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In this paper, we derive asymptotic distribution theory for a general class of models

where the identification strength of one parameter is determined by another parameter and

where the latter is allowed to be at the boundary of the parameter space—extending the

results in Andrews and Cheng (2012). This allows us to derive the asymptotic distribution,

under different identification strengths, of the two test statistics that are used in the two-step

(testing) procedure proposed in Pedersen and Rahbek (2019). The latter aims at testing the

null hypothesis that a GARCH-X type model, with an exogenous covariate (X), reduces to

a standard GARCH model, while allowing the “GARCH parameter” to be unidentified. We

find that using the second step test statistic together with plug-in least favorable configura-

tion (PI-LF) critical values offers (asymptotic) power gains over a wide range of alternatives

(for realistic choices of the data generating process) compared to the two-step procedure.

Furthermore, we find that the two-step procedure fails to control asymptotic size. Together,

our findings provide arguments against the use of the two-step procedure in practice; other

tests, such as the aforementioned test using PI-LF critical values, ought to be preferred.
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1 Introduction

In GARCH-X type models, the variance of a generalized autoregressive conditional het-

eroskedasticity (GARCH) type model is augmented by a set of “exogenous” regressors (X).

Naturally, the question arises if the more general GARCH-X type model reduces to the sim-

pler GARCH type model. Statistically speaking, the problem reduces to testing whether the

“coefficients” on the exogenous regressors are significantly different from zero. The testing

problem is non-standard due to the presence of two nuisance parameters that could possibly

be at the boundary of the parameter space. In addition, under the null hypothesis, one of

the nuisance parameters, the “GARCH parameter,” is not identified when the other, the

“ARCH parameter,” is at the boundary. In order to address this possible lack of identifi-

cation, Pedersen and Rahbek (2019) (PR hereinafter) suggest a two-step testing procedure,

where rejection in the first step is taken as “evidence” that the model is strongly identified.

In the second step, the authors then rely on an additional assumption, namely that a specific

entry of the inverse information is zero, to obtain an asymptotic null distribution of their

proposed (“second step”) test statistic that is nuisance parameter free. There are two (po-

tential) problems with this two-step procedure. First, as is well known, two-step procedures

may suffer from asymptotic size distortions, i.e., the asymptotic size may exceed the nominal

level, if the possible error in the first step is not appropriately taken into account (see e.g.,

Leeb and Pötscher, 2005, 2008). In addition, the aforementioned additional assumption that

the authors make in the second step may not be satisfied (under reasonable assumptions

about the data generating process/true parameter space), which may lead to or aggravate

(“existing”) asymptotic size distortions. Second, the two-step procedure may, irrespective

of possible asymptotic size distortions, have poor (asymptotic) power over large parts of the

parameter space, as suggested by simulations in PR. In sum, the two-step procedure may

suffer from large type I and type II errors in different parts of the parameter space.

The motivation for the two-step procedure comes from the fact that the asymptotic

null distribution of the “second step” test statistic (and the underlying estimator) under

semi-strong and weak identification (of the “GARCH parameter”), using the terminology

in Andrews and Cheng (2012) (AC hereinafter), is unknown in the literature to date. In

this paper, we fill this gap in the literature by extending the results in AC to allow for

the parameter that determines the identification strength to be at the boundary of the

parameter space such that they cover the GARCH-X type models considered in PR. This,

in turn, allows us to characterize the asymptotic size (AsySz) of the two-step procedure

proposed in PR in terms of a finite number of parameters—we are currently in the process

of numerically evaluating the AsySz in order to establish whether the procedure controls
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asymptotic size or not. Furthermore, the new results open the possibility to implement

(one-step) testing procedures that, by construction, control asymptotic size and that, in

addition, have good power properties. For example, the “second step” test statistic used in

PR together with plug-in least favorable configuration (PI-LF) critical values is found to have

greater (asymptotic) power than the two-step procedure over a large part of the parameter

space (for realistic choices of the data generating process), illustrating the potential for

improvement.

The plan of this paper is as follows. In Section 2, we present the new asymptotic distribu-

tion theory and introduce the GARCH-X model, which serves as running example. Section

3 introduces the test statistics used in the two-step procedure proposed by PR. In Section 5,

we graphically illustrate that the finite-sample distribution of the test statistics and the un-

derlying estimators is well approximated by the asymptotic distribution theory. In addition,

this section provides an asymptotic power comparison of the two-step procedure proposed

by PR and the test that uses their “second step” test statistic together with PI-LF critical

values. Section 6 investigates the asymptotic size properties of the two-step procedure and

Section 7 concludes.

