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Abstract

This paper generalizes multivariate multi-quantile CAViaR models (MVMQ-CAViaR, see White et al.,
2015) by incorporating CoVaR specification (see Adrian and Brunnermeier, 2011) into the model specifi-
cation. The proposed model presents a vector-autoregression (VAR) of financial institutions’ value-at-risk
(VaR) as well as their CoVaR. This model generalization is able to capture contemporaneous tail de-
pendence of financial institutions and market indexes so that we can interpret the systemic risks of the
institutions more timely. We provide consistency and asymptotic normality of the general model estima-
tor as well as some relevant inference tests. For tracing the transmission of a single shock to a financial
institution in the financial system, we also construct quantile impulse response functions (QIRF) accord-
ingly using the local projection idea (Jordà, 2005) and score vectors. Applications to real data shows
strong evidence of contemporaneous effects of big banks on the market index S&P500, and supports this
methodology.
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1 Introduction

Value-at-Risk (VaR) is a standard risk measure for market risk management with defining risk as loss on
a fixed asset over a fixed time horizon. It is widely employed in the financial industry for both internal
control and regulatory reporting. Among many popular approaches for VaR estimation, quantile regres-
sions stand out for the advantages in semi-parametric specification and numerical efficiency. The quantile
regression family working for this measure has been extended from static quantile regression models (QR,
see Koenker and Bassett Jr, 1978) to quantile autoregression models (QAR, see Koenker and Xiao, 2006), to
conditional autoregressive value-at-risk models (CAViaR, see Engle and Manganelli, 2004), to multivariate
multi-quantile CAViaR models (MVMQ-CAViaR, see White et al., 2015). This evolution can be hinted by
the specification testing summarized by Chernozhukov and Umantsev (2001) with regard to checking the
conditionality and the functional form validity of quantile regression models, which enlightens us to see that
each model generation in the quantile regression evolution can be viewed as a consequence from the inability
of its predecessors in the conditional information sufficiency or in the functional form validity.

MVMQ-CAViaR is capable of measuring the individual tail risk as well as the tail dependence of finan-
cial institutions by modelling the VaR of their stock returns in a vector-autoregressive way. We notice that
only predetermined (i.e., lagged and exogenous) information is accounted in the MVMQ-CAViaR specifica-
tion (White et al., 2015) which cannot measure the contemporaneous tail dependence among financial assets
or cover the CoVaR specification (Adrian and Brunnermeier, 2011) for measuring systemic risk of financial
institutions. As we always see clear comovement pattern between market portfolios and some big financial
institutions, we question if MVMQ-CAViaRs are sufficient to explain this pattern.
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In this paper we propose to generalize the vector-autoregressive VaR in the generic MVMQ-CAViaR
specification by incorporating the CoVaR specification of a financial market portfolio. In this paper, we
would like to see if we can find significant contemporaneous tail dependence between the financial market
portfolio and some financial institutions so as to measure their systemic risk. We will also provide the
estimation consistency and asymptotic normality proofs of this generalized model along with some testing
methods to infer the significance of the contemporaneous tail dependence between a market portfolio/index
and some big financial institutions. This model generalization also can allow us to study the links across
the whole financial market network and to trace the transmission of a single shock to a financial institution
in the financial system by using quantile impulse response functions (QIRF) which we will construct in this
paper accordingly with the use of the local projection idea (Jordà, 2005) and expansion of estimated terms.

The remainder of this paper is organized as follows. In Section 2, we introduce the generic MVMQ-
CAViaR model specification first and propose to generalize it to the vector autoregressive model of VaR and
CoVaR along with the proofs on the estimation consistency and asymptotic normality of this generalized
model. We also call this generalized model as systemic MVMQ-CAViaR model. It follows that in Section 2.3
some inference tests are given in order to infer the significance of contemporaneous terms in the CoVaR
specification. In Section 3, we illustrate on applying CoVaR returned by our generalized model to measure
the systemic risk of financial institutions. In Section 4, we construct quantile impulse response functions in
correspondence to our model and apply the local projection with use of expansion of estimated terms for
QIRF estimation. Some results of Monte Carlo simulations regarding systemic MVMQ-CAViaR models are
presented in Section 5. Section 6 presents an empirical application to real data. Section 7 concludes this
paper.

2 Model Generalization to Systemic MVMQ-CAViaR

In Section 2.1, we first introduce the generic MVMQ-CAViaR model specification which is also refered to
as VAR for VaR (see White et al., 2015). Being motivated to measure the systemic risk of some financial
institutions and to measure the contemporaneous tail dependence among financial assets, we propose to
generalize MVMQ-CAViaR models to the vector autoregressive model of VaR and CoVaR in Section 2.2. In
Section 2.3 some inference tests are proposed in order to infer the significance of the contemporaneous tail
dependence.

2.1 MVMQ-CAViaRs (VAR for VaR)

White et al. (2015) proposed the framework of multivariate multi-quantile CAViaR (MVMQ-CAViaR) models
and established the theoretical validity in its application by proving its estimation consistency and asymptotic
normality under some regularity conditions. In essense, this framework is based on autoregressing the VaR
of multiple random variables onto their lags so as to measure their tail dependence, which can be regarded as
an extension to CAViaR models which are autoregressions of univariate VaR. The generic MVMQ-CAViAR
specification given by White et al. (2015) is shown below.

