Mirroring the dual nature of the block decompo-

sition, we isolate two different sources of spillovers originating from factors or assets. A factor

spillover occurs when shocks to the exposures of asset i to factor m causes a lagged impact on

the exposure of asset i to factor j 6= m. Similarly, asset spillovers represent the transmission on

the exposure of asset i to factor j of changes in the exposure of competing assets n 6= i, to the

same factor j. Beta spillovers mimic a transmission mechanism similar, yet more complex, to the

covariance/correlation spillovers familiar in the multivariate GARCH literature. Asset spillovers

can act across any pair of assets because the block structure allows modelling their cross-section

jointly and symmetrically in terms of cross sectional interactions. In this sense, our model by-

passes the causal ordering of the coordinates imposed by the triangular structure of the CHAR,

and thus its inherent sequentiality.

After introducing our generalized conditional beta specification and various specific sub-models,

we study conditions for stationarity and uniform invertibility. Also, we provide solutions to the

parameter proliferation problem in large dimensions in the form of beta tracking and block-
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orthogonalized innovations’ covariance targeting. Concerning computational feasibility, we dis-

cuss alternative multi-step estimators computationally more convenient than the full quasi max-

imum estimator in large cross-sectional dimensions. We illustrate the finite sample properties of

such estimators by Monte Carlo simulation.

We test our model in the context of the Fama and French (1993) three-factor framework. The

empirical application aims at benchmarking a conditional beta specification driven only by id-

iosyncratic shocks against three alternative specifications accounting for beta spillovers. We

perform a comprehensive historical analysis of the bivariate asset system composed of the Coal

and Petroleum-Natural Gas value-weighted industry portfolios studied over a period spanning

from January 1, 1927, to November 30, 2020. Besides time variation in all the conditional betas,

we find compelling evidence of both factor and asset spillovers. More specifically, for the Coal

industry portfolio, we find significant spillovers of the size factor on the exposure to the market

factor as well as asset spillovers on exposure to the value factor. For the Petroleum-Natural

Gas portfolio, the size factor significantly impacts the exposure to the market factor. Significant

market and asset spillovers are found in the exposure to both the size and the value factors.

The rest of the paper is organized as follows. Section 2 briefly introduces the notation and op-

erators used throughout the paper. Section 3 describes the model while Section 4 discusses a

generalized conditional beta specification, several sub-models obtained under parameter restric-

tions, the model’s theoretical properties. Monte Carlo simulations results are reported in Section

5 and the empirical application in Section 6. Finally, Section 7 concludes.

2 Notation

We make use of the following matrix notation and operators. For any matrix A partitioned in

blocks, we denote Aij the ij-th block of A and, aij,[kl] the kl element of the ij-th block of A.

The same notation, albeit using a single index, is used to denote a vector’s partitions and its

elements. We denote I(c) the identity matrix of size c, e(r) the r × 1 unit vector, 0(r×c) the null

matrix of size r × c and 0(r) denotes the null vector of size r × 1. Furthermore, we denote the

matrix square root operator, A1/2, any factorization of a positive-definite matrix A such that

A = A1/2
(
A1/2

)′
. For a square matrix A, a = vech

(
A(c)

)
defines the c(c + 1)/2 × 1 vector

that stacks the lower triangular portion, including the main diagonal, of A. Similarly, define
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a = vec(A), the rc× 1 vectorization of an r× c matrix A obtained by stacking its columns, and

denote A = vec−1
(r×c)(a) its inverse. Also, we define a = diag

(
A(c)

)
the c × 1 vector holding the

main diagonal of A(c).

For any two vectors a of size r × 1 and b of size c × 1, a ⊗ b = vec (ab′), where ⊗ denotes

the Kroneker product. Using standard notation, � denotes the Hadamard entry-wise product,

with A�k its k-th power and A�−1 its inverse satisfying A � A�−1 = e(r)e
′

(c). Finally, It−1

denotes the information set generated by past values of xt and, Et−1[xt] = E[xt|It−1], the condi-

tional expectation operator. Also, for any two random vectors x1,t and x2,t, x1,t ⊥ x2,t denotes

E
[
x1,tx

′
2,t

]
= 0, i.e. x1,t is statistically orthogonal to x2,t.

3 Model setup

Let εt = Σ
1/2
t ηt, be a vector of heteroskedastic random variables, with conditional covariance

matrix Σt = E
[
εtε

′
t|It−1;θ

]
, positive-definite, It−1-measurable and depending on a vector of

parameters θ ∈ Θ convex and, with ηt an independent and identically distributed random vector

with zero mean and identity covariance matrix.

In linear asset pricing applications the elements of εt are categorized in two groups: k market-

wide risk factors and n investment assets returns. These applications aim at quantifying the

dependence, also called the exposure, of each investment assets to the risk factors. Because such

exposures are typically modeled in a linear regression framework, in the financial literature they

are commonly referred to as the assets’ ”betas”. Endowed with this categorization, we partition

accordingly the elements of εt, Σt and ηt into two blocks respectively of size k and n, that is

εt =

 ε1,t

ε2,t

 , Σt =

 Σ11,t Σ
′
12,t

Σ12,t Σ22,t

 , ηt =

 η1,t

η2,t

 . (1)

Because Σt is symmetric and positive definite, a conformable block Cholesky decomposition yields

Σt = LtStL
′
t ≡

 I(k) 0(k×n)

Bt I(n)

 S11,t 0(k×n)

0(n×k) S22,t

 I(k) B
′
t

0(n×k) I(n)

 , (2)

where Lt is lower unit-triangular holding its identity matrix on the diagonal blocks, with inverse

L−1
t =

 I(k) 0(k×n)

−Bt I(n),

, and where St admits St = S1/2
t

(
S1/2
t

)′
, because its diagonal blocks,
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S11,t = Σ11,t and S22,t, the Schur complement of Σ22,t, are symmetric and positive-definite.

Hence, it holds

L−1
t εt = S1/2

t ηt, (3)

or more explicitly ε1,t = S1/2
11,tη1,t, and ε2,t = Btε1,t + S1/2

22,tη2,t. Each row of the n× k matrix Bt

collects the time-varying coefficients, i.e. the conditional betas, of the multivariate heteroskedastic

regressions of ε2,[i],t on ε1,t, i ∈ [1, n]. This construction has several advantages: the model is

invariant to permutations of the elements within each block while maintaining the causal ordering

between blocks (ε1,t causes ε2,t), the conditional betas can be modeled jointly (facilitating e.g.

imposing cross-sectional constraints, modeling cross-feedback), the correlation structure of the

first block and that of the beta neutralized second block are explicitly modeled.

The conditional covariance matrices S11,t and S22,t, as well as the conditional beta matrix Bt

are assumed to be It−1-measurable dynamic processes. In the reminder of the paper we assume

S11,t and S22,t following each a distinct stationary multivariate GARCH process, see Bauwens

et al. (2006), Silvennoinen and Terasvirta (2009) and Boudt et al. (2019) for surveys. Finally, it

is worth stressing that positive definiteness of S11,t and S22,t, together with (2) ensures positive

definiteness of Σt, ∀t, for any Bt ∈ Rn×k. Hence, this setup does not require imposing any

restriction on the sign and size of the elements of Bt.
2 Dynamics of Bt and its properties are

discussed in the next Section.

4 Generalized Conditional Autoregressive Beta dynamics

For the It−1-measurable process Bt we propose the recurrence

Bt = Ψ +

vec−1
(k×n)

 P∑
p=1

Ωp (v2,t−p ⊗ v1,t−p) +

Q∑
q=1

Γqvec
(
B

′
t−q

)′

, (4)

where Ψ (of dimension n× k), Ωp and Γq (both of dimension nk × nk) are matrices of static

parameters. Bt is updated via the outer products of past block-orthogonal innovations, namely

v1,t = ε1,t and v2,t = ε2,t −Btε1,t, respectively. This choice relates to Koopman et al. (2013), in

that the product of block-orthogonal innovations is proportional to the updating term emerging

in their score-driven time-varying parameter regression framework.

2Parameter restriction ensuring positive definiteness of S11,t, and S22,t depend on the specific model chosen and
are extensively discussed in the mentioned references.
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Remark 1 An advantage of (4) is that the coexistence of constant and time-varying betas achiev-
able via simple parameters restrictions. Denoting ωs,p (γs,p) the s-th row of Ωp (Γp), the restric-
tion ωs,p = γs,p = 0(nk) for some s ∈ [1, nk] and ∀p, implies βs,t = βs, for the s-th element of β =

vech
(
B

′
t

)
. Also, (4) nests the constant beta marginal regression ε2,[i],t =

∑k
j=1 βijε1,[j],t + v2,[i],t

for some i ∈ [1, n]. Denoting Ωij,p (Γij,p) the (i, j) k × k block of Ωp (Γp), this is achieved when
Ωij,p = Γij,p = 0(k×k) ∀j ∈ [1, n] and ∀p. Obviously, nullity of Ωp (thus Γp) ∀p implies constancy
of all elements of Bt. By construction, (3) reduces to the constant parameters heteroskedastic
multiple linear regressions framework, i.e. Bt = Ψ = E [Σ12,t] E [Σ11,t]

−1.

The inclusion of all cross-products of the elements of v1,t and v2,t, as well as lagged betas, totals

nk(1 + 2nk(P + Q)) static parameters. This makes (4) very general, but also computationally

cumbersome in large dimensions. We next discuss restrictions which yield more parsimonious

specifications suited to financial applications. These parameterisations fall in two categories:

betas driven solely by idiosyncratic shocks and beta spillovers. Without loss of generality and to

simplify the notation, we fix lag orders to P = Q = 1.

4.1 Betas driven solely by idiosyncratic shocks

The dynamics of βij,t is driven solely by the corresponding (idiosyncratic) updating term v2,[i],t−pv1,[j],t−p

and own lag. This restriction renders the model feasible in very large cross-sectional dimensions

(both k and n) and, it is comparable in essence e.g. to the scalar/diagonal restriction of the BEKK

model of Engle and Kroner (1995) or the scalar dynamics of the DCC model of Engle (2002). In

this first category, listed from most to least restricted, we find the following sub-models (in the

reminder of the paper the label in parentheses will be used to refer to the particular sub-model):

Scalar (4.i): Our most parsimonious parameterisation, tailored to accommodate large cross-

sectional dimensions. It imposes common dynamics of βij,t for all i and j. It is obtained from

(4) under the restrictions Ω = ωI(nk) and Γ = γI(nk).