2 Asymptotic theory

This section closely follows AC. Let θ = (ψ′, π′)′ = (β′, ζ ′, π′)′ denote the finite-dimensional

parameter of interest, where β governs the identification strength of π and ψ = (β′, ζ ′)′ is

always identified. We consider the estimator θ̂n that satisfies θ̂n ∈ Θ and

Qn(θ̂n) = inf
θ∈Θ

Qn(θ) + o(1),

where Θ and Qn(θ) denote the “optimization” parameter space and the objective function,

respectively. The dependence of Qn(θ) on the data {Wt : t ≤ n} is suppressed for nota-

tional convenience. The true data generating process is indexed by γ∗ = (θ∗, φ∗) and the

corresponding “true parameter space” is denoted Γ. Here, θ∗ denotes the true value of θ

and φ∗, which denotes the true value of φ, indexes the part of the distribution of the data

not determined by θ∗, such as the distribution of the conditioning variables in conditional

maximum likelihood (CML). We assume that π is unidentified when β = 0.

Assumption A. If β = 0, Qn(θ) does not depend on π ∀θ = (β, ζ, π) = (0, ζ, π) ∈ Θ,∀n ≥
1, for any true parameter γ∗ ∈ Γ.

Running example - GARCH-X(1,1): We consider a simple version of the GARCH-X(1,1)

model, with a single exogenous variable (as in PR). The model is given by yt = ht(θ
∗)1/2zt,
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where

ht(θ) = ht(ψ, π) = ht(β, ζ, π) = ζ(1− π) + β1y
2
t−1 + πht−1(ψ, π) + β2x

2
t−1

and where φ∗ denotes the distribution of {zt, xt}. Here, yt and xt are observed and zt

is unobserved. Note that β = (β1, β2)′ ∈ R2, while ζ, π ∈ R. The objective function

is given by (- 1
n

times) the Gaussian-based conditional quasi log-likelihood function, i.e.,

Qn(θ) = 1
n

∑n
t=1 lt(θ), where

lt(θ) =
1

2
log(2π̃) +

1

2
log(ht(θ)) +

y2
t

2ht(θ)

and where π̃ = 3.14..., with initial condition h0(θ) = ζ. The optimization parameter space,

Θ, is given by Θ = Ψ× Π, where

Ψ = {ψ : 0 ≤ β1 ≤ β1, 0 ≤ β2 ≤ β2, ζ ≤ ζ ≤ ζ} and Π = {π : 0 ≤ π ≤ π}

for some 0 < β1, β2 < ∞, 0 < ζ < ζ < ∞, and 0 < π < 1. Note that, given h0(θ) = ζ, we

have

ht(θ) = ζ + β1

t−1∑
i=0

πiy2
t−i−1 + β2

t−1∑
i=0

πix2
t−i−1

and ht(0, ζ, π) = ζ ∀θ = (β, ζ, π) = (0, ζ, π) ∈ Θ,∀n ≥ 1, such that Assumption A is satisfied.

The true distribution of the data {Wt : t ≤ n} is denoted Fγ where γ ∈ Γ. Pγ and Eγ

denote probability and expectation under γ, respectively. The true parameter space, Γ, is

assumed to be compact and of the following form

Γ = {γ = (θ, φ) : θ ∈ Θ∗, φ ∈ Φ(θ)},

where Θ∗ is compact and Φ(θ) ⊂ Φ ∀θ ∈ Θ∗ for some compact metric space Φ with a metric

that induces weak convergence of the distribution of (Wn,t,Wn,t+m) for all i,m ≥ 1, i.e., the

metric is such that if γ1 → γ2, then (Wn,i,Wn,i+m) under γ1 converges in distribution to

(Wn,i,Wn,i+m) under γ2 for all i,m ≥ 1.

Running example continued: The true parameter space Θ∗ is given by Ψ∗ × Π∗, where

Ψ∗ = {ψ : 0 ≤ β1 ≤ β
∗
1, 0 ≤ β2 ≤ β

∗
2, ζ
∗ ≤ ζ ≤ ζ

∗} and Π∗ = {π : 0 ≤ π ≤ π∗}
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for some 0 < β
∗
1 < β1, 0 < β

∗
2 < β2, ζ < ζ∗ < ζ

∗
< ζ, and 0 < π∗ < π. Given this definition

of the parameter space, boundary effects are permitted for β1, β2, and π, but only “below”

at zero. [To do: Define Φ(θ) and Φ.]

In this paper, we are interested in the behavior of tests under varying identification

strength. Say we are interested in testing H0 : r(θ) = v for some function r(θ) of θ. Let

Tn(v) denote a generic test statistic for testing H0 : r(θ) = v and let cvn,1−α(v) denote the

corresponding nominal level α critical value, which may depend on n and v. We approximate

the (finite-sample) size of the resulting test, supγ∈Γ:r(θ)=v Pγ(Tn(v) > cvn,1−α(v)), by its

asymptotic size (AsySz), i.e.,

AsySz = lim sup
n→∞

sup
γ∈Γ:r(θ)=v

Pγ(Tn(v) > cvn,1−α(v)).