Suppose Y := [Y1, Y2, . . . , Yn]
′ is a vector of n random variables of interest, with its multivariate time

series {Yt}Tt=1. We consider a vector of explanatory exogenous variables denoted by X whose first element is

one, with time series {Xt}Tt=1. We consider p quantile indexes denoted by θi,1, . . . , θi,p and 0 < θi,1 < . . . , <
θi,p < 1 for each Yi, i = 1, . . . , n. Define the information set Ft until time t to be the σ-algebra generated by
Z(t) := {Xt+1,Xt,Yt,Xt−1,Yt−1, . . .}, i.e., Ft := σ(Z(t)), t = 1, . . . , T . Denote the cumulative distribution
function of Yit conditional on Ft−1 by Fit(·)1. The θij-th quantile of Yit conditional on Ft−1, denoted by
qi,j,t := inf {y : Fit(y) ≥ θij}, can be specified by a generic MVMQ-CAViaR as follows:

qi,j,t = Ψ′
tβij +

m∑
τ=1

q′
t−τγi,j,τ , i = 1, . . . , n; j = 1, . . . , p, (1)

1White et al. (2015) specified the dependence of Fit(·) on each ω ∈ Ω by denoting Fit(·) more specifically as Fit(ω, ·). In
this paper, we do not specify explicitly the role of each ω ∈ Ω as ω ∈ Ω cannot be extracted explicitly to formulate its role and
its influence can be exerted partially or fully through the conditional set Ft−1 each time.
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where {Ψt} is a sequence of k × 1 variables with Ψt predetermined to Yt and being Ft−1-measurable,
βij := (βi,j,1, . . . , βi,j,k)

′ is a k × 1 real vector, and γi,j,τ := (γ′
i,j,τ,1, . . . ,γ

′
i,j,τ,n) with each γi,j,τ,k being a

p× 1 real vector. Let γij := (γ′
i,j,1, . . . ,γ

′
i,j,m),αij := (β′

ij ,γ
′
ij) and α :=

(
α′

11, . . . ,α
′
1p, . . . ,α

′
n1, . . . ,α

′
np

)
,

where α ∈ A, a compact set of Rlr with lr := np(k +m).
MVMQ-CAViaR is capable of measuring the individual tail risk as well as the tail dependence of finan-

cial institutions. However, due to the conditional limitation in MVMQ-CAViaR, MVMQ-CAViaR models
cannot measure the contemporaneous tail dependence among financial assets or cover the CoVaR specifica-
tion (Adrian and Brunnermeier, 2011) for measuring systemic risk of financial institutions. As we always see
clear contemporaneous comovement patterns between market portfolios and some big financial institutions,
we question if MVMQ-CAViaRs are sufficient to explain this pattern. This question makes sense as it is
often believed that information is rapidly reflected into stock prices. Neglecting contemporaneous return
spillovers probably leads to underestimation of systemic risk contributions or exposures. Appealed to the
systemic feature of financial systems, in the following we are going to generalize MVMQ-CAViaR models by
incorporating the CoVaR specification on a financial market portfolio return.

2.2 Systemic MVMQ-CAViaR (VAR for VaR and CoVaR)

The financial market can react to news rapidly and extensively. One type of news deemed to be influential
on the market is regarding ‘too big to fail’ financial institutions due to their systemic risk. Systemic risk
in the financial market is defined as the risk that an event at the company level triggers severe instability
or collapse of an entire industry or even the economy. The ‘too big to fail’ financial institutions are highly
interconnected with the financial market both directly and indirectly. The direct links can happen through
contractual commits and counterparty credit risk. The indirect links are, for instance, price effects and
liquidity spirals. Such interconnection the ‘too big to fail’ financial institutions possess in the financial
market is also accompanied with their systemic risk to the whole market. With the objective to measure
the systemic risk and contemporaneous tail dependence of financial institutions, we would like to generalize
MVMQ-CAViaR models by incorporating the CoVaR specification (see Adrian and Brunnermeier, 2011)
into the autoregressive model (1) as follows which presents to us a vector-autoregressive model of financial
institutions’ VaR as well as their CoVaR.

A generic systemic MVMQ-CAViAR model specification given below is based on the set-up of the
generic MVMQ-CAViaR model specification (1) with generalization to measure the contemporaneous tail-
dependence of response variables. It is worth mentioning that the contemporaneous dependence direction is
predetermined by our expertise and belief.2

qi,j,t = Φ′
tβij +

m∑
τ=1

q′
t−τγi,j,τ i = 1, j = 1, . . . , p,

qi,j,t = Φ′
tβij +

m∑
τ=1

q′
t−τγi,j,τ + gi,j (si,j ,ui,t) , i = 2, . . . , n, j = 1, . . . , p,

(2)

where

ui,t :=

{
[y1,t − q1,1,t, . . . , y1,t − q1,p,t]

′
, when i = 2;

[y1,t − q1,1,t, . . . , y1,t − q1,p,t, . . . , yi−1,t − qi−1,1,t, . . . , yi−1,t − qi−1,p,t]
′
, when i = 3, . . . , n.

And parameters si,j ∈ Sij which are compact sets of Rdij for i = 2, . . . , n and j = 1, . . . , p with dij being
nonnegative integers. The mapping gi,j : Sij×R(i−1)p → R, accounts for the contemporaneous effect on qi,j,t
due to the realization ui,t. Intuitively speaking, gi,j intends to capture the influence of contemporaneous
news due to y1,t, . . . , yi−1,t onto the conditional quantiles of yi,t so as to measure their contemporaneous tail
dependence and the systemic risk of y1,t, . . . , yi−1,t if Yi is a market index return variable. Some functional
form examples of gi,j are given below. For instance,

gi,j (si,j ,ui,t) = s′i,j ui,t =

ki=i−1,kj=p∑
ki,kj=1

ski,kj
(yki,t − qki,kj ,t)