Semi-scalar (4.ii): It is a scalar model in the columns of Bt. For each j = 1, . . . , k, βij,t shares

the same dynamics across all i ∈ [1, n]. It is obtained under the restrictions Ω = I(n) ⊗ Ω and

Γ = I(n) ⊗ Γ where Ω and Γ are k × k diagonal matrices.

Heterogeneous (4.iii): Each element βij,t is driven by its own set of parameters. It is obtained

under diagonality of Ω and Γ. Under this restriction (4) can be equivalently expressed, using the

Hadamard product, as:

Bt = Ψ +
(
Ω̃� v2,t−1v

′
1,t−1

)
+
(
Γ̃�Bt−1

)
, (4.iii)
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where Ω̃ =
[
vec−1

(k×n) (diag (Ω))
]′

and Γ̃ =
[
vec−1

(k×n) (diag (Γ))
]′

. This model strikes a good

compromise between flexibility and feasibility in large dimension.3

4.2 Beta Spillovers

Spillovers on βij,t are introduced via the products v2,[r],t−pv1,[s],t−p, {r, s} 6= {i, j} and correspond-

ing lagged betas. Mirroring the partition in (1), we isolate two sources of spillovers, dubbed factor

and asset, in explicit reference to the aforementioned role of ε1,t and ε2,t in asset pricing appli-

cations. A factor spillover occurs when shocks to the exposures of asset i ∈ [1, n] to factor

m ∈ [1, k] causes a lagged impact on the exposure of asset i to factor j 6= m , i.e. βij,t. Similarly,

asset spillovers represent the transmission on βij,t of changes in the exposure of competing assets

m ∈ [1, n],m 6= i to factor j. Beta spillover mimic a transmission mechanism similar, yet more

complex, to covariance/correlation spillovers, familiar in the multivariate GARCH literature.

Factor spillovers (4.iv): Spillovers on βij,t act via the products
{
v2,[i],t−1v1,[s],t−1

}
s=1,...,k,s 6=j and

lagged betas {βis,t−1}s=1,...,k,s6=j . To obtain this model, Ω and Γ in (4) are block diagonal with

n blocks of size k × k on the main diagonal, i.e. Ωij = Γij = 0(k×k) i, j ∈ [1, n], i 6= j.

Asset spillovers (4.v): Spillovers on βij,t enter via
{
v2,[s],t−1v1,[j],t−1

}
s=1,...n,s 6=j and lagged betas

{βsj,t−1}s=1,...n,s 6=j . This model is obtained when Ω and Γ are n × n block matrices with k × k

diagonal blocks. Since all blocks are diagonal, we can define a nk × nk permutation matrix P

such that Ω∗ = PΩP
′

is block diagonal with n× n blocks on the main diagonal. By reordering

accordingly the terms in (4), this sub-model can be written alternatively as

Bt = Ψ + vec−1
(n×k)

(
Ω∗ (v1,t−1 ⊗ v2,t−1) + Γ∗vec (Bt−1)

)
, (4.v)

where Ω∗ and Γ∗ are such that Ω∗ij = Γ∗ij = 0(n×n) i, j ∈ [1, k], i 6= j.

Factor & asset spillovers (4.vi): This empirically relevant parameterisation mixes both types of

spillovers described above. Ω and Γ in (4) are n × n block matrices with blocks Ωij and Γij of

size k × k. These blocks are full matrices if i = j and diagonal matrices if i 6= j, i, j ∈ [1, n].

4.3 Stationarity, targeting and uniform invertibility

In this Section we derive the statistical properties of the model (3)-(4). Where possible, we also

provide explicit results for the sub-models in Section 4.1 and 4.2. All proofs are in the Appendix.

3Alternatively (4.i) can be obtained from (4.iii) when Ω̃ = ωe(n)e
′
(k) and Γ̃ = γe(n)e

′
(k). Similarly, (4.ii) can be

obtained from (4.iii) under the restrictions Ω̃ = e(n)ω
′

and Γ̃ = e(n)γ
′
, where ω and γ are k × 1 vectors.
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Theorem 1 (Stationarity) Under the following conditions:

C.1) zt = (z1,t, z2,t) with zi,t = (vi,t, vec (Sii,t))
′

for i = 1, 2, is stationary and ergodic;

C.2) |ΓQ(z)| =
∣∣∣I(nk×nk) −

∑Q
q=1 Γqz

q
∣∣∣ 6= 0 for all |z| ≤ 1,

then: (a) Bt, is stationary and ergodic, (b) B ≡ E[Bt] =
[
vec−1

(k×n)

(
ΓQ(1)−1 vec

(
Ψ

′
))]′

, (c) a

stationary ergodic solution εt = (ε1,t, ε2,t)
′

with ε1,t = v1,t and ε2,t =
(
Bt, I(n)

)
(v1,t,v2,t)

′
exists.

For the six sub-models in Section 4.1 and 4.2, condition C.2 can be written more explicitly. To

this end, denote λmaxj (A)+ the largest absolute eigenvalue of A.

Corollary 1 Condition C.2 simplifies to: (a) |γ| < 1 for (4.i), (b) max
s∈[1,k]

|γss| < 1 (largest

absolute diagonal element of Γ) for (4.ii), (c) max
s∈[1,kn]

|γss| < 1 (largest absolute diagonal element

of Γ) for (4.iii), (d) max
i∈[1,n]

λmaxi (Γii)
+ < 1 where Γii is the i-th k × k diagonal block of Γ for

(4.iv), (e) max
j∈[1,k]

λmaxj (Γ∗jj)
+ < 1, where Γ∗jj is the j-th n× n diagonal block of Γ∗ for (4.v), (f)

λmax(Γ)+ < 1 for (4.vi).

Even under the most parsimonious specifications, (4) is subject to the curse of dimensionality

because of the n × k intercept Ψ. However, provided a sample estimator for E[Bt] is available,

Theorem 1 (b) delivers a simple way to reduce the parameter space by means of beta targeting.

To this end, let us consider the unconditional covariance between ε1,t and ε2,t. Using (3) and

recalling v1,t = ε1,t and v2,t = ε2,t−Btε1,t, then E
[
ε2,tε

′
1,t

]
≡ Σ21 = E

[
Btv1,tv

′
1,t

]
+ E[v2,tv

′
1,t].

By the law of iterated expectations and the block orthogonality, Σ21 = E [BtS11,t].

Theorem 2 (OLS targeting) For the stationary model (3)-(4), condition

C.3) vt = (v1,t,v2,t)
′ | It−1 ∼ N

(
0(k+n),St

)
is multivariate normally distributed and ∂Sii,t/∂vj,t−s =

0, ∀s > 0, i, j ∈ [1, 2], i 6= j

is sufficient to ensure E [BtS11,t] = BΣ11 and Ψ =
[
vec−1

(k×n)

(
ΓQ(1)vec

(
Σ−1

11 Σ12

))]′
.

Condition C.3 ensures that Bt and S11,t are unconditionally uncorrelated. Theorem 2 shows

that (3)-(4) is internally consistent in that the unconditional level of Bt equals the constant slope

regression coefficients, i.e. E[Bt] ≡ B = Σ21Σ
−1
11 , constructed via the unconditional version of

(2). This favorable property provides a simple estimator for beta targeting, namely the ordinary

least square.
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We now elaborate on the possibility of covariance tracking for the second block system as a further

layer of reduction of the parameter space. From (2) we obtain E
[
ε1,tε

′
1,t

]
≡ Σ11 = E[S11,t] and,

under Theorem 2, E
[
ε2,tε

′
1,t

]
≡ Σ21 = BΣ11. For the remaining block of E

[
εtε

′
t

]
we have:

E
[
ε2,tε

′
2,t

]
≡ Σ22 = E

[
BtΣ11,tB

′
t

]
+ E [S22,t] .

Second block covariance tracking requires availability of a sample estimator for E[S22,t]. A natural

candidate would be the Schur complement of Σ22, i.e. Σ22−Σ21Σ
−1
11 Σ12. However this estimator

is not in general unbiased for E[S22,t], except for the limit case of constant beta, because it ignores

the time variation in Bt.

The unconditional covariance matrix E [S22,t] expressed in terms of the model’s parameters and

sample moments, is in general a highly complicated function which depends on 6-th order mo-

ments of the joint distribution of v1,t and the unobserved v2,t. For sake of completeness, though

limited by analytical tractability, we derive a semi-non-parametric estimator for S22 under the

baseline beta specification (4.iii).

Theorem 3 (Second block covariance targeting) For the stationary model (3)-(4.iii), un-
der condition C.3, E[S22,t] is given by:

E[S22,t] = A�−1 �
(
Σ22 −Σ21Σ

−1
11 Σ12

)
, (5)

where A =
(
e(n)e

′

(n) +
∑∞

s=0As
)

is finite and symmetric, {As}∞s=0 is an element-wise expo-

nentially decaying sequence of matrices with typical element αij,s = ai,sRsa
′
j,s, i, j = 1, . . . , n,

s = 0, . . . ,∞ and where ai,s is the i-th row of the matrix of parameters As = Ω̃ � Γ̃
�s

and,

Rs = E
[(

v1,t−s−1v
′
1,t−s−1

)
�
(
v1,tv

′
1,t

)]
with lims→∞Rs = Σ�2

11 .

Theorem 3 shows that, in presence of time variation in the betas, the unconditional variance of

v2,t is a scaled version of the Schur complement of Σ22. Also, as mentioned above, in the limiting

case Ω̃ = 0, i.e. Bt = B, ∀t, then A = e(n)e
′

(n) and E[S22,t] = Σ22−Σ21Σ
−1
11 Σ12 which conforms

with the constant parameter regression case. The blocks of the unconditional covariance matrix

Σ ≡ E(εtε
′
t) in (5) can be estimated non-parametrically by the corresponding sample estimators.