In order to characterize AsySz and eventually determine whether a given test controls asymp-

totic size, i.e., AsySz ≤ α, we rely on Lemma 2.1 in AC (adapted to tests). Therefore, we

consider the same set of drifting sequences of true parameters γn = (θn, φn) as AC, see their

equation (2.7).

2.1 Corresponds to Section B in AC

[To do: “Paste” Assumptions B1–B3 from AC, suitably adapting Assumption B(i) to allow

for “some” boundary effects.]

2.2 Corresponds to Section C in AC

[To do: Complete and re-formulate this section.]

Define the concentrated extremum estimator ψ̂n(π)(∈ Ψ(π)) of ψ for given π ∈ Π by

Qn(ψ̂n(π), π) = inf
ψ∈Ψ(π)

Qn(ψ, π) + o(n−1).

Below, we will use the following notation: Qc
n(π) = Qn(ψ̂n(π), π). We rely on the same

definitions of sets of drifting sequences as those used in AC. Let

an(γn) =

{
n1/2 if {γn} ∈ Γ(γ0, 0, b) and ‖b‖ <∞
‖βn‖−1 if {γn} ∈ Γ(γ0, 0, b) and ‖b‖ =∞

.

We invoke Assumptions C1–C5. In particular (given Assumptions C1 and C4), we have the
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following quadratic expansion in ψ around ψ0,n = (0, ζn) for given π, under {γn} ∈ Γ(γ0, 0, b):

Qn(ψ, π) = Qn(ψ0,n, π) +DψQn(ψ0,n, π)′(ψ − ψ0,n)

+
1

2
(ψ − ψ0,n)′H(π; γ0)(ψ − ψ0,n) +R∗n(ψ, π).

Running example - continued: Assumption C1 holds with

DψQn(θ) =
1

n

n∑
t=1

ρψ,t(θ),

where

ρψ,t(θ) ≡
∂

∂ψ
ρt(θ) =

1

2h∞t (θ)

(
1− y2

t

h∞t (θ)

)
∂h∞t (θ)

∂ψ

and where

∂h∞t (θ)

∂ψ
=

(
∞∑
i=0

πiy2
t−i−1,

∞∑
i=0

πix2
t−i−1, 1

)′
.

It will be convenient to introduce H(π; γ0) later on. Assumptions C2 and C3 hold with

Gn(π) =
√
n

1

n

n∑
t=1

(ρψ,t(ψ0,n, π)− Eγnρψ,t(ψ0,n, π)),

where Gn(·) d→ G(·; γ0) and where G(·; γ0) denotes a mean zero Gaussian process with

covariance Kernel given by

Ω(π1, π2; γ0) = Eγ0ρψ,t(ψ0, π1)ρψ,t(ψ0, π2)′,

(under appropriate assumptions about the dependence of zt (or maybe yt!?) and Ft−1). Note

that, here, γ0 is such that β0 = 0. Furthermore, note that, if the true parameter is γ∗, then

y2
t

h∞t (θ∗)
= z2

t .

Therefore, if γ∗ is such that β∗ = 0, then
y2t
ζ∗

= z2
t . Letting c ≡ Eγ0 (1−z2t )2

2
=

Eγ0z
4
t−1

2
(since

Eγ0 [z
2
t |Ft−1] = Eγ0 [z

2
t ] = 1) following Andrews (2001) [See also equation (4.4) in Andrews

(2001); Note that we impose Assumption 2.2 in Pedersen and Rahbek (2019)], we have the

following simplification:

Ω(π1, π2; γ0) =
c

2ζ2
0

Eγ0
∂h∞t (ψ0, π1)

∂ψ

∂h∞t (ψ0, π2)

∂ψ′
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We have several more simplifications. First,

1

ζ2
0

Eγ0

∞∑
i=0

πi1y
2
t−i−1

∞∑
j=0

πj2y
2
t−j−1 = Eγ0

∞∑
i=0

πi1z
2
t−i−1

∞∑
j=0

πj2z
2
t−j−1

=
∞∑
i=0

πi1π
i
2Eγ0z

4
t−i−1 +

∞∑
i=0

∑
j 6=i

πi1π
j
2Eγ0z

2
t−i−1z

2
t−j−1

=
∞∑
i=0

πi1π
i
2Eγ0z

4
t−i−1 −

∞∑
i=0

πi1π
i
2 +

∞∑
i=0

πi1

∞∑
j=0

πj2

=
Eγ0z

4
t − 1

1− π1π2

+
1

(1− π1)(1− π2)

=
2c

1− π1π2

+
1

(1− π1)(1− π2)
,

where the second to last equality uses Eγ0z
2
t−i−1z

2
t−j−1 = 1 for i 6= j. Second,

1

ζ0

Eγ0

∞∑
i=0

πi1y
2
t−i−1 = Eγ0

∞∑
i=0

πi1z
2
t−i−1 =

∞∑
i=0

πi1Eγ0z
2
t−i−1 =

1

1− π1

.