2Identifying the contemporaneous dependence direction is beyond the scope of this paper.
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is intended to explain the comovement of qi,j,t with y1,t, . . . , yi−1,t and ui,t, where si,j = [s1,1, . . . , si−1,p] ∈
R(i−1)p. Another example is that

gi,j (si,j ,ui,t) =

ki=i−1,kj=p∑
ki,kj=1

ski,kj ,1

{[
1 + exp(ski,kj ,2[yki,t − qki,kj ,t])

]−1 − θki,kj

}
is intended to explain the θki,kj

-th quantile violation of yki,t shifting qi,j,t so as to affect yit.
For the ease of notations, we stack the parameters of (2) into α :=

[
α′

11, . . . ,α
′
1p, . . . ,α

′
n1, . . . ,α

′
np

]
where α ∈ Θ := A × S21 × . . . × Snp, a compact set of Rls with ls := np(k + m) +

p∑
j=1

n∑
i=2

dij , γij :=

[γ′
i,j,1, . . . ,γ

′
i,j,m]′,αij := [β′

ij ,γ
′
ij , s

′
ij ]

′. To estimate true parameters αo, we apply the quasi-maximum

likelihood method by optimizing the objective function S̄T (α) and obtain the quasi-maximum likelihood
estimator (QMLE) α̂ as shown below.

α̂ = argmin
α∈Θ

S̄T (α),

S̄T (α) := T−1
T∑

t=1


n∑

i=1

p∑
j=1

ρθij (yit − qi,j,t(α))

 ,
(3)

where ρθ(ϵ) = ϵ(θ − I[ϵ<0]) is known as check function in quantile regressions. Denote ψθ := (θ − I[ϵ<0]).
To prove the consistency and asymptotic normality of the generic systemic MVMQ-CAviaR (2), we im-

pose some assumptions below on the contemporaneous terms gi,j (si,j ,ui,t) in addition to all the assumptions
on MVMQ-CAViaRs given by White et al. (2015).

Assumption 1 (contemporaneous terms)

G1: For each si,j ∈ Sij, a compact sets of Rdij (i = 2, . . . , n, j = 1, . . . , p), gi,j (si,j , ·) is measurable
with respect to an updated information set Ft,i−1 which is the σ-algebra generated by Z(t,i−1) :=
{Yt[1 : (i− 1)],Xt+1,Xt,Yt,Xt−1,Yt−1, . . .}, i.e., Ft,i−1 := σ(Z(t,i−1)), t = 1, . . . , T . 3

G2: For any ω ∈ Ft,i−1, gi,j (·, ω) is continuous on Sij, i = 2, . . . , n, j = 1, . . . , p.

G3: For any 1 ≤ t ≤ T , E

[
sup

sij∈Sij
gi,j (si,j ,ui,j,t)

]
<∞, i = 2, . . . , n, j = 1, . . . , p.

G4: For any ω ∈ Ft,i−1, gi,j (·, ω) is differentiable in Sij, i = 2, . . . , n; j = 1, . . . , p.

Theorem 2 (Consistency) Suppose that the assumptions of Theorem 1 of White et al. (2015) and As-
sumptions G1-3 hold. Then we have

α̂
a.s.→ αo, (4)

where α̂ is the quasi-likelihood estimator (QML) obtained in (3) for estimating the true parameter αo in the
underlying systemic MVMQ-CAViaR process {Yt}.

Proof. See Appendix B.

Theorem 3 (Asymptotic Normality) Suppose that the assumptions of Theorem 2 of White et al. (2015)
and Assumptions G1-4 hold. Then the asymptotic distribution of the QML estimator α̂ obtained from (3) is
as follows: √

T (α̂−αo)
D∼ N

(
0, Q−1V Q−1

)
, (5)

3Yt[1 : (i− 1)] are the vector containing the first (i− 1) elements of Yt, i = 1, 2, . . . , n. And when i = 1, Yt[1 : (i− 1)] = 0.
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where

Q :=

n∑
i=1

p∑
j=1

E [fi,j,t(0)∇qi,j,t(αo)∇′qi,j,t(α
o)] ,

V := E
[
ηo
t (η

o
t )

′]
ηo
t :=

n∑
i=1

p∑
j=1

E [∇qi,j,t(αo)ψ(ϵi,j,t)] ,

ϵi,j,t := Yit − qi,j,t(α
o),

(6)

and fi,j,t(·) is the continuous density of ϵi,j,t conditional on Ft,i−1, and αo is the true parameter in the
underlying systemic MVMQ-CAViaR process {Yt}.

Proof. See Appendix B.

Theorem 4 Suppose that the assumptions of Theorem 3 of White et al. (2015) and Assumptions G1-4 hold.

To estimate V in Theorem 3, V̂T is obtained by plugging the QMLE α̂ into (6) as follows:

V̂T =
1

T

T∑
t=1

η̂tη̂
′
t

η̂t =

n∑
i=1

p∑
j=1

∇qi,j,t(α̂)ψ(ϵ̂i,j,t),

ϵ̂i,j,t = Yit − qi,j,t(α̂).

(7)

Then we have
V̂T

p→ V. (8)

Proof. See Appendix B.

Denote the conditional probability density of yi,t at its conditional j-th quantile qi,j,t as fi,j,t(0), i =
1, . . . , n, j = 1, . . . , p, t = 1, . . . , T . We apply the adaptive random bandwidth method (Hecq and Sun, 2020)
to estimate fi,j,t(0) (i = 1, . . . , n, j = 1, . . . , p, t = 1, . . . , T ) as follows.