Furthermore, Rs, which relates to the (s+ 1)−th order element-wise autocovariance function of

the outer product of first block innovations, can be estimated either via sample autocovariance

or, where analytically feasible, expressed in terms of the parameters of S11,t. To illustrate this, in

the following Corollary, we derive the explicit solution for the scaling factor A in a system with

k = 1 and arbitrary n ≥ 1 and, where the (univariate) first block process is a GARCH(1,1).

10



Corollary 2 For the stationary model (3)-(4.iii) with dimensions k = 1 and n ≥ 1, i.e. εt =

(v1,t,Btv1,t + v2,t)
′
|It−1 ∼ N

(
0(1+n),St

)
, Bt = B�

(
e(n) − Γ̃

)
+ Ω̃�

(
v2,t−1v

′
1,t−1

)
+ Γ̃�Bt−1

and S11,t = c+ τ1v
2
1,t−1 + δ1S11,t−1, it holds:

Rs ≡ E
[
v2

1,tv
2
1,t−s−1

]
= (τ1 + δ1)s+1

(
µ4 − µ2

2

)
κ+ µ2

2, s ∈ [0,∞), (6)

where µ2 ≡ E
[
v2

1,t

]
= c

1−τ1−δ1 , µ4 ≡ E
[
v4

1,t

]
=

3µ22(1−(τ1+δ1)2)

1−δ21−3τ21−2τ1δ1
and κ = τ1(1−δ1(τ1+δ1))

(1−2τ1δ1−δ21)(τ1+δ1)
. The

explicit solution for the (ij)-th element of A is

αij = 1 + ωiωj

(
(τ1 + δ1)

(
µ4 − µ2

2

)
κ

1− γiγj (τ1 + δ1)
+

µ2
2

1− γiγj

)
, (7)

where ωi and γi, i ∈ [1, n] are the elements of the n× 1 matrices of parameters Ω̃ and Γ̃.

Remark 2 Theorem 3 and Corollary 2 directly extend to the sub-models (4.i) and (4.ii).

Lastly, we provide conditions for uniform invertibility of (4), i.e. asymptotic irrelevance of initial

states, which is a desirable property for both stability of the estimation and prediction. Let define

Bt(θ; B0) ∀t > 0, for any θ and for an arbitrary random initial state B0. Then (4) is uniformly

invertible if Bt(θ; B0) is consistently approximated by the It−1-measurable function Bt(θ).

Theorem 4 (Uniform invertibility) A sufficient condition for uniform invertibility of (4) is:

ςΓ + ςΩ

k∑
i=1

E
[
ε21,[i],1

]
< 1, (8)

where ςΓ = ςmax(Γ) and ςΩ = ςmax(Ω) are the largest singular value of Γ and Ω.

Corollary 3 For the sub-models in Section 4.1 and 4.2, equation (8) further simplifies to: (a)
ςΓ = |γ|, ςΩ = |ω| for(4.i), (b) ςΓ = max

s∈[1,k]
|γss|, ςΩ = max

s∈[1,k]
|ωss| (largest absolute diagonal

elements of Γ and Ω) for (4.ii), (c) ςΓ = max
s∈[1,nk]

|γss|, ςΩ = max
s∈[1,nk]

|ωss| (largest absolute diagonal

elements of Γ and Ω for (4.iii), (d) ςΓ = max
i∈[1,n]

ςmax(Γii) and ςΩ = max
i∈[1,n]

ςmax(Ωii), (Γii and Ωii

are the corresponding k × k diagonal blocks of Γ and Ω) for (4.iv), (e) ςΓ = max
j∈[1,k]

ςmax

(
Γ∗

′
jj

)
and ςΩ = max

j∈[1,k]
ςmax

(
Ω∗

′
jj

)
(Γ∗jj and Ω∗jj are the corresponding n × n diagonal blocks of the

diagonalizations of Γ and Ω) for (4.v). For (4.vi) condition (8) cannot be further simplified.

Remark 3 Although more explicit than the general conditions for stochastic recurrences with
non-i.i.d. stationary coefficients given in Brandt (1986), the sufficient condition in (8) is likely
to be overly conservative in practice. This is because it is an upper bound obtained chaining
transformations and norm inequalities.
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4.4 Estimation

Consistency and asymptotic normality of the full quasi maximum likelihood estimator (QMLE)

of (3)-(4) directly extends from Darolles et al. (2018).4 In this Section, we discuss alternative

multi-step QML estimators (parallel and sequential) computationally more efficient than the full

QMLE in large cross-sectional dimensions. Finite sample performances of these estimators are

studied in Section 5.

Denote φ (εt; Σt(θ)) the probability density function of a multivariate normally distributed ran-

dom vector εt with covariance matrix Σt(θ) depending on a parameter vector θ ∈ Θ, where Θ

is a compact parameter space containing the population value of θ.

Let θ = (θ1,θ2)
′
, a partition of the parameter vector according to the two sub-systems in (3).

Furthermore, let us partition each of the vectors θs =
(
θ−s ,θ

C
s

)
, s = 1, 2 where the θ−s is

the subset of parameters of the marginal distributions of vs,t, and θC
s is the parameter vector

of the Gaussian copula C
(
ξs,t; Cs,t

(
θC
s

))
, with ξs,t = (I� Sss,t)−1/2 vs,t, and Cs,t

(
θC
s

)
the

conditional correlation implied by Sss,t. Then φ (εt; Σt(θ)) can be factorized as follows:

φ (εt; Σt(θ)) = φ (v1,t;S11,t(θ1))φ (v2,t;S22,t(θ2),Bt(θ2)|ε1,t,θ1) (9)

=

[
k∏
i=1

φ
(
v1,[i],t;S11,[ii],t(θ

−
1 )
)]

C
(
ξ1,t; C1,t

(
θC

1

))
× n∏

j=1

φ
(
v2,[j],t;S22,[jj],t(θ

−
2 ),bj,t(θ

−
2 )|v1,t,θ

−
1

)C
(
ξ2,t; C2,t

(
θC

2

))
(10)

where v1,t = ε1,t, v2,t = ε2,t −Btε1,t and bj,t is the j-th row of Bt, j = 1, . . . , n.

The first two approaches that we propose are based on factorization (9). While the last three are

based on (10). Although they progressively reduce the complexity of the optimization problem, to

be feasible they restrict the dynamics of S11,t, S22,t and Bt, in terms of cross-sectional interactions

and constraints.

Method 1 (Full quasi-maximum likelihood estimator, M1) . This method is based on di-

4To see this, notice that in a bivariate system, i.e. n = k = 1, the two models perfectly overlap. This is
because trivially standard and block Cholesky decomposition yield the same structure. The difference between
the two approaches emerges from the fact that, starting from the bivariate system, to increase the cross-sectional
dimension Darolles et al. (2018) populate the system before the orthogonalization. Contrary, we first operate the
orthogonalization of a bivariate system and then we populate each block. Although, as n > 1∪k > 1, the structure
imposed on εt by two models diverges, (3)-(4) remains in nature a bivariate system regardless of the dimension of
the two blocks.
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rect maximization of equation (9):

θ̂ = argmax
Θ

T∏
t=1

φ (v1,t;S11,t (θ1))φ (v2,t;S22,t (θ2) ,Bt(θ2)|v1,t,θ1) , (M1)

where the factorization of the the joint density in M1 stems directly from (2).

Method 2 (Two-step block-by-block estimator, M2) . This method is based on the fac-
torization in equation (9):

θ̂1 = argmax
Θ

T∏
t=1

φ (v1,t;S11,t(θ1)) ,

θ̂2 = argmax
Θ

T∏
t=1

φ (v2,t;S22,t(θ2),Bt(θ2)|v1,t,θ1) .

(M2)

M2 is feasible whenever ∂S11,t/∂v2,t−s = 0. It is identical toM1 if (additionally) ∂S22,t/∂v1,t−s =
0 ∩ ∂Bt/∂v1,t−s = 0. Otherwise, M2 can be implemented sequentially, albeit entailing a loss of
efficiency wrt M1.

Method 3 (Joint estimation of marginal distributions, M3) This method is based on the
joint maximization of the marginals in equation (10):

θ̂
−

= argmax
Θ

T∏
t=1

 k∏
i=1

φ
(
v1,[i],t;S11,[ii],t

(
θ−1
))
×

n∏
j=1

φ
(
v2,[j],t;S22,[jj],t(θ

−
2 ),bj,t

(
θ−2
)
|v1,t,θ

−
1

) .
(M3)

Method 4 (Estimation block-by-block via marginal distributions, M4) . This method
is based on the block factorization of the marginals in equation (10):

θ̂
−
1 = argmax

Θ

T∏
t=1

k∏
i=1

φ
(
v1,[i],t;S11,[ii],t(θ

−
1 )
)
,

θ̂
−
2 = argmax

Θ

T∏
t=1

n∏
j=1

φ
(
v2,[j],t;S22,[jj],t(θ

−
2 ),bj,t(θ

−
2 )|v1,t,θ

−
1

)
.

(M4)

This method requires ∂S11,t/∂v2,t−s = 0. It is identical to M3 when S22,t and Bt do not depend
on θ1, otherwise is a sequential estimator.

Method 5 (Estimation equation-by-equation, M5) This method is based on element-wise

factorization of the distribution of (v1,t,v2,t)
′
:

θ̂
−

=


argmax

Θ

T∏
t=1

φ
(
v1,i,t;S11,[ii],t(θ

−
1,i)
)
, i = 1, . . . , k,

argmax
Θ

T∏
t=1

φ
(
v2,j,t;S22,[jj],t(θ

−
2,j),bj,t(θ

−
j )|v1,t,θ

−
1

)
, j = 1, . . . , n,

(M5)
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where θ−s,i is the subset of θ−s driving the i-th diagonal element of Sss,t, s = 1, 2. To be feasible,
this approach requires S11,t, S22,t and Bt to entail minimal or no cross-sectional interactions and
parameter restrictions.