Third,
1

ζ0

Eγ0

∞∑
i=0

πi1y
2
t−i−1

∞∑
j=0

πj2x
2
t−j−1 = Eγ0

∞∑
i=0

πi1z
2
t−i−1

∞∑
j=0

πj2x
2
t−j−1.

[Note that, if we are willing to assume independence, this equals 1
1−π1Eγ0

∑∞
j=0 π

j
2x

2
t−j−1.] In

sum, we have

Ω(π1, π2; γ0) =
c

2


2c

1−π1π2
+ 1

(1−π1)(1−π2)
1
ζ0
Eγ0

∑∞
i=0 π

i
1z

2
t−i−1

∑∞
j=0 π

j
2x

2
t−j−1

1
ζ0

1
1−π1

1
ζ0
Eγ0

∑∞
i=0 π

i
1x

2
t−i−1

∑∞
j=0 π

j
2z

2
t−j−1

1
ζ20
Eγ0

∑∞
i=0 π

i
1x

2
t−i−1

∑∞
j=0 π

j
2x

2
t−j−1

1
ζ20
Eγ0

∑∞
j=0 π

j
1x

2
t−j−1

1
ζ0

1
1−π2

1
ζ20
Eγ0

∑∞
j=0 π

j
2x

2
t−j−1

1
ζ20

 .

By definition, we have

H(π; γ0) = Eγ0
∂

∂ψ′
ρψ,t(ψ0, π).

Also,

∂

∂ψ′
ρψ,t(θ) =

∂

∂ψ′

[
1

2h∞t (θ)

(
1− y2

t

h∞t (θ)

)
∂h∞t (θ)

∂ψ

]
=
∂h∞t (θ)

∂ψ

∂

∂ψ′

[
1

2h∞t (θ)

(
1− y2

t

h∞t (θ)

)]
,

since
∂h∞t (θ)

∂ψ
is not a function of ψ. We have

∂

∂ψ′

[
1

2h∞t (θ)

(
1− y2

t

h∞t (θ)

)]
=

[
− 1

2(h∞t (θ))2

(
1− y2

t

h∞t (θ)

)
+

1

2h∞t (θ)

y2
t

(h∞t (θ))2

]
∂h∞t (θ)

∂ψ′
.
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Now, using Eγ0z
2
t = 1, we have

Eγ0 −
1

2ζ2
0

(
1− z2

t

) ∂h∞t (ψ0, π)

∂ψ

∂h∞t (ψ0, π)

∂ψ′
= 0.

Therefore, we have

H(π; γ0) =
1

2ζ2
0

Eγ0
∂h∞t (ψ0, π)

∂ψ

∂h∞t (ψ0, π)

∂ψ′
= Ω(π, π; γ0)/c.

Next, we derive K(π; γ0) ≡ K(ψ0, π; γ0) defined in Assumption C5. By definition, we have

Kn(θ; γ∗) =
1

n

n∑
t=1

∂

∂β∗′
Eγ∗ρψ,t(θ).

We have

Eγ∗ρψ,t(θ) = Eγ∗
1

2h∞t (θ)

(
1− y2

t

h∞t (θ)

)
∂h∞t (θ)

∂ψ
= Eγ∗

1

2h∞t (θ)

(
1− h∞t (θ∗)

h∞t (θ)

)
∂h∞t (θ)

∂ψ

= Eγ∗
1

2h∞t (θ)

∂h∞t (θ)

∂ψ
− Eγ∗

1

2h∞t (θ)

h∞t (θ∗)

h∞t (θ)

∂h∞t (θ)

∂ψ

= Eγ∗
1

2h∞t (θ)

∂h∞t (θ)

∂ψ
− Eγ∗

1

2h∞t (θ)

ζ∗ + β∗1
∑∞

i=0 π
∗iy2

t−i−1 + β∗2
∑∞

i=0 π
∗ix2

t−i−1

h∞t (θ)

∂h∞t (θ)

∂ψ
.