Theorem 5 (Adaptive Random Bandwidth Method)
Given the conditions and the asymptotic normality result in Theorem 3 and assuming the condition that

√
T (αz − α̂)

D∼ N(0, Ils×ls), z = 1, . . . , N,

with ls := np(k +m) +

p∑
j=1

n∑
i=2

dij and the exclusion of αz such that

∇′qi,j,t(α̂) (αz − α̂) = 0,

we can get the following estimator of fi,j,t(0):

f̂i,j,t(0) =
1

N

N∑
i=1

I{yi,t≤qi,j,t(α̂)+∇′qi,j,t(α̂)(αi−α̂)} − I{yi,t≤qi,j,t(α̂)}

∇′qi,j,t(α̂) (αi − α̂)

p−→ fi,j,t(0),

(9)

as N → ∞ for i = 1, . . . , n, j = 1, . . . , p, t = 1, . . . , T , where I{S} is the indicator function on a set S or a
logical statement S, and I{S} = 1 if S is non-empty or true, otherwise I{S} = 0.
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Theorem 6 Suppose that the assumptions of Theorem 3 of White et al. (2015) and Assumptions G1-4 hold.

To estimate Q in Theorem 3, Q̂T is obtained by plugging the QMLE α̂ into (6) as follows:

Q̂T :=
1

T

T∑
t=1

n∑
i=1

p∑
j=1

f̂i,j,t(0)∇qi,j,t(α̂)∇′qi,j,t(α̂), (10)

where f̂i,j,t(0) is obtained by the adaptive random bandwidth method (Hecq and Sun, 2020) in Theorem 5.
Then we have

Q̂T
p→ Q. (11)

Proof. See Appendix B.
Here we would like to show a very basic data generating process (DGP) example on the proposed systemic

MVMQ-CAViaR (2). We want to use this example to compare MVMQ-CAViaR with the systemic one in
their conditions on ensuring the estimation consistency as well as to see their linkage. Suppose a bivariate
time series {Yt := (y1,t, y2,t)}Tt=1 follows a systemic bivariate CAViaR DGP specified as follows:[

1 0
so2,1 1

] [
y1,t
y2,t

]
=

[
βo
10

βo
20

]
+

[
βo
11 βo

12

βo
21 βo

22

] [
y1,t−1

y2,t−1

]
+

[
γo11 γo12
γo21 γo22

] [
q1,t−1

q2,t−1

]
+

[
ϵ1,t
ϵ2,t

]
, (12)

where {ϵ1,t} and {ϵ2,t} are independently distributed to each other as well as within their own processes with
[P{ϵ1,t ≤ 0|Ft,0}, P{ϵ2,t ≤ 0|Ft,1}] = [θ, θ]. q1,t and q2,t are the θ-th quantiles of y1,t and y2,t conditional on
Ft,0 and Ft,1 respectively, i.e., [P{y1,t ≤ q1,t|Ft,0}, P{y2,t ≤ q2,t|Ft,1}] = [θ, θ]. Under the assumptions of
Theorem 2, we can get its QML estimator α̂(s) consistent to its true parameters denoted as αo (s).4

If we ignore the contemporaneous effect and just regress {Yt := (y1,t, y2,t)}Tt=1 onto the bivariate CAViaR
without contemporaneous terms, a correct quantile specification condition has to be imposed further as
follows in order to ensure the estimation consistency in this regression.[

P{ϵ1,t ≤ 0|Ft,0}
P{ϵ2,t − s2,1 · ϵ1,t ≤ 0|Ft,0}

]
=

[
θ
θ

]
(13)

With this correct quantile specification condition, we also have [P{y1,t ≤ q1,t|Ft,0}, P{y2,t ≤ q2,t|Ft,0}] =
[θ, θ] as well as get consistent estimator α̂(r) to the true reduced-form one denoted as αo (r) consisting of the
following elements.

βo (r) :=

[
1 0

−so2,1 1

]
βo (s) =

[
1 0

−so2,1 1

] [
βo
10 βo

11 βo
12

βo
20 βo

21 βo
22

]
,

γo (r) =

[
1 0

−so2,1 1

]
γo (s) =

[
1 0

−so2,1 1

] [
γo11 γo12
γo21 γo22

]
.

(14)

From this example, we can see the condition (13) is a linkage which realizes the transition between the bivari-
ate CAViaR estimator and the systemic one. On the other hand, the benefits of the systemic estimator are
that we can check if there is significant contemporaneous effect to be accounted for and measure the systemic
risk of Y1 if Y2 is a market index return variable. For inferring the significance of the contemporaneous terms
in systemic MVMQ CAViaR models, we are going to provide some testing tools in the following.

2.3 Inference Testing

In this subsection, some inference tests are proposed in order to indicate if the contemporaneous terms in sys-
temic MVMQ CAViaR models are significant enough so as to favour MVMQ CAViaR models or the systemic
ones. There are some ways to design such tests. If we run MVMQ CAViaR regression first, it is rigours to
consider if one response variable has some contemporaneous explanatory power on the conditional quantile
of another response variable. Considering that, Section 2.3.1 takes the way to test if the quantile coverage of
the latter response variable has a significant difference between with conditioning on the contemporaneous
quantile violation of the first response variable and without the contemporaneous conditioning. We can also

4The subscript ‘(s)’ is used to distinguish the parameters for systemic MVMQ-CAViaR models with the ones for MVMQ-
CAViaR models which can be deemed in the reduced-form so use subscript ‘(r)’ .
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test if the first response variable or its functional forms, like its disturbance term, has significant contem-
poraneous explanatory power on the latter response variable. This path is taken in Section 2.3.2 based on
dynamic quantile (DQ) tests developed by Engle and Manganelli (2004). If we run systemic MVMQ CAViaR
regression first, it is also rigours to see if involved contemporaneous terms are significant enough. Wald tests
typically can fulfil this testing role and are presented in Section 2.3.3.