Remark 4 M5 relies on the highest degree of likelihood factorization. It is the most computa-
tionally efficient method in large dimensions because, by breaking the estimation in nk univariate
problems, it avoids the inversion of large matrices. This method is feasible when Bt follows (4.i),
(4.ii), (4.iii) or (4.iv) and in absence of spillovers in the dynamics of S11,t and S22,t. For the
sub-models (4.v) and (4.vi), M5 remains feasible provided that asset spillovers are restricted to
act solely via the updating term.

The last three methods, M3, M4 and M5, are appealing when the correlations implied by S11,t

and S22,t are not directly of interest (nuisance), see Francq and Zakoian (2016) for a related

approach. Otherwise, these methods can be used as a preliminary step to the estimation of

the conditional covariances/correlations implied by S11,t and S22,t. The off-diagonal elements of

S11,t and S22,t can then be obtained by filtering (e.g scalar or diagonal BEKK) or they can be

estimated in an additional step using C
(
ξs,t; Cs,t

(
θC
s

))
(e.g. conditional correlation models, of

Bollerslev, 1990, Engle, 2002 and Aielli, 2013). Such multi-step approach simplifies the second

block covariance targeting because knowledge of the diagonal elements of S22 allows targeting

the off-diagonal elements by means of sample estimators using prior step residuals, e.g. Ŝ22,[ij] =

T−1
∑T

t=1 v̂2,[i],tv̂2,[j],t, i, j = 1, . . . , n and i 6= j.

4.5 Remarks on devolatilized innovations

In the specifications discussed in Section 4, Bt is updated via the products of past orthogonal

shocks, v1,t and v2,t. However, in highly correlated systems, the relative scale of such shocks

can be strongly skewed, with the variance of v2,t shrinking with the magnitude of the correlation

between ε2,t and ε1,t. To mitigate this effect, but also reduce the impact of abnormally large

shocks on Bt, which are common in empirical applications, we propose to let the conditional

betas depend on the product of devolatilized innovations, defined as ξs,t = (I� Sss,t)−1/2 vs,t,

s = 1, 2. In this case, stationarity conditions and beta targeting, discussed in Section 4.3, remain

valid. However, the use of
(
ξ2,t ⊗ ξ1,t

)
in (4) results in non explicit invertibility conditions

because these products are related to past observations through highly nonlinear recursions, and

less intuitive 2nd step covariance targeting.

Theorem 5 For model (3)-(4) with Bt updated by (ξ2,t⊗ ξ1,t) the following properties hold: (a)

|ΓQ(z)| 6= 0 for all |z| ≤ 1, then Bt is stationary; (b) if (ξ1,t, ξ2,t)
′ |It−1 is multivariate normally
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distributed and ∂Sii,t/∂ξj,t−s = 0 ∀s > 0, i, j ∈ [1, 2] i 6= j, then E(Bt) ≡ B = Σ21Σ
−1
11 ; (c)

for the sub-model (4.iii), E(S22,t) = Σ22 − BΣ11B
′ − Rξ2

�
∑∞

s=0As, with As such that its

(ij)-th element αij,s = ai,sE
[
(ξ1,t−s−1ξ

′
1,t−s−1)� (v1,tv

′
1,t)
]

a
′
j,s, i, j ∈ [1, n], with ai,s defined in

Theorem 3, and where Rξ2
= E

[
ξ2,tξ

′
2,t

]
.

When Bt is updated using devolatilized orthogonal innovations, 2nd block covariance targeting

could reveal impractical in most cases. This is becauseRξ2
ultimately depends on the unobserved

v2,t. In fact, by the law of iterated expectations Rξ2
= E

[
(I� S22,t)

−1/2S22,t (I� S22,t)
−1/2

]
,

which makes the 2nd block covariance targeting the (non trivial) solution of E [S22,t] + E[(I �

S22,t)
−1/2S22,t(I� S22,t)

−1/2]�
∑∞

s=0As = Σ22 −BΣ11B
′
.

Remark 5 Because Rξ2
is unit diagonal by construction, 2nd block covariance targeting becomes

straightforward under marginalization, i.e. using any of the factorization M3, M4 and M5. In

this case Theorem 5 (c) simplifies to E [diag(S22,t)] = diag
(
Σ22 −BΣ11B

′ −
∑∞

s=0As
)

, where

all quantities on the right hand side can be estimated using observable data.

5 Monte Carlo study

In this Section, we perform three numerical exercises. The first illustrates Theorem 3 with a

numerical example based Corollary 2. We assess the impact of truncation in the 2nd block

covariance targeting estimator in a controlled setting where the closed-form solution of the infinite

sum in (5) is known. The second quantifies the efficiency loss entailed by beta and 2nd block

covariance targeting compared to the full QML estimator. The aim of the last simulation exercise

is twofold: i) compare the finite sample properties of the multi-step estimation methods discussed

in Section 4.4 to the full QML estimator and, ii) investigate the behavior of the QML estimator

when the beta dynamics are driven by devolatilized orthogonal shocks, defined in Section 4.5,

coupled with beta targeting.

5.1 Truncation in the 2nd block covariance targeting estimator

We consider the model (3)-(4.iii) with k = 1, n = 2 and with ηt ∼ i.i.d N(0, I). The conditional

covariances Sii,t, i = 1, 2, follow a GARCH(1,1) and a scalar BEKK(1,1), centered respectively

in S11 = 1 and vech(S22) = (1, 0.5, 1)
′
. The (2 × 1) process Bt is centered in B = (0.5, 0.5)

′
.

For simplicity, the pairs innovation/smoothing parameters in Sii,t, namely (τi, δi), i = 1, 2, and

in Bt, i.e. (ωj , γj), j ∈ [1, n], are restricted to be the same in all equations. We consider three
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sets of parameters, reflecting increasing persistence and smoothness: (0.04, 0.93), (0.02, 0.96) and

(0.01, 0.985).

Figure 1 shows Rs, As and the truncated sum 1 +
∑S

s=0As, defined in Theorem 3.5 The higher

the persistence in S11,t, the slower Rs converges to Σ�2
11 (panel (a)). This is because, according to

(6), the decay factor of Rs = E[v2
1,tv

2
1,t−s−1], namely 1− (τ1 + δ1), shrinks with the persistence of

Σ11,t. The sequence As decays towards zero faster than Rs because of the compounded effect of

ω2
j γ

2s
j (panel (b)). The truncated sum approaches the asymptotic limit A, which for this process

is explicitly given in (7), reasonably fast for all parameterisations (panel (c)). Furthermore,

as the degree of smoothness of Bt increases (i.e. (ωj/γj) → 0) we observe that, although the

convergence of the truncated sums gets slower, the scaling factor, A in (5), approaches the unit

lower bound.6 These results suggest that truncating A in (5) to computationally feasible levels

entails no substantial bias.
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(a) Rs s ∈ [1, 250]
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(b) As s ∈ [1, 100]
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(c) 1 +
∑S

s=0As, S ∈ [1, 250]

Figure 1: Rs, As, 1 +
∑S

s=0As (truncated sum) and its theoretical limit A, for the sets of innova-
tion/smoothing parameters: (0.04, 0.93) (solid black), (0.02, 0.96) (dotted blue) and (0.01, 0.985)
(dashed red).

5.2 Relative efficiency under beta and 2nd block covariance targeting

The data generating process is the same as in Section 5.1, but with cross-sectional dimension

increased to five (k = 3 and n = 2). Sii,t, i = 1, 2, follow scalar BEKK dynamics with S11,[jj] = 1

and S11,[jl] = 0.1, j 6= l, j, l ∈ [1, k] for the first block, S22,[jj] = 1 and S22,[jl] = 0.5, j 6= l, j, l ∈

[1, n] for the second block, respectively. Both covariance processes have innovation parameter

5The restriction of common parameters implies that the 2 × 2 symmetric matrix As (and thus its truncated
sums) has a single unique value.

6Although to a lower extent, the reduction in A is furthered the smoother S11,t, i.e. (τi/δi)→ 0.
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τi = 0.04 and smoothing δi = 0.93, i = 1, 2. The 2 × 3 matrices of parameters B, Ω and Γ, are

set such that βij = 0.5, ωij = 0.04, and γij = 0.93, i ∈ [1, n] and j ∈ [1, k]. Although, all betas

share common dynamics, all parameters in (4.iii) are estimated individually without imposing

equality restrictions. B is targeted using the least square estimator. For 2nd block covariance

targeting, the truncation in (5) is set to 100, while Rs = E
[(

v1,t−s−1v
′
1,t−s−1

)
�
(
v1,tv

′
1,t

)]
and

Σ22 = E[ε2,tε
′
2,t] are estimated by their sample counterpart. The four competing specifications

(unrestricted, B-targeting, S22-targeting and both) are estimated using M2. Because for this

data generating process the estimation problem is separable without efficiency loss, only second

block parameters are estimated.7 We consider three sample sizes, T = {1500, 3000, 6000}, and

5000 replication. Table 1 reports bias and root mean squared errors (RMSE) averaged across

Table 1: Finite sample properties of the full QML estimator vs. beta and 2nd block covariance targeting.
All reported values are multiplied by 100. The table reports BIAS and RMSE (both multiplied by
100) for the unrestricted intercepts (U/R), B-targeting (B), S22-targeting (S22), both (B,S22) and,
for sample size T = {1500, 3000, 6000}. The last row (# Par) reports the number of 2nd-block
parameters estimated by QML.