Then, we have

K(π; γ0) = −Eγ0
1

2ζ2
0

∂h∞t (θ)

∂ψ

∣∣∣∣
θ=(ψ0,π)

[
∞∑
j=0

πj0y
2
t−j−1;

∞∑
j=0

πj0x
2
t−j−1

]

= −1

2


2c

1−ππ0 + 1
(1−π)(1−π0)

1
ζ0
Eγ0

∑∞
i=0 π

iz2
t−i−1

∑∞
j=0 π

j
0x

2
t−j−1

1
ζ0
Eγ0

∑∞
i=0 π

ix2
t−i−1

∑∞
j=0 π

j
0z

2
t−j−1

1
ζ20
Eγ0

∑∞
i=0 π

ix2
t−i−1

∑∞
j=0 π

j
0x

2
t−j−1

1
ζ0

1
1−π0

1
ζ20
Eγ0

∑∞
j=0 π

j
0x

2
t−j−1



Define

Zn(π) = −an(γn)H−1(π; γ0)DψQn(ψ0,n, π).

Let

qn(λ, π; γ0) = (λ− Zn(π))′H(π; γ0)(λ− Zn(π)).
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Then, we have

Qn(ψ, π) = Qn(ψ0,n, π)− 1

2a2
n(γn)

Zn(π)′H(π; γ0)Zn(π)

+
1

2a2
n(γn)

qn(an(γn)(ψ − ψ0,n), π; γ0) +R∗n(ψ, π).

Under {γn} ∈ Γ(γ0, 0, b), we have

Zn(π)
d→

Z(π; γ0, b) ≡ −H−1(π; γ0){G(π; γ0) +K(π; γ0)b} if ‖b‖ <∞

−H−1(π; γ0)K(π; γ0)ω0 if ‖b‖ =∞ and βn/‖βn‖ → ω0

,

cf. equation (3.7) in Andrews and Cheng (2012). Define

q(λ, π; γ0, b) = (λ− Z(π; γ0, b))
′H(π; γ0)(λ− Z(π; γ0, b))

and

λ̂(π; γ0, b) = arg min
λ∈Λ

q(λ, π; γ0, b),

where in our running example

Λ = [0,∞]2 × [−∞,∞].

Then the equivalent for the first part of Theorem 3.1(a) for fixed π is given by

√
n(ψ̂n(π)− ψ0,n)

d→ λ̂(π; γ0, b).

The “rest” of part Theorem 3.1(a) also holds, with π∗(γ0, b) suitably adapted, which is

necessary because Assumption C6 does not (/cannot) hold in the presence of boundary

constraints. This is an immediate consequence of Assumption A. To see this note that (in

our running example) λ̂(π; γ0, b)1:2 = (0, 0)′ with positive probability (QUESTION: is it

always true that this holds for all π??? No, not at all!!! But I don’t think that this is a

problem per se.) under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞ such that

Qc
n(π) = Q0,n + op(1),

where Q0,n = Qn(ψ0,n, π), which does not depend on π. To “fix” this, we have to modify

Assumption C6 so that it holds whenever λ̂(π; γ0, b)1:2 > (0, 0)′ and π∗(γ0, b) can be defined

arbitrarily whenever λ̂(π; γ0, b)1:2 = (0, 0)′ for all π. Similarly, the equivalent of Theorem
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3.1(b) is given by

2n(Qn(θ̂n)−Q0,n)
d→ inf

π∈Π
−λ̂(π; γ0, b)

′H(π; γ0)λ̂(π; γ0, b).

Note that the fixed π version in Lemma 3.2(a) holds as well. Lemma 3.2(b) also holds

(without modification). To see this, note that under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ = ∞ and

βn/‖βn‖ → ω0, the equivalent of the above q(·) function is given by

(λ− {−H−1(π; γ0)K(π; γ0)ω0})′H(π; γ0)(λ− {−H−1(π; γ0)K(π; γ0)ω0}),

which we minimize over
1

‖βn‖
(Ψ− ψ0,n)→ Λ

(at least in our running example). Furthermore, in our running example, −H−1(π; γ0)K(π; γ0)ω0

is strictly positive (and finite), such that the equivalent of the q(·) function equals 0.

[To do: Verification of Assumptions C7 and C8 and Lemmas 3.3 and 3.4.]

2.3 Corresponds to Section D in AC

[To do: “Reproduce” suitably adapted versions of Assumptions D1–D3.]

Running example - continued: We want to derive J(γ0) and V (γ0) that pop up in As-

sumptions D2 and D3. Let’s first consider D3

B−1(βn)DQn(θn) =
1

n

n∑
t=1

1

2h∞t (θn)

(
1− y2

t

h∞t (θn)

)
ϕ(θn),

where

ϕ(θn) = B−1(βn)
∂h∞t (θn)

∂θ
=

(
∞∑
i=0

πiny
2
t−i−1,

∞∑
i=0

πinx
2
t−i−1, 1,

∞∑
i=1

iπi−1
n

(
βn,1
‖βn‖

y2
t−i−1 +

βn,2
‖βn‖

x2
t−i−1

))′
.