2.3.1 Conditional Coverage Method

The conditional coverage method is commonly used for VaR backtesting. Unlike the unconditional coverage
method which only focuses on the the frequency of VaR exceedance, the conditional coverage method (Christof-
fersen, 1998) is to perform tests on the conditional VaR coverage which is estimated by the conditional
frequency of the VaR exceedance of a univariate time series. The conditional coverage in the tests is set to
equal the unconditional one under the null hypothesis so that we can see if the conditional variables can
significantly affect the probability of the VaR exceedance.

We adopt this method to test if the occurrence of one asset loss rate (−y1t) exceeding its VaRα (−q1t)
significantly affects the probability of a financial market index loss rate (−y2t) exceeding its VaRα (−q2t) at
the same time. To serve this purpose, the testing hypothesis is stated as follows:{

Ho : E
[
I{y2t≤q2t}

∣∣I{y1t≤q1t}=1

]
= α, for all t;

HA : E
[
I{y2t≤q2t}

∣∣I{y1t≤q1t}=1

]
̸= α, for all t,

(15)

where I{S} is the indicator function on a set S or a logical statement S, and I{S} = 1 if S is non-empty or
true, otherwise I{S} = 0.

Count the frequencies of four possible outcomes of I{y2t≤q2t} × I{y1t≤q1t} over t = 1, 2, . . . , T , and sum-
marize it into the following table:

frequency in {yt}Tt=1 I{y1t≤q1t} = 0 I{y1t≤q1t} = 1
I{y2t≤q2t} = 0 n00 n10
I{y2t≤q2t} = 1 n01 n11

For testing the above hypothesis in VaR backtesting, the conditional coverage method provides a likeli-
hood ratio statistic as follows:

LRcc = −2 log

(
L(α, T )

L(n00, n01, n10, n11, T )

)
= −2 log

(
(1− α)n00+n10αn01+n11

(1− n01

n00+n01
)n00( n01

n00+n01
)n01(1− n11

n10+n11
)n10( n11

n10+n11
)n11

)
D∼ χ2(2).

(16)

2.3.2 DQ Tests in bootstrap method to mitigate the heterogeneity effect of yt

Dynamic quantile (DQ) tests proposed by Engle and Manganelli (2004) are intended to test if there is
significant explanatory power of some omitted variables on the conditional quantile of a response variable
over time. It can also serve for testing the hypothesis (15). DQ tests are analogous to the specification test
illustrated by Chernozhukov and Umantsev (2001) for quantile regressions. Compared with the conditional
coverage method, DQ tests are more flexible in testing omitted variables and can also perform in-sample
tests by taking the asymptotic distribution of QLM estimator α̂ into account.

To test the contemporaneous explanatory power of yic,t on the θi,j-th quantile qi,j,t of yi,t conditional on
Ft,0 with 1 ≤ ic < i < n and 1 ≤ j ≤ p, the testing hypothesis in our DQ tests is stated as follows:{

Ho : P {ϵi,j,t ≤ 0|yic,t} = θ for all t,

HA : P {ϵi,j,t ≤ 0|yic,t} ≠ θ for all t,
(17)

where ϵi,j,t := yi,t − qi,j,t.
For testing the above hypothesis, the in-sample and the out-of-sample DQ test statistics are given in

Theorem 7 and 8 respectively along with their asymptotic distributions.
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Theorem 7 (In-sample DQ test statistic) Suppose that the assumptions of Theorem 3 of White et al.
(2015) and the Ho hypothesis in (17) hold. The in-sample DQ test statistic denoted as DQIS is given below
with its asymptotic distribution.

DQIS

=
1

Tθ(1− θ)

(
T∑

t=1

yic,t
(
I{yi,t≤qi,j,t(α̂)} − θi,j

))2
Ĝ′

T Q̂
−1
T

n∑
i=1,i̸=2

∂q̂i,j,t
∂α̂

∂q̂i,j,t
∂α̂′ Q̂

−1
T ĜT +

1

T

T∑
t=1

(
yic,t −

∂qi,j,t(α̂)

∂α̂′ Q̂−1
T ĜT

)2
−1

D∼ χ2(1),
(18)

where

ĜT :=
1

T

T∑
t=1

yic,t f̂i,j,t(0)
∂q̂i,j,t
∂α̂

, (19)

f̂i,j,t(0) is the estimate of the probability density function fi,j,t of ϵi,j,t at 0 conditional on Ft,i−1, obtained

by the adaptive bandwidth method, and α̂,
∂q̂i,j,t
∂α̂ and Q̂T are obtained as instructed in the above theorems.

Proof. See Appendix B.

Theorem 8 (Out-of-sample DQ test statistic) Suppose that the assumptions of Theorem 3 of White
et al. (2015) and the Ho hypothesis in (17) hold. Denote the number of in-sample observations as TR and
the number of out-of-sample observations as NR. The subscript R indicates the dependence of TR and NR

on R with the following properties: 
lim

R→∞

NR

TR
= 0,

lim
R→∞

TR = ∞,

lim
R→∞

NR = ∞.

(20)

Then the out-of-sample DQ test statistic denoted as DQOOS is given below with its asymptotic distribution.

DQOOS

=
1

NRθ(1− θ)

(
TR+NR∑
t=TR+1

yic,t
(
I{yi,t≤qi,j,t(α̂)} − θ

))2(
1

NR

NR∑
t=1

y2ic,t

)−1

D∼ χ2(1),

(21)

where qi,j,t(α̂) is obtained by plugging the QLME α̂ of the in-sample {Yt}TR
t=1 into qi,j,t(·).