T=1500 T=3000 T=6000

U/R B S22 B,S22 U/R B S22 B,S22 U/R B S22 B,S22
BIAS

βij 0.04 0.04 0.02 0.04 0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.03
ωij 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01
γij -0.99 -0.95 -0.99 -0.96 -0.70 -0.68 -0.70 -0.68 -0.40 -0.38 -0.39 -0.38
S22,[ii] -0.36 -0.36 -0.43 -0.50 -0.19 -0.18 -0.22 -0.26 -0.11 -0.11 -0.13 -0.15
S22,[12] 0.20 0.18 0.25 0.18 0.05 0.05 0.09 0.05 0.03 0.03 0.07 0.05
τ2 0.03 0.00 0.02 -0.01 0.03 0.02 0.02 0.01 0.01 0.00 0.00 -0.00
δ2 -0.55 -0.52 -0.52 -0.50 -0.30 -0.29 -0.28 -0.27 -0.13 -0.13 -0.13 -0.12

RMSE

βij 3.84 4.28 3.89 4.28 2.77 3.12 2.82 3.12 1.95 2.22 1.99 2.22
ωij 1.26 1.26 1.26 1.25 0.90 0.90 0.90 0.90 0.63 0.63 0.63 0.63
γij 3.90 3.88 3.90 3.89 2.98 2.97 2.97 2.97 2.02 2.01 2.02 2.01
S22,[ii] 3.79 3.79 3.93 3.95 2.72 2.72 2.84 2.84 1.92 1.92 2.01 2.02
S22,[12] 5.15 5.16 5.47 5.62 3.74 3.74 3.97 4.09 2.66 2.66 2.85 2.93
τ2 0.75 0.74 0.74 0.74 0.52 0.52 0.52 0.52 0.37 0.37 0.37 0.37
δ2 1.71 1.69 1.70 1.69 1.13 1.12 1.12 1.12 0.75 0.75 0.75 0.75

# Par 23 17 20 14 23 17 20 14 23 17 20 14

the elements of B,Ω and Γ (denoted βij , ωij and γij) and across the diagonal elements of S22

(denoted S22,[ii]). Values reported are multiplied by 100.

7Because the second block likelihood does not depend on first block parameters, M2 is equivalent to M1.
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The finite sample bias is negligible even for the shortest sample size (T =1500). The truncation

level in (5) reveals sufficient, in that we do not find evidence of discernible asymptotic bias. The

RMSE decays at the appropriate T 1/2 rate. The efficiency loss of the targeted parameters is

invariant to the sample sizes and it amounts to about 12% for the betas, 4.5% for the 2nd block

unconditional variances and 8% for the covariance. As expected, targeting does not affect the

properties of the parameters estimated by QML.

5.3 Finite sample properties of full-QMLE vs. multi-step methods, when
betas are driven by devolatilized shocks and beta tracking

In this Monte Carlo exercise, the data generating process is virtually unchanged from Section

5.2. The only, yet substantial, difference stands in the substitution of the innovation term in

(4.iii) with the outer product (ξ2,tξ
′
1,t). The model parameters are estimated usingM1,M4 and

M5 together with beta targeting.8 Because Sii,t, i = 1, 2, both follow scalar BEKK dynamics,

the conditional variance of the marginal processes inM4 andM5 are univariate GARCH, either

under the constraint of common dynamics within each block (M4), or unconstrained (M5). Table

2 reports average bias and RMSE (values reported are multiplied by 100). Note that, the use of

ξ1,t mandates the estimation of the first block parameters, which are not reported to save space.

However, it is worth mentioning that S11,t was targeted to the first block sample covariance,

while (τ1, δ1) are estimated by QML. The number of first block parameters estimated by QML

is reported in parenthesis in the last row of Table 2. For all methods biases are very small

for all parameters and vanishing with the sample size. Unlike in Section 5.2, in this case any

estimation method based on the likelihood factorization entails sequentiality and thus always a

loss of efficiency. The loss of efficiency of M3 and M4 compared to the full QML (M1) is more

pronounced for the parameters governing the dynamics of S22,t, less so for those governing the

conditional betas.

8The full set of simulation results including M2 and M3 in not included to save space but it is available upon
request.
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Table 2: Finite sample properties of M1, M4 and M5 with Bt driven by devolatilized shocks and beta tar-
geting. The table reports BIAS and RMSE (both multiplied by 100) for M1, M4 and M5 and for
sample size T = {1500, 3000, 6000}. The last row (# Par) reports the number of 2nd-block parame-
ters estimated by QML. The number in parenthesis represents the number of first block parameters.

T=1500 T=3000 T=6000

M1 M4 M5 M1 M4 M5 M1 M4 M5

BIAS

βij -0.02 -0.06 -0.06 0.01 0.01 0.00 -0.01 -0.01 -0.01
ωij 0.03 0.03 0.04 0.02 0.04 0.04 0.01 0.02 0.02
δi -0.95 -0.88 -0.88 -0.68 -0.72 -0.72 -0.38 -0.43 -0.43
S22,[ii] -0.44 -0.42 -0.41 -0.21 -0.21 -0.19 -0.11 -0.11 -0.10
S22,[12] -0.05 -0.05 -0.03
τ2 0.01 0.04 0.11 0.01 0.01 0.03 0.01 0.01 0.02
δ2 -0.55 -0.76 -1.40 -0.27 -0.32 -0.50 -0.13 -0.16 -0.24

RMSE

βij 4.41 4.42 4.42 3.14 3.14 3.14 2.22 2.22 2.22
ωij 1.27 1.39 1.39 0.91 1.02 1.01 0.63 0.72 0.72
δi 3.92 4.03 4.03 2.98 3.23 3.23 2.03 2.29 2.30
S22,[ii] 3.86 4.24 4.44 2.77 3.03 3.10 1.95 2.12 2.18
S22,[12] 5.26 3.72 2.66
τ2 0.75 0.97 1.38 0.52 0.67 0.91 0.37 0.46 0.63
δ2 1.75 2.56 4.95 1.10 1.45 2.16 0.75 0.95 1.36

# Par 23 (2) 22 (2) 24 (6) 23 (2) 22 (2) 24 (6) 23 (2) 22 (2) 24 (6)

6 Empirical Application

The dataset used in the empirical application are from the well known and widely used Kenneth

French’s data library 9. Our study spans the period from January 1, 1927, to October 30 2020,

totaling 24682 daily observations. To our knowledge this is the first attempt at performing such

a comprehensive historical analysis using this data.

We benchmark the conditional beta specification, driven only by heterogeneous idiosyncratic

shocks, against the three specifications accounting for beta spillovers in the context of the Fama

and French (1992) 3-factor model. The three risk factors are: market (fmkt,t), approximated

by the excess return on the portfolio formed by all US firms listed on the NYSE, AMEX, and

NASDAQ, size (small-minus-big, fsmb,t) constructed as long-short portfolio of firms sorted by

9The dataset is freely available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html. The composition of the industry two portfolios, number 18 and 19 of the list of 30 industry
portfolios, based on four-digit SIC code is available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/ftp/Siccodes30.zip.
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size and, value (high-minus-low, fhml,t) also constructed as self-financing portfolio of firms sorted

by book-to-market ratio. Using the notation introduced in Section 3, ε1,t = (ft − µf ), where

ft = (fmkt,t, fsmb,t, fhml,t)
′

and µf ≡ E[ft].

For the set of investment assets, we consider the excess returns on two US industry portfolios:

Coal (C) and Petroleum-Natural Gas (P ), hence ε2,t = (rt − µr), with rt = (rC,t, rP,t)
′
.

6.1 Beta Spillovers for Coal and Petroleum-Natural Gas industry portfolios

The two-blocks partition of (3) naturally fits the linear asset pricing model of Fama and French

(1992), with the addition of allowing time variation in the factors exposure. The model in (3)

with k = 3 and n = 2, becomes I(3) 0(3×2)

−Bt I(2)

 (ft − µf)
(rt − µr)

 =

 vf,t

vr,t

 , (11)

where vf,t = S1/2
f,t ηf,t and vr,t = S1/2

r,t ηr,t. In this context, it is often of interest testing the

nullity of the pricing model’s intercept, namely the ”unconditional” Jensen’s alpha. The model

with time-varying slopes in (11) implicitly entails conditionally time-varying intercepts αr,t =

µr −Btµf . However, because αr ≡ E(αr,t) = µr − E(Bt)µf = µr −Bµf (coinciding with the

intercept of the constant parameter regression), the unconditional alpha can be explicitly added

to (11), whose lower block becomes rt = αr + Btft − (Bt −B)µf + vr,t.

To assess existence, type and extent of beta spillovers, we estimate (4), updated by the product of

devolatilized orthogonal innovations, under the four parameter restrictions: (4.iii) (benchmark),

(4.iv), (4.v) and (4.vi). To contain the number of parameters, we let the spillovers enter only via

the updating term, while we restrict the contribution of the smoothing term to be idiosyncratic,

with Γ diagonal in all specifications. For the same reason, we also target, the unconditional level

of Bt to the sample OLS estimate in all specifications. Using Theorem 5, this corresponds to

reparameterising the intercept in (4) as Ψ = B�
[
vec−1

(k×n)

(
diag(I(nk) − Γ)

)]′
.

The model is completed by assuming (distinct) scalar BEKK dynamics for Sf,t and Sr,t:

Si,t = Si (1− τi − δi) + τi

(
vi,t−1v

′
i,t−1

)
+ δiSi,t−1 i = f, r.

The factors’ block unconditional covariance matrix, Sf , is targeted to the sample covariance.

Positive definiteness of Sr is ensured via triangular decomposition, i.e. Sr = CrC
′
r, where Cr is a
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lower triangular matrix of parameters. The model’s free parameters, namely τf , δf ,αr,Ω,Γ,Cr, τr, δr,

are estimated by Gaussian QML using M2.

Table 3 reports the second step parameter estimates 10. The unconditional exposure of the two

portfolios to the market factor is βCmkt = 1.17 and βPmkt = 0.93. Despite being more correlated to

the market than the Coal portfolio (Corr(rP,t, fmkt,t) = 0.78 against Corr(rC,t, fmkt,t) = 0.59), the

Petroleum portfolio exhibits a much less erratic behavior (Var(rP,t) = 1.76 against Var(rC,t) =

4.64). The unconditional exposures to the size factor are βCsmb = 0.45, while βPsmb is negative

but close very to zero, implying near unconditional orthogonality. Last, the Coal portfolio shows

an exposure to the value factor more than double that of the Petroleum one (βChml = 0.51 and

βPhml = 0.23).

The three factor pricing model predicts that the risk factors are sufficient to price assets. Formally,

the intercept αr = (αC , αP )
′

is expected to vanish. The null hypothesis is not rejected only

for αP . The rejection of the nullity of the intercept for the Coal portfolio, suggests possible

misspecification of the pricing model.