We have

V (γ0) =
c

2
Eγ0

ϕ(θ0)

h∞t (θ0)

ϕ′(θ0)

h∞t (θ0)
.

Similarly, using similar arguments as in Lemma A.6 in Pedersen and Rahbek (2019), we can

show that

J(γ0) =
1

2
Eγ0

ϕ(θ0)

h∞t (θ0)

ϕ′(θ0)

h∞t (θ0)
.

9



3 Test statistics used in two-step procedure

Pedersen and Rahbek (2019) consider two test statistics. Assuming that θ̂n = (ψ̂n(π̂n), π̂n),

where π̂n ∈ Π is defined as

Qc
n(π̂n) = inf

π∈Π
Qc
n(π) + o(n−1),

the LR∗ statistic for testing H∗0 : β1 = β2 = 0 can be written as

LR∗ = 2n(min
θ∈Θ∗0

Qn(θ)−Qn(θ̂n)),

where Θ∗0 = {θ ∈ Θ : β1 = β2 = 0}.
The LR statistic for testing H∗0 : β2 = 0 can be written as

LR = 2n(min
θ∈Θ0

Qn(θ)−Qn(θ̂n)),

where Θ0 = {θ ∈ Θ : β2 = 0}. Let Sβ = [I2 02] denote the selection matrix that selects the

entries pertaining to β and let λ̂β(π; γ0, b) = Sβλ̂(π; γ0, b). Then, the asymptotic distribution

of LR∗ under βn = b/
√
n is given by

sup
π∈Π

λ̂β(π; γ0, b)
′(SβH

−1(π; γ0)S ′β)−1λ̂β(π; γ0, b)(−0′2(SβH
−1(π; γ0)S ′β)−102).

Note that under βn = 02 (∀n), we have b = 0.

The asymptotic distribution of LR under βn = b/
√
n is given by

sup
π∈Π

λ̂β(π; γ0, b)
′(SβH

−1(π; γ0)S ′β)−1λ̂β(π; γ0, b)−sup
π∈Π

λ̂rβ(π; γ0, b)
′(SβH

−1(π; γ0)S ′β)−1λ̂rβ(π; γ0, b),

where λ̂rβ(π; γ0, b) = Sβλ̂
r(π; γ0, b),

λ̂rβ(π; γ0, b) = arg min
λ∈Λr

q(λ, π; γ0, b),

and

Λr = [0,∞]× {0} × [−∞,∞].

If we assume that

Eγ0

∞∑
i=0

πi1z
2
t−i−1

∞∑
j=0

πj2x
2
t−j−1 =

1

1− π1

Eγ0

∞∑
j=0

πj2x
2
t−j−1 (1)

10



(a sufficient condition is that zt (t = ...,−2,−1, 0, 1, 2, ...) is independent of xt), then

SβH
−1(π; γ0)S ′β is diagonal. In that case, the two asymptotic distributions simplify: Let

Sβ1 = [1 0 0] and Sβ2 = [0 1 0] denote the selection matrices that select the entries per-

taining to β1 and β2, respectively. Then, λ̂β1(π; γ0, b) = Sβ1λ̂(π; γ0, b) and λ̂β2(π; γ0, b) =

Sβ2λ̂(π; γ0, b), where, for i ∈ {1, 2},

λ̂βi(π; γ0, b) ∼ max(Zβi(π; γ0, b), 0),

with Zβi(π; γ0, b) = SβiZ(π; γ0, b). Let ∆ = (SβH
−1(π; γ0)S ′β)−1. Then, the asymptotic

distribution of LR is, for example, given by

sup
π∈Π

[
λ̂β1(π; γ0, b)

2∆11 + λ̂β2(π; γ0, b)
2∆22

]
− sup

π∈Π
λ̂β1(π; γ0, b)

2∆11. (2)

3.1 Plug-in least favorable configuration

In the case where equation (2) applies, applying plug-in least favorable configuration critical

values (AC) (for the LR statistic) is not too computationally expensive. In addition, it

should be possible to exploit certain monotonicities. [To do: Insert the computation of the

plug-in least favorable configuration critical values, for when equation (2) applies and for

when it doesn’t.]