Proof. See Appendix B.

2.3.3 Wald Tests

If we run systemic MVMQ CAViaR regression first and have the concern on the significance of the involved
contemporaneous terms, Wald tests are adopted here to check if the contemporaneous terms are significant
enough to remain in the model.

To test the significance of the contemporaneous term gi,j (si,j ,ui,t) in the generic model (2), the testing
hypothesis in our Wald tests is stated as follows:{

Ho : si,j = 0,

HA : si,j ̸= 0.
(22)

For testing the above hypothesis, the Wald test statistic denoted by WT is given as follows:

WT = T ŝ′i,j

[
RQ̂−1

T V̂T Q̂
−1
T R′

]−1

ŝi,j
D∼ χ2(dij) (23)
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where R is a dij × n matrix indicating the location of each element of si,j in α such that Rα = s′i,j , and

ŝi,j , Q̂T and V̂T are the estimates of si,j , Q and V in (6) respectively.

3 Measuring Systemic Risk via CoVaR

The European Central Bank (ECB) (2010) defines systemic risk in the financial market as a risk of financial
instability so widespread that it impairs the functioning of a financial system to the point where economic
growth and welfare suffer materially. CoVaR, a systemic risk measure proposed by Adrian and Brunnermeier
(2011), is defined as the VaR of the financial system conditional on institutions being under distress. We
generalized MVMQ-CAViaR models into the proposed systemic specification in order to incorporate the
CoVaR specification on financial index return variables. Therefore, we can use systemic MVMQ-CAViaR
models to measure the systemic risk of financial institutions of interest, and this application is elaborated
below.

Given two asset return variables Y1 and Y2, CoVaR
2|C(Y1)
θ is formulated by Adrian and Brunnermeier

(2011) as the θ-th quantile of the institution 2 (or the financial system) conditional on some event C(Y1) of
the institution 1, which fits in the following property:

Pr
{
Y2 ≤ CoVaR

2|C(Y1)
θ

∣∣∣C(Y1)} = θ. (24)

Suppose the bivariate time series {Yt = (y1,t, y2,t)}Tt=1 follows the DGP as (12) and we run the following
systemic bivariate CAViaR regression:

Yt = β0 + β1Yt−1 + γqt−1 +

[
0
s

]
y1,t, (25)

where β0, β1, γ are 2× 1, 2× 2 and 2× 2 parameter matrices. After the regression, we estimate CoVaR
2|Y1

θ

in use of the estimates β̂0, β̂1, γ̂, ŝ as follows:

ĈoVaR
2|Y1

θ,t = β̂20 + β̂21 y1,t−1 + β̂22 y2,t−1 + γ̂21 q1,t−1 + γ̂22 q2,t−1 + ŝ y1,t. (26)

And

ĈoVaR
2|y1,t=q̂1,t

θ,t

=
(
β̂20 + ŝ β̂10

)
+
(
β̂21 + ŝ β̂11

)
y1,t−1 +

(
β̂22 + ŝ β̂12

)
y2,t−1 + (γ̂21 + ŝ γ̂11) q1,t−1 + (γ̂22 + ŝ γ̂12) q2,t−1.

(27)

If we also model the conditional 50%-th quantile q
(50%)
1,t of y1,t into the above systemic bivariate CAViaR

model and get estimate q̂
(50%)
1,t . ∆CoVaR

2|1
θ,t defined by Adrian and Brunnermeier (2011) as the part of

institution 1’s systemic risk that can be attributed to Y2 can be estimated as follows:

∆CoVaR
2|1
θ,t := ĈoVaR

2|y1,t=q̂1,t

θ,t − ĈoVaR
2|y1,t=q̂

(50%)
1,t

θ,t . (28)

Unlike the situation above which we know everything for certain, in reality we do not know the true model
specification on an underlying DGP or precise contemporaneous terms to be involved. Considering that, we
would like to give a rigorous application procedure here for studying contemporaneous tail dependence and
CoVaR in use of systemic MVMQ-CAViaRs. In general, at first we would like to run an MVMQ-CAViaR
regression based upon our knowledge on the multivariate time series of our interest. If we consider over some
possible contemporaneous terms on explaining the conditional quantile of a response variate, DQ tests are
implemented to check the significance of their explanatory power so that we can convincingly implement
the systemic MVMQ-CAViaR regression when seeing the significance. After running the systemic MVMQ-
CAViaR regression, Wald tests are applied to check if all the explanatory terms in the model are significant
enough to be kept. After the Wald tests, the confirmed model specification is used to measure the systemic
risk of involved financial institutions via their CoVaR as well as to measure contemporaneous tail dependence
of involved financial assets. We will implement the above procedure in Section 5 with results presented
correspondingly to each step.
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4 Quantile Impulse Response Functions