We find evidence of time variation in all six conditional betas, which are characterized by highly

persistent dynamics. The estimated smoothing coefficients are very close to one, with the γi,j

coefficients ranging from 0.9966 to 0.9996. These figures are in line with the findings of Darolles

et al. (2018) for a comparable modeling approach, sampling frequency and assets class.

The data also shows evidence of both factor and asset spillovers. Shocks on fsmb,t impact the

exposure of both portfolios to the market factor, albeit in opposite directions. Evidence specific

to each portfolio is found for the size and the value factor exposures. For the Coal portfolio, we

find statistically significant asset spillovers on βChml. For the Petroleum-Natural gas portfolio, the

spillovers in the exposures to fsmb,t and fhml,t involve both asset and factor spillovers. For the

latter, in both cases, the source of the spillover is the market factor.

Finally, estimates of the parameters associated with the idiosyncratic shock (the diagonal elements

of Ω) are close across specifications. This suggests that the inclusion of spillover effects, although

not independent nor orthogonal to the idiosyncratic shock, provide novel and relevant information.

This is confirmed by the likelihood ratio test which finds (4.iv) statistically superior at standard

confidence levels. Figure 2 plots the filtered time series of the three risk exposures for the two

10Parameter estimates for the first step, common to all specifications, are τf = 0.0641 (0.0031) and δf = 0.9327
(0.0033), standard errors in parenthesis.
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Table 3: Estimation results of the GCAB model for the Coal and Petroleum-Natural Gas portfolios under the
sub-models (4.iii), (4.iv), (4.v) and (4.iv). The table reports source of spillover (SO), parameter
estimates (Est), standard error (SE) and, p-value (p-val). Inference on the elements of the B,

common across specifications, is based on OLS. Inference on the elements of Sr = CrC
′
r is obtained

using the delta method. Log-likelihood (logL) reported in the last row.

Idiosyncratic Assets spillovers Factors spillovers Factors & Assets spill.

Par SO Est SE p-val Est SE p-val Est SE p-val Est SE pval

Conditional mean: Coal

αC -0.0208 0.0068 0.00 -0.0210 0.0070 0.00 -0.0207 0.0068 0.00 -0.0206 0.0068 0.00

βC
mkt 1.1706 0.0102 0.00
ω11 mkt 0.0064 0.0011 0.00 0.0065 0.0012 0.00 0.0070 0.0011 0.00 0.0071 0.0012 0.00
ω12 smb 0.0027 0.0013 0.04 0.0032 0.0014 0.02
ω13 hml 0.0013 0.0018 0.45 0.0025 0.0022 0.26
ω14 petr 0.0020 0.0018 0.28 0.0012 0.0016 0.47
γ11 0.9996 0.0002 0.00 0.9996 0.0002 0.00 0.9995 0.0003 0.00 0.9995 0.0003 0.00

βC
smb 0.4488 0.0186 0.00
ω21 mkt -0.0012 0.0018 0.50 -0.0008 0.0020 0.68
ω22 smb 0.0083 0.0024 0.00 0.0103 0.0028 0.00 0.0071 0.0032 0.03 0.0111 0.0045 0.01
ω23 hml 0.0019 0.0019 0.32 -0.0011 0.0037 0.75
ω25 petr 0.0010 0.0023 0.65 0.0005 0.0032 0.86
γ22 0.9982 0.0007 0.00 0.9981 0.0006 0.00 0.9984 0.0006 0.00 0.9981 0.0007 0.00

βC
hml 0.5089 0.0181 0.00
ω31 mkt -0.0012 0.0025 0.62 -0.0017 0.0024 0.48
ω32 smb 0.0024 0.0030 0.41 0.0008 0.0032 0.80
ω33 hml 0.0252 0.0029 0.00 0.0252 0.0032 0.00 0.0248 0.0028 0.00 0.0251 0.0031 0.00
ω36 petr 0.0087 0.0036 0.02 0.0096 0.0052 0.06
γ33 0.9969 0.0006 0.00 0.9967 0.0006 0.00 0.9969 0.0006 0.00 0.9970 0.0006 0.00

Conditional mean: Petroleum-Natural Gas

αP 0.0032 0.0034 0.35 0.0027 0.0034 0.43 0.0035 0.0034 0.31 0.0030 0.0033 0.36

βP
mkt 0.9296 0.0049 0.00
ω41 coal -0.0001 0.0008 0.94 0.0001 0.0009 0.97
ω44 mkt 0.0096 0.0015 0.00 0.0090 0.0012 0.00 0.0084 0.0014 0.00 0.0081 0.0010 0.00
ω45 smb -0.0027 0.0012 0.02 -0.0026 0.0011 0.02
ω46 hml 0.0015 0.0013 0.24 0.0015 0.0011 0.19
γ44 0.9975 0.0009 0.00 0.9980 0.0009 0.00 0.9972 0.0009 0.00 0.9973 0.0010 0.00

βP
smb -0.0515 0.0090 0.00
ω52 coal 0.0034 0.0009 0.00 0.0041 0.0012 0.00
ω54 mkt -0.0036 0.0022 0.11 -0.0052 0.0017 0.00
ω55 smb 0.0166 0.0038 0.00 0.0121 0.0027 0.00 0.0134 0.0030 0.00 0.0112 0.0024 0.00
ω56 hml 0.0031 0.0020 0.14 0.0015 0.0022 0.48
γ55 0.9966 0.0013 0.00 0.9978 0.0009 0.00 0.9973 0.0009 0.00 0.9974 0.0009 0.00

βP
hml 0.2354 0.0088 0.00
ω63 coal 0.0065 0.0021 0.00 0.0063 0.0023 0.01
ω64 mkt -0.0060 0.0025 0.02 -0.0057 0.0018 0.00
ω65 smb 0.0085 0.0018 0.00 0.0029 0.0021 0.18
ω66 hml 0.0209 0.0028 0.00 0.0196 0.0020 0.00 0.0223 0.0029 0.00 0.0197 0.0025 0.00
γ66 0.9976 0.0005 0.00 0.9977 0.0005 0.00 0.9968 0.0006 0.00 0.9976 0.0006 0.00

Conditional covariance: Sr,t

Sr,[11] 4.2683 0.9536 0.00 4.1794 0.8806 0.00 4.3576 0.2709 0.00 4.4304 0.2648 0.00
Sr,[12] -0.0101 0.0078 0.19 -0.0102 0.0083 0.22 -0.0150 0.0112 0.18 -0.0172 0.0118 0.14
Sr,[22] 0.8455 0.0614 0.00 0.8208 0.0385 0.00 0.8609 0.0106 0.00 0.8614 0.0238 0.00
τr 0.0347 0.0041 0.00 0.0336 0.0040 0.00 0.0346 0.0041 0.00 0.0341 0.0039 0.00
δr 0.9640 0.0044 0.00 0.9651 0.0041 0.00 0.9641 0.0043 0.00 0.9648 0.0041 0.00

logL -62892.00 -62849.44 -62845.57 -62808.60
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Figure 2: Time-varying exposures to the risk factors: βn
mkt,t (solid black), βn

smb,t (dashed blue), βn
hml,t (dotted

red), n = C,P .

portfolios. The exposure to the size factor of the Coal portfolio, βCsmb, is only sporadically negative

indicating that the Coal portfolio consistently trades like a small stock. For the Petroleum

portfolio, βPsmb is systematically negative from the mid-40s to the mid-90s indicating that the

sector in this period moves like a large-cap stock. Outside this period, it hovers around zero

except towards the inception and during the 2007 financial crisis. In line with the findings of

Engle (2016), the exposure to the value factor is the most volatile. The exposure to fhml,t shows

similar peaks and troughs for both portfolios but with βChml behaving more erratically. In both

cases, the highest peak is observed in the period 2004-2006, when both portfolios trade as a value

stock, before the deep dive over the following two years when both portfolios behave as a growth

stock. One substantial difference is observed in the period from 1997 to 2000. While the Coal

portfolio shows a trough, trading as a growth stock, the Petroleum portfolio shows a mirroring

peak, trading in the same period as a value stock.

Although, as stated in Section 4.5, there are no explicit invertibility conditions for (4) updated

by the product of devolatilized orthogonal innovation, the asymptotic irrelevance of initial values

can be verified empirically using the method described in Franq and Zakoian (2019), see also

Winterberger (2013) and Blasques et al. (2018) for a similar approach. This consist in filtering

sample paths, initialized at arbitrary starting state, using estimated parameters and model’s

residuals. Figure 3, plots such sample paths for βCmkt,t (the most persistent in our set). The
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Figure 3: βC
mkt,t starting at the unconditional level 1.1706 (black solid) against alternative filtered sample

paths initialized at arbitrary starting states βC
mkt,0 ∈ [−0.5, 2.5].

benchmark path is initialized at the unconditional beta (black solid line), while the alternatives

start at βCmkt,0 ∈ [−0.5, 2.5]. Although, because of the high persistence of the process, the impact

of the initial state used to compute recursively Bt dissipates slowly, Figure 3 shows that βCmkt,0 has

no effect asymptotically. Qualitatively similar results, not reported to save space but available

upon request, are observed for the remaining elements of Bt.

6.1.1 Comparison with the DCB-DCC (and Rolling OLS)

Figure 4 plots the six conditional betas, βik,t, i = C,P , k = {mkt, smb, hml}, estimated using

(4.vi), as well as those obtained using two competing approaches: direct estimation by DCB-DCC

of Engle (2016) (green) and rolling OLS (red) estimated on a window of 100 observations. The

latter is often used in empirical asset pricing to account for time variation in the betas.11 The

horizontal lines represent the constant parameters regression’s betas estimated by full-sample

OLS.

In general, the three methods track well each other. Setting aside the rolling OLS, where the

degree of smoothness directly depends on the window size, the DCB-DCC yields comparatively

very erratic conditional betas, characterized by short-lived bursts of unrealistic size. For example,

11The rolling OLS has the advantage of an intuitive interpretation and easy implementation. However, it makes
difficult to distinguish between actual time variation (signal) and estimator’s sampling variability (noise).
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Figure 4: Dynamic conditional betas: GCAB (solid black), DCB-DCC (dashed green) and 100-obs. rolling
OLS (dotted red).