4 Approximation

The dgp is generated as follows: n = 500. Burn-in phase of 100 observations. We are

generating data under the null, i.e., β2 = 0. Furthermore, we choose ζ = 1 (which has no

impact it seems) and π = 0.2. We vary β1 in the set {0, 0.1, 0.2} which correspond to the

localization parameter b1 =
√

500 · β1 ∈ {0, 2.23, 4.47}. xt is drawn from an AR(1), i.e.,

xt = ρxxt−1 + εt,

where (
zt

εt

)
iid∼ N

((
0

0

)
,

(
1 ρzε

ρzε 1

))
.

In what follows, we vary ρx and ρzε. Note that, for this dgp, zt and xt are independent if

and only if ρzε = 0.

11



4.1 n = 500, ρzε = 0, ρx = 0.5, π̄ = 0.7, π = 0.2

0 2 4 6 8

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 2 4 6 8

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 2 4 6 8

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 1 2 3 4

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 1 2 3 4

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 1 2 3 4

de
ns

ity

Asymptotic distribution
Finite sample distribution

−5 0 5

de
ns

ity

Asymptotic distribution
Finite sample distribution

−5 0 5

de
ns

ity

Asymptotic distribution
Finite sample distribution

−5 0 5

de
ns

ity

Asymptotic distribution
Finite sample distribution

0.00 0.25 0.50 0.75 1.00

de
ns

ity

Asymptotic distribution
Finite sample distribution

0.00 0.25 0.50 0.75 1.00

de
ns

ity

Asymptotic distribution
Finite sample distribution

0.00 0.25 0.50 0.75 1.00

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 20 40 60

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 20 40 60

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 20 40 60

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 2 4 6

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 2 4 6

de
ns

ity

Asymptotic distribution
Finite sample distribution

0 2 4 6

de
ns

ity

Asymptotic distribution
Finite sample distribution

12



4.2 n = 1000, ρzε = 0, ρx = 0.5, π̄ = 0.7, π = 0.2
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4.3 n = 10000, ρzε = 0, ρx = 0.5, π̄ = 0.7, π = 0.2
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4.4 n = 500, ρzε = 0, ρx = 0.5, π̄ = 0.7, π = 0.2
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4.5 n = 1000, ρzε = 0, ρx = 0.5, π̄ = 0.7, π = 0.2
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4.6 n = 10000, ρzε = 0, ρx = 0.5, π̄ = 0.7, π = 0.2
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4.7 n = 500, ρzε = 0.9, ρx = 0, π̄ = 0.7, π = 0.2
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4.8 n = 1000, ρzε = 0.9, ρx = 0, π̄ = 0.7, π = 0.2
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4.9 n = 10000, ρzε = 0.9, ρx = 0, π̄ = 0.7, π = 0.2
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4.10 n = 10000, ρzε = 0, ρx = 0.5, π̄ = 0.7, π = 0.2
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4.11 n = 500, ρzε = 0.9, ρx = 0, π̄ = 0.7, π = 0.2
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4.12 n = 1000, ρzε = 0.9, ρx = 0, π̄ = 0.7, π = 0.2
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4.13 n = 10000, ρzε = 0.9, ρx = 0, π̄ = 0.7, π = 0.2

0 1 2 3

0
1

2
3

4

sort(asy$y)

so
rt

(f
s$

y)

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

sort(asy$y)

so
rt

(f
s$

y)

0 2 4 6 8

0
2

4
6

8

sort(asy$y)

so
rt

(f
s$

y)

0 1 2 3 4

0
1

2
3

4

sort(asy$y)

so
rt

(f
s$

y)

0 1 2 3 4 5

0
1

2
3

4
5

6

sort(asy$y)

so
rt

(f
s$

y)

0 1 2 3 4 5

0
1

2
3

4
5

6

sort(asy$y)

so
rt

(f
s$

y)

−10 −5 0 5

−
10

−
5

0
5

sort(asy$y)

so
rt

(f
s$

y)

−10 −5 0 5

−
10

−
5

0
5

sort(asy$y)

so
rt

(f
s$

y)

−10 −5 0 5
−

10
−

5
0

5

sort(asy$y)

so
rt

(f
s$

y)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sort(asy$y)

so
rt

(f
s$

y)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sort(asy$y)

so
rt

(f
s$

y)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

sort(asy$y)

so
rt

(f
s$

y)

0 5 10 15

0
5

10
15

sort(asy$y)

so
rt

(f
s$

y)

0 10 20 30 40

0
10

20
30

sort(asy$y)

so
rt

(f
s$

y)

0 10 20 30 40 50 60 70

0
10

20
30

40
50

60
70

sort(asy$y)

so
rt

(f
s$

y)

0 2 4 6 8

0
2

4
6

sort(asy$y)

so
rt

(f
s$

y)

0 2 4 6 8 10 12

0
2

4
6

8
10

sort(asy$y)

so
rt

(f
s$

y)