The literature on quantile impulse response functions (QIRF) is scarce. We have a brief review here. White
et al. (2015) presented a concept called pseudo quantile impulse response function in order to study how
a shock to the present variable yt influences the quantile (denoted as qt+h|t) of its future variable yt+h at
h-th (h ≥ 1) step ahead given the current information set Ft. Actually, pseudo quantile impulse functions
derived by White et al. (2015) strongly assume that the intermediate future variables (yt+1, . . . , yt+h−1) right
before the h-th step are fixed and not affected by the shock. Instead of fixing the intermediate future values
(yt+1, . . . , yt+h−1), Montes-Rojas (2019) considered quantile paths of yt+1, . . . , yt+h−1 for forecasting qt+h.
However, the way that Montes-Rojas (2019) tackles the randomness of future quantile paths in forecasting
qt+h|t is by fixing a specific future quantile path, such as assuming all median occurrences in the path.
Although a future quantile path can be freely chosen to match some senario, the way of Montes-Rojas
(2019) in forecasting qt+h|t can still not adapt to distributional characteristics of yt+h|Ft (short for yt+h

conditional on Ft), let alone qt+h|t. The local projection method proposed by Jordà (2005) for estimating
mean impluse response functions is also touched upon by Montes-Rojas (2019) to linearly regress qt+h|t+h−1

on a specific quantile path of yt+1, . . . , yt+h−1 and variables measurable to Ft. Chavleishvili and Manganelli
(2019) still used a quantile specification of yt|Ft−1 to represent the specification of the quantile of yt+h|Ft,
and obtained the QIRF by manipulating the part of intermediate disturbances into zeros. Analogously to
the fixed-intermediate (White et al., 2015) or specific future quantile path (Montes-Rojas, 2019) ideas, Han
et al. (2019) and Jung and Lee (2019) used expectation of intermediate variables to define quantile impulse
response functions, and adopted the local projection Jordà (2005) for estimation.

We aim in this section to define quantile impulse response function in a general way which can adapt
to distributional characteristics of yt+h|Ft, and then to adopt the local projection idea with expansion of
estimated terms to estimate quantile impulse response functions.

Considering a multivariate time series {Yt} in a DGP as (2), let us discuss on how to forecast Yt+h|Ft.
Without loss of generality, we take a bivariate time series {Yt := (y1,t, y2,t)}Tt=1 with its model specification
as follows: [

y1,t
y2,t

]
=

[
β10
β20

]
+

[
β11 β12
β21 β22

] [
y1,t−1

y2,t−1

]
+

[
γ11 γ12
γ21 γ22

] [
q1,t−1

q2,t−1

]
+

[
ϵ1,t
ϵ2,t

]
, (29)

where

qt :=

[
q1,t
q2,t

]
is the θ−th quantile of Yt :=

[
y1,t
y2,t

]
conditional on Ft−1 which is the σ-algebra generated by {Yt−1, qt−1,Yt−2, qt−2, . . .}

with [
P{ϵ1,t ≤ 0|Ft−1}
P{ϵ2,t ≤ 0|Ft−1}

]
=

[
θ
θ

]
. (30)

Therefore, [
q1,t
q2,t

]
=

[
β10
β20

]
+

[
β11 β12
β21 β22

] [
y1,t−1

y2,t−1

]
+

[
γ11 γ12
γ21 γ22

] [
q1,t−1

q2,t−1

]
. (31)

Denote

β0 :=

[
β10
β20

]
β1 :=

[
β11 β12
β21 β22

]
γ :=

[
γ11 γ12
γ21 γ22

]
. (32)

Suppose the above model specification is known for {Yt}. And we want to forecast the quantile (denoted as
qt+h|t) of yt+h (h ≥ 1) given Ft now. At the first step, we need to rewrite the specification (29) of Yt+h by
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iteratively substitutions until manifesting ϵt and qt as follows:

Yt+h = β0 + β1Yt+h−1 + γqt+h−1 + ϵt+h

= β0 + β1(qt+h−1 + ϵt+h−1) + γqt+h−1 + ϵt+h

= β0 + (β1 + γ) qt+h−1 + (ϵt+h + β1ϵt+h−1)

= β0 + (β1 + γ) (β0 + β1Yt+h−2 + γqt+h−2) + (ϵt+h + β1ϵt+h−1)

=

h∑
i=1

(β1 + γ)i−1β0 + (β1 + γ)
h−1

β1Yt + (β1 + γ)
h−1

γqt + ϵt+h +

max{h−1,1}∑
i=1

(β1 + γ)i−1β1ϵt+h−i

=

h∑
i=1

(β1 + γ)i−1β0 + (β1 + γ)
h
qt + ϵt+h +

h∑
i=1

(β1 + γ)i−1β1ϵt+h−i,

(33)
where h ∈ {1, 2, . . .}.

It is worth mentioning that based on (33), there is an alternative way to rewrite Yt+h into a function of
{ϵt+h, ϵt+h−1, . . .}:

(I − (β1 + γ)L)Yt+h = β0 + (I − γL) ϵt+h,

⇐⇒ Yt+h = (I − (β1 + γ))
−1

β0 +

( ∞∑
i=0

(β1 + γ)
i
Li

)
(I − γL) ϵt+h

= (I − (β1 + γ))
−1

β0 + ϵt+h +

∞∑
i=1

(β1 + γ)
i−1

β1ϵt+h−i

(34)

where L is the lag operator, and it holds under the condition that the spectral radius of (β1+γ) is less than
one . However, the first rewriting way (33) is more generally applicable to systemic MVMQ-CAViaR DGPs,
which also reduces the number of explanatory variables in the consideration for forecasting qt+h|t.

Following the result (33) from the first step, we now can get the preliminary predetermined part in qt+h|t
as follows:

qt+h|t := Quantθ (Yt+h|Ft)

=

h−1∑
i=1

(β1 + γ)i−1β0 + (β1 + γ)
h
qt + (β1 + γ)h−1β1ϵt +Quantθ

(
ϵt+h +

h−1∑
i=1

(β1 + γ)i−1β1ϵt+i

∣∣∣∣∣Ft

)
.