βCmkt,t peaks above 3.4 in January 2009, or βCsmb,t climbs rapidly from -1.8 to 5.4 between July

and December 2015. A similar behavior is noticeable for all the other betas and through the

sample. For ease of comparison, Table 4 reports sample moments of the filtered betas plotted in

Figure 4. Compared to our model, the two competing approaches show variability that is twice to

almost 10-fold. Our model struggles only in presence of abrupt shifts caused by episodes of sharp

reversion, i.e. clusters of large unidirectional shocks, where the persistent dynamics generate a
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Table 4: Summary statistics for Bt estimated using the GCAB, the DCB-DCC and the 100-obs. rolling OLS.

Beta Model Mean Variance Skew. Kurt. Min. Max.

βC
mkt,t

GCAB 1.0538 0.0775 0.5679 2.8776 0.4577 1.9310
DCB-DCC 1.0302 0.1716 0.9217 4.6702 0.0203 3.4301
roll-OLS 1.0092 0.1767 0.6111 4.1824 -0.6869 2.8903

βC
smb,t

GCAB 0.4797 0.0441 -0.2128 3.1733 -0.1993 1.0904
DCB-DCC 0.4871 0.3015 1.1229 9.5182 -1.8050 5.4688
roll-OLS 0.4963 0.3528 1.0083 8.9596 -1.6652 4.7662

βC
hml,t

GCAB 0.4663 0.2078 0.6435 6.2719 -1.2849 2.4753
DCB-DCC 0.4508 0.6118 1.0722 8.4339 -3.0003 5.3630
roll-OLS 0.4664 0.7819 0.7057 6.8196 -3.1547 4.6908

βP
mkt,t

GCAB 0.9925 0.0240 0.0171 2.6388 0.5641 1.4350
DCB-DCC 0.9914 0.0618 0.1446 4.0429 0.1547 3.1553
roll-OLS 1.0166 0.0651 -0.1319 3.3598 0.2231 2.0801

βP
smb,t

GCAB -0.1542 0.0497 -0.1647 3.0977 -0.9256 0.5753
DCB-DCC -0.1964 0.0946 -0.6967 5.1753 -2.4062 0.8690
roll-OLS -0.2072 0.1189 -0.5510 5.0423 -2.1478 0.8529

βP
hml,t

GCAB 0.2471 0.1747 0.7534 3.8998 -1.0375 1.8384
DCB-DCC 0.2666 0.2924 1.5619 8.6156 -1.5077 4.4209
roll-OLS 0.2728 0.4102 1.2401 6.5054 -1.4355 4.0686

rather slow transition while the DCB-DCC and the rolling OLS exhibit a faster adjustment. In

our sample, we observe one of such instances in βhml,t during the third quarter of 2006.

In a beta hedging strategy, more volatile betas imply more re-balancing and thus much larger

transaction costs, as well as potentially a more volatile beta hedged portfolio. Although limited

Table 5: In-sample performance of the beta hedged portfolios for the GCAB, the DCB-DCC and the 100-obs.
rolling OLS

Mean Var TO

Model Coal Petr. Coal Petr. Coal Petr.

GCAB -0.0127 -0.0026 2.6451 0.5484 0.0281 0.0274
DCB-DCC -0.0127 -0.0024 2.6796 0.5648 0.1666 0.0927
roll-OLS -0.0099 -0.0037 2.6458 0.5496 0.1056 0.0502

to an in-sample evaluation, Table 5 reports the performance of the beta hedged portfolios. The

most striking figure is observed for the turnover (TO), T−1
∑3

k=1 |βik,t − βik,t−1|, i = C,P , k

indexing the three risk factors, which for our model is up to six times smaller than the two

competing alternatives.
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6.1.2 Indirect estimation of Σt

Endowed with Bt,S11,t,S22,t we can use (2) to indirectly infer the It−1-conditional covariance

matrix of the cross-section of assets Σr,t. The last question to be addressed is then whether the

differences in the filtered betas observed between our model and the DCB-DCC (indirect estima-

tion of Bt - direct estimation of Σr,t) translate into differences in Σr,t. A graphical comparison of

the conditional standard deviations and the conditional correlation between our two portfolios,

reported in Figures 5, shows no substantial difference between the two models which track each

other extremely closely. We remark, though, that our model delivers less noisy sample paths.
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Figure 5: Volatility and correlation of Coal and Petroleum portfolios estimated indirectly using DCB (solid
black) and directly using DCC (dashed red).

More precisely, we observe less extreme responses of the conditional variance to isolated large

shocks, which on the contrary is the characteristic reaction of the direct variance modeling by

means of GARCH-type dynamics. Summary statistics in Table 6 support these conclusions. This

suggests an inherent robustness of our model to isolated extreme shocks, that is an attractive

feature for risk management or portfolio allocation applications, as well as any other situation

where Σr,t is of interest.

7 Conclusions

The paper introduced a new model, the Generalized Conditional Autoregressive Beta (GCAB),

to estimate time-series regressions with time-varying coefficients and conditional heteroskedas-

ticity. The GCAB achieves orthogonalization between two sets of variables, in the asset pricing
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Table 6: Summary statistics for Σr,t estimated indirectly using the GCAB vs. direct estimation using the
DCB-DCC model

Variable Model Mean Variance Skew. Kurt. Min. Max.

Σr,[11],t (C)
GCAB 4.5214 48.0623 5.0479 39.3491 0.3735 95.0693
DCB-DCC 4.7733 71.0434 6.1755 59.1489 0.3469 129.8896

Σr,[22],t (P)
GCAB 1.5411 10.5895 8.3309 103.3036 -1.0674 64.1005
DCB-DCC 1.6014 13.1995 9.6543 137.3450 -0.9023 74.3991

Σr,[12],t
GCAB 1.7788 10.0684 9.2574 123.1644 0.1656 66.6386
DCB-DCC 1.8082 11.5021 10.5299 157.4155 0.2110 74.1664

ρ12,t
GCAB 0.4734 0.0380 -0.1857 2.6211 -0.1426 0.9486
DCB-DCC 0.4814 0.0378 -0.2984 2.5565 -0.1480 0.8947

context the risk factors and the investment assets, via a Block-Cholesky decomposition of the

factors-assets system’s covariance matrix. This provides several direct advantages over competing

models available in the literature: the model is invariant to permutation of the element in each

block, it avoids parameter proliferation, it introduces beta spillovers, it allows for different layers

of likelihood factorization which eases computational feasibility in large dimension.

We derive conditions for stationarity and invertibility, as well as beta tracking and orthogonalized

innovations covariance targeting. We also provide efficient computational strategies for likelihood

maximization. The finite sample properties of such estimators are studied by means of an exten-

sive Monte Carlo simulation.

The empirical application aims at comparing a baseline conditional beta specification driven only

by idiosyncratic shocks against three alternative specifications accounting for different types of

beta spillovers, in the context of the Fama and French (1993) three-factor framework. We con-

sider a bivariate asset system composed of the Coal and Petroleum-Natural Gas value-weighted

industry portfolios studied over a period spanning from January 1, 1927, to November 30, 2020.

Beside time variation in all the conditional betas, we find compelling evidence of both factor

and asset spillovers. Finally, we benchmark our model against the DCB-GARCH model of Engle

(2016)] and the rolling OLS, widely used in the empirical asset pricing literature. We find that our

model delivers much more realistic conditional beta dynamics, compared to those unrealistically

volatile delivered by the two competing models.
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Appendix A. Proofs

Proof of Theorem 1. Define βt = vec
(
B

′
t

)
and wt = vec

(
Ψ

′
)

+
∑P

p=1 Ωp (v2,t−p ⊗ v1,t−p)

with Ψ and Ωp defined according to equation (4). Conditions satisfying C.1 are specific to

the MGARCH parameterization of Sii,t, i = 1, 2, and examples can be found in Pedersen and

Rahbek (2014), Boussama et al. (2011), Hafner and Preminger (2009), Engle and Kroner (1995),

Fermanian and Malongo (2017), Francq and Zakoian (2012) and Francq and Zakoian (2016)

among others. By Prop. 3.36 in White (1984), (v2,t ⊗ v1,t) is stationary and ergodic and, by

the ergodic theorem, so is wt. It follows that, result (a), under condition C.2 a stationary and

ergodic solution to (4) is βt = ΓQ(L)−1wt =
∑∞

i=0 Giwt−i, G0 = I(nk×nk) and
∑∞

i=0 ‖Gi‖ < ∞,

where L denotes the lag operator.

The result in (b) stems directly form orthogonality of v1,t and v2,t:

E[βt] = ΓQ(1)−1vec(Ψ
′
) +

∞∑
i=0

Gi

 P∑
p=1

ΩpE [v2,t−p−i ⊗ v1,t−p−i]


= ΓQ(1)−1vec(Ψ

′
), (12)

because E [v2,t−p−i ⊗ v1,t−p−i] = 0(nk) ∀t, then E[Bt] =
[
vec−1

(k×n)

(
ΓQ(1)−1 vec

(
Ψ

′
))]′

.

Ergodicity and stationarity of εt, result (c), follows.

Proof of Theorem 2. For ease of exposition and analytical tractability we first derive the

result for baseline parameterisation (4.iii) and P = Q = 1. Under Theorem 1, (4.iii) admits the

representation:

Bt = B + Ω̃�
∞∑
i=0

Γ̃
�i
�
(
v2,t−i−1v

′
1,t−i−1

)
,

with E[Bt] ≡ B =
(
e(n)e

′

(k) − Γ̃
)�−1

�Ψ because v1,t ⊥ v2,t implies E
[
v2,t−i−1v

′
1,t−i−1

]
= 0 ∀i.

Thus:

Btv1,tv
′
1,t = Bv1,tv

′
1,t +

[
Ω̃�

∞∑
s=0

Γ̃
�s
�
(
v2,t−s−1v

′
1,t−s−1

)](
v1,tv

′
1,t

)
.