0 2 4 6 8 10

0
2

4
6

8
10

12

sort(asy$y)

so
rt

(f
s$

y)

24



4.14 n = 20000, ρzε = 0.9, ρx = 0, π̄ = 0.7, π = 0.2
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5 Power comparison

[To do: Complete the subsequent “preliminary” simulation results.] We choose π = 0.7. The

true parameters are set equal to β2 = 0, ζ = 1, π = 0.2. We set n = 500, with a burn-

in phase of 100 observations. In the simulation results below, which are based on 10,000

replications (for both, asymptotic and finite sample distributions), we vary β1 in the set

{0, 0.1, 0.2} which correspond to the localization parameter b1 =
√

500 · β1 ∈ {0, 2.23, 4.47}.
xt is drawn from an AR(1), i.e.,

xt = ρxt−1 + εt.

We set ρ = 0.5 and generate data from zt, εt
iid∼ N(0, 1).

In Figures ??–??, the scale within each figure is the same, but this is not true between

figures.
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Figures ??–?? show that the asymptotic and finite sample distributions of β̂n,1, β̂n,2, ζ̂n,

and π̂n (appropriately demeaned, or not, and scaled) for β1 ∈ {0, 0.1, 0.2} from left to right.

Note that for both, the asymptotic and the finite sample distributions, π̂n and its asymptotic

counterpart are set equal to 1 whenever they are not defined, which happens when β̂n or

its asymptotic counterpart are equal to (0, 0)′. The take-away messages from Figures ??–??

are:

• The asymptotic approximations work well. [To do: There is some room for improve-

ment by replacing Ω(π1, π2; γ0) with the covariance kernel evaluated at the true pa-

rameter (i.e., β1 ∈ {0, 0.1, 0.2} rather than β1 = 0 throughout). This should somewhat

increase the asymptotic variance, which is in line with the graphs where the asymptotic

distributions currently seem too tight.]

• While β1 = 0.2 is far enough from the boundary for the corresponding estimator, β̂n,1,

to no longer take on the value 0 (cf. Figure ??), weak identification is still persuasive

(unclear in how far this distribution is well approximated by a truncated normal), cf.

Figure ??.

Figure ?? shows the asymptotic and finite sample distribution of the LR statistic for

testing H0 : β2 = 0 for β1 ∈ {0, 0.1, 0.2} from left to right. Since β2 = 0 throughout, all

distributions are “null distributions.”
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Figure 1: Histogram of max(0, N(0, 1))2 and finite sample distribution (n = 500) of LR
statistic for testing H0 : β2 = 0, with b1 =

√
500·0 (= 0),

√
500·0.1 (≈ 2.23), and

√
500·0.2 (≈

4.47) from left to right.

Because the three graphs in Figure ?? look somewhat similar, Figure 1 also plots the

finite sample distribution of the LR statistic, but compares it to the asymptotic distribution

that Pedersen and Rahbek (2019) obtain for β1 � 0 (b1 = ∞), i.e., max(0, N(0, 1))2. The

right graph shows that even though β1 = 0.2 (b ≈ 4.47) is not super far from the boundary,

the asymptotic distribution result in Pedersen and Rahbek (2019) seems to already kick

in. (This is of course no uniformly valid statement, because everything depends on the
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distribution of xt as well as the true value of π.) Plus, the left graph shows that even when

β1 = 0, the max(0, N(0, 1))2 is not too far off (see Section 5.1 for the expression of the

asymptotic distribution). This already hints at the potential power gains.

Figure ?? shows the asymptotic and finite sample distribution of the LR∗ statistic for

testing H∗0 : β1 = β2 = 0 for β1 ∈ {0, 0.1, 0.2} from left to right. [While the approximation

by the asymptotic distribution doesn’t look that good here, note the scale on the x-axis, i.e.,

the shift in the mean is still well captured. Similar to above, the asymptotic approximation

can be improved upon.] The left hand graph, thus, shows distributions under the null, while

the other two graphs show distributions under the alternative. By “combining” the graphs

in Figures ?? and ??, we obtain the asymptotic null rejection probability of the two step

testing procedure. [To do: Add the corresponding simulation results.]

5.1 Analysis of sequential test

[To do: Present the power comparison of the two step testing procedures and the “second

step” test (or LR) statistic with plug-in least favorable configuration critical values.]
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Figure 2: Asymptotic power as a function of b2, with b1 =
√

500·0 (= 0),
√

500·0.05 (≈ 1.12),
and
√

500 · 0.1 (≈ 2.24) from left to right. LR with PI-LF in black. Two-step procedure in
red. π = 0.2.

6 Asymptotic size of two-step procedures

[To do!]

7 Conclusion

[To do!]
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