Expectations of the second term on the right hand side depend on linear combinations of k2n

4th-order moments E[v1,[m],tv1,[i],tv1,[i],t−sv2,[j],t−s], i,m = 1, . . . , k, j = 1, . . . , n s ∈ N. Because
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condition C.3 entails contemporaneous (conditional) and inter-temporal (unconditional) inde-

pendence between the two blocks, all such moments are null. This result directly extends to the

general specification in (4), because the second term on the right hand side of:

E[Btv1,tv
′
1,t] = BΣ11 + E

vec−1
(k×n)

 ∞∑
i=0

Gi
P∑
p=1

Ωp (v2,t−p−i ⊗ v1,t−p−i)

′ (
v1,tv

′
1,t

) ,
depends on linear combinations of 4th-order moments of the same form as in the previous case.

Hence, E
[
ε2,tε

′
1,t

]
= E

[
Btv1,tv

′
1,t

]
= BΣ11 which implies B = Σ21Σ

−1
11 . By rearranging (b) in

Theorem 1, we obtain Ψ =
[
vec−1

(k×n)

(
ΓQ(1)vec

(
Σ−1

11 Σ12

))]′
.

Proof of Theorem 3. Recalling Bt = B + Ω̃ �
∑∞

i=0 Γ̃
�i
�
(
v2,t−i−1v

′
1,t−i−1

)
, we can write

the first term on the rhs of ε2,tε
′
2,t = Btv1,tv

′
1,tB

′
t + S22,t as:

Btv1,tv
′
1,tB

′
t = Bv1,tv

′
1,tB

′
+

[ ∞∑
s=0

As �
(
v2,t−s−1v

′
1,t−s−1

)](
v1,tv

′
1,t

)
B

′
+

+ B
(
v1,tv

′
1,t

)[ ∞∑
s=0

(
v1,t−s−1v

′
2,t−s−1

)
�A

′
s

]
+

+

[ ∞∑
s=0

As �
(
v2,t−s−1v

′
1,t−s−1

)](
v1,tv

′
1,t

)[ ∞∑
s=0

(
v1,t−s−1v

′
2,t−s−1

)
�A

′
s

]
,

(13)

where As = Ω̃� Γ̃
�s

, s = 1, . . . ,∞, with typical element
(
ω̃ij γ̃

s
ij

)
, i = 1, . . . , n and j = 1, . . . , k.

Expectations of the second and third terms on the rhs of (13) are null under C.3. Expectations

of the last term can be rewritten as:

∞∑
s=0

∞∑
r=0

E
[(

As �
(
v2,t−s−1v

′
1,t−s−1

))(
v1,tv

′
1,t

)((
v1,t−r−1v

′
2,t−r−1

)
�A

′
r

)]
, (14)

and depends on linear combinations of k2n2 non-zero 6th-order moments of the form:

E
[
v1,[m],tv1,[i],tv1,[m],t−sv1,[i],t−sv2,[j],t−sv2,[l],t−s

]
, i,m = 1, . . . , k; j, l = 1, . . . , n; s ∈ N.

Expectations of the terms such that r 6= s in (14) are null under C.3. Thus:

E
[
Btv1,tv

′
1,tB

′
t

]
= BΣ11B

′
+

∞∑
s=0

As � E [S22,t]

= Σ21Σ
−1
11 Σ12 +

∞∑
s=0

As � E [S22,t] ,
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where B = Σ21Σ
−1
11 under Theorem 2, As is a n × n matrix with typical element αij,s =

ai,sE
[(

v1,t−s−1v
′
1,t−s−1

)
�
(
v1,tv

′
1,t

)]
a

′
j,s, i, j = 1, . . . , n, and ai,s is the i-th row of the ma-

trix of parameters As. Hence,

Σ22 = Σ21Σ
−1
11 Σ12 +

∞∑
s=0

As � E [S22,t] + E [S22,t] .

The term Σ22 − Σ21Σ
−1
11 Σ12, being the Schur complement of Σ22, is finite, symmetric and

positive definite and so is E[S22,t]. Therefore, under Theorem 1,
(
e(n)e

′

(n) +
∑∞

s=0As
)

is fi-

nite and symmetric and, E[S22,t] =
(
e(n)e

′

(n) +
∑∞

s=0As
)�−1

�
(
Σ22 −Σ21Σ

−1
11 Σ12

)
. Finally

lims→∞Rs = Σ�2
11 stems directly from stationarity of ε1,t.

Proof of Corollary 2. Because v1,t is a GARCH(1,1) process, v2
1,t admits an ARMA(1,1)

representation with moments:

µ4 ≡ E
[
v4

1,t

]
= σ2 1− δ1 (2τ1 + δ1)

1− (τ1 + δ1)2 + µ2
2, (15)

Rs ≡ E
[
v2

1,tv
2
1,t−s

]
= (τ1 + δ1)s

(
µ4 − µ2

2

)
+ µ2

2 + (τ1 + δ1)s−1δ1σ
2, s ≥ 1, (16)

where µ2 ≡ E[v2
i,t] = c

1−τ1−δ1 and the nuisance parameter σ2 ≡ E
[
(v2

1,t − S11,t)
2
]
. Using (15) we

can write σ2 = (µ4 − µ2
2) 1−(τ1+δ1)2

1−δ1(2τ1+δ1) , which substituted in (16) gives:

Rs = (τ1 + δ1)s
(
µ4 − µ2

2

)
κ+ µ2

2, s ≥ 1,

where κ = τ1(1−δ1(τ1+δ1))
(1−2τ1δ1−δ21)(τ1+δ1)

. The typical ij-th element of A thus writes:

αij = 1 +

∞∑
s=0

ωiωj(γiγj)
s
(
(τ1 + δ1)s+1

(
µ4 − µ2

2

)
κ+ µ2

)
.

From Corollary 1, stationarity of εt entails maxi∈[1,n](|γi|) < 1 and (τ1 + δ1) < 1. Then∑∞
s=0(γiγj)

s = (1− γiγj)−1 and
∑∞

s=0 (γiγj(τ1 + δ1))s = (1− γiγj(τ1 + δ1))−1, thus

αij = 1 + ωiωj

(
(τ1 + δ1)(µ4 − µ2

2)κ

1− γiγj(τ1 + δ1)
+

µ2
2

1− γiγj

)
. (17)

For a conditionally gaussian GARCH(1,1) process, He and Terasvirta (1999) derive µ4 directly

in terms of the GARCH parameters (c, τ1, δ1) as:

µ4 =
3µ2

2(1 + τ1 + δ1)

1− δ2
1 − 3τ2

1 − 2τ1δ1
. (18)
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Substituting (18) in (17), together with µ2 = c
1−τ1−δ1 completes the proof.

Proof of Theorem 4. The process Bt(θ; B0) can be expressed in vector form in terms of the

observables, (ε1,t, ε2,t)
′
, as the random coefficients recurrence

βt(θ; B0) = wt−1 + St−1βt−1(θ; B0), (19)

with βt(θ; B0) = vec
(
Bt(θ; B0)

′
)

, wt = vec(Ψ
′
) + Ω(ε2,t⊗ ε1,t), St = Γ−Ω

(
I(n) ⊗

(
ε1,tε

′
1,t

))
.

From equation (19), by recursive substitution, we obtain

βt(θ,B0) = wt−1 +

t−1∑
j=1

 t−1∏
i=t−j

Si

wt−j−1 +

(
t−1∏
i=0

Si

)
β0, (20)

where β0 = vec(B
′
0). By Theorem 1, the sequence (wt,St) is ergodic and stationary. Re-

calling the conditions in Brandt (1986) for convergence of stochastic recurrences with non-i.i.d

stationary coefficients, if i) max(0,E[log ||w0||] < ∞) and ii) E [log ||S0||] < 0, then βt(θ) =

wt−1 +
∑∞

j=1

(∏t−1
i=t−j Si

)
wt−j−1 converges absolutely almost surely, and for any arbitrary ini-

tial random state B0, Prob (limt→∞ ||βt(θ; B0)− βt(θ)|| = 0) = 1.

Using Jensen’s inequality, condition i) holds if E
[∥∥∥vec(ε2,0ε

′
1,0)
∥∥∥s0] < ∞ for some s0 > 0, since∥∥∥vec(ε2,0ε

′
1,0)
∥∥∥ =

∥∥∥ε2,0 ⊗ ε
′
1,0

∥∥∥. By similar arguments, ii) holds if E [‖S0‖] < 1 for some sub-

additive and sub-multiplicative norm. Using the spectral norm, i.e. ςA ≡ ‖A‖2 = ςmax(A)

is the largest singular value of A, and noting that
∥∥∥I(n) ⊗

(
ε1,0ε

′
1,0

)∥∥∥
2

=
(
ε
′
1,0ε1,0

)
, uniform

invertibility holds if ςΓ + ςΩ
∑k

i=1 E
(
ε21,[i],0

)
< 1.

Proof of Theorem 5. The results in (a) and (b) stem directly from Theorem 1 and Theorem

2. For (c), by the same arguments used in the proof of Theorem 3 we have

E
[
Btv1,tv

′
1,tB

′
t

]
= BE[v1,tv

′
1,t]B

′
+

+
∞∑
s=0

E
[(

As �
(
ξ2,t−s−1ξ

′
1,t−s−1

))(
v1,tv

′
1,t

)((
ξ1,t−r−1ξ

′
2,t−r−1

)
�A

′
r

)]
= BΣ11B

′
+ E

[
ξ2,tξ

′
2,t

]
�
∞∑
s=0

As,
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where the ij-th element of As is αij,s = ai,sE
[
(ξ1,t−s−1ξ

′
1,t−s−1)� (v1,tv

′
1,t)
]

a
′
j,s, i, j = 1, . . . , n,

and ai,s is the i-th row of As = Ω̃� Γ̃
�s

. Hence,

E [S22,t] =
(
Σ22 −BΣ11B

′
)
− E

[
ξ2,tξ

′
2,t

]
�
∞∑
s=0

As,

where, from (b), B = Σ21Σ
−1
11 .
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