(35)

Based on our assumptions before,

(
ϵt+h +

h−1∑
i=1

(β1 + γ)i−1β1ϵt+i

)
is not necessary to be independent of qt

or ϵt unless {ϵt} is independently distributed. The distribution of

(
ϵt+h +

h−1∑
i=1

(β1 + γ)i−1β1ϵt+i

)
can vary

with the information on {ϵt,pt, ϵt−1, pt−1, . . . , } so as to influence the distributional characteristic qt+h|t.
In order to forecast qt+h|t and study the effect of ϵt, we draw on the local projection idea of Jordà (2005)
and consider to run the θ-th quantile regression of Yt+h onto some explanatory variables measurable to Ft.
Based on the result (35), we know at least we should use explanatory variables qt and Yt. We do not use
ϵt directly because it is not observed and has the same role as Yt in qt+h|t when we include qt as another
explanatory variable. However, we do not observe qt either. Using estimated qt brings its estimation error in
the quantile regression and make the regression result unreliable. So to mitigate the effect of its estimation
error on the regression, we expand qt to have more observed terms and use its expansion terms along with
Yt into the local quantile regression. Specifically, we expand qt as follows:

qt = β0 + β1Yt−1 + γqt−1, (36)

= (β0 + γβ0) + β1Yt−1 + γβ1Yt−2 + γ2qt−2. (37)

So we can use explanatory variables {Yt−1, qt−1} in replacement of qt to mitigate the estimation error
effect of qt, or use variables {Yt−1,Yt−2, qt−2} to further mitigate the estimation error effect as long as the
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spectral radius of γ is smaller than one because any v (denoted as an estimation error) will get vanished by
limn→∞ γnv = 0. Simulation results in next section show that the local quantile regression result on the
coefficient of Yt become much more reliable when we replace the explanatory variable qt with {Yt−1, qt−1}
or {Yt−1,Yt−2, qt−2}.5

Now we come to defining θ-th quantile response function of {Yt} given a shock δ to ϵt by taking the
difference between Quantθ

(
Y ∗
t+h

∣∣ϵ∗t := ϵt + δ,Ft−1

)
and Quantθ (Yt+h|ϵt,Ft−1) as follows:

QIRFh (θ, δ|ϵt,Ft−1)

= Quantθ
(
Y ∗
t+h

∣∣ϵ∗t := ϵt + δ,Ft−1

)
−Quantθ (Yt+h|ϵt,Ft−1)

= Quantθ
(
Y ∗
t+h

∣∣Y ∗
t := Yt + δ,Ft−1

)
−Quantθ (Yt+h|Yt,Ft−1) ,

(38)

where we can notice that Quantθ (ϵ
∗
t |Ft−1) = δ due to the shock, but Quantθ

(
ϵ∗t+i

∣∣ϵ∗t+i−1, . . . , ϵ
∗
t ,Ft−1

)
= 0

(i = 1, . . . , h) according to the correct specification assumption (30).
QIRFh (θ, δ|ϵt,Ft−1) can be obtained by the local θ-quantile regression of Yt+h onto {Yt,Yt−1, qt−1} or

onto {Yt,Yt−1,Yt−2, qt−2} as follows:

QIRFh (θ, δ|ϵt,Ft−1) = λδ, (39)

where λ is the coefficient of Yt in the local θ-quantile regression of Yt+h onto {Yt,Yt−1, qt−1} or onto
{Yt,Yt−1,Yt−w, qt−2}. We can also use higher moments of Yt as explantory variables in the local quantile
regression, and QIRFh (θ, δ|ϵt,Ft−1) can easily obtained by plugging the local quantile regression result into
the definition (38).

5 Simulations

In this section, we are going to generate multivariate time series in an MVMQ-CAViaR DGP and a systemic
MVMQ-CAViaR DGP, and implement the application procedure proposed in Section 3 on both DGPs to
study their performances.

The MVMQ-CAViaR DGP that we simulate in this section is the bivariate CAViaR DGP specified below

in which a bivariate time series sample is denoted as {Y (r)
t }.

Y
(r)
t :=

[
y
(r)
1,t

y
(r)
2,t

]
=

[
F−1
t(3)(0.3)

F−1
t(3)(0.3)

]
+

[
0.3 0.2
0.2 0.3

][
y
(r)
1,t−1

y
(r)
2,t−1

]
+

[
0.2 0
0 0.1

] [
q
(r)
1,t−1

q
(r)
2,t−1

]
+

[
ϵ
(r)
1,t

ϵ
(r)
2,t

]
, (40)

or equivalently

Y
(r)
t = Ai +AyY

(r)
t−1 +Aqq

(r)
t−1 + ϵ

(r)
t , (41)

where

Ai :=

[
F−1
t(3)(0.3)

F−1
t(3)(0.3)

]
, Ay :=

[
0.3 0.2
0.2 0.3

]
, Aq :=

[
0.2 0
0 0.1

]
, (42)

q
(r)
t := Quant0.3(Y

(r)
t |Ft−1), and {ϵ(r)t −Ai} is i.i.d. in Student’s t-distribution with 3 degrees of freedom (

t(3) as the shorthand notation thereafter) with Quant0.3(ϵ
(r)
t −Ai|Ft−1) = [0, 0]′ for all t and F−1

t(3)(·) denoted
as the inverse probability distribution function of t(3) .

The systemic MVMQ-CAViaR DGP that we simulate in this section is the systemic bivariate CAViaR

DGP specified below in which a bivariate time series sample is denoted as {Y (s)
t }.[

1 0
−0.5 1

] [
y
(s)
1,t

y
(s)
2,t

]
=

[
F−1
t(3)(0.3)

F−1
t(3)(0.3)

]
+

[
0.3 0.2
0.2 0.3

][
y
(s)
1,t−1

y
(s)
2,t−1

]
+

[
0.2 0
0 0.1

] [
q
(s)
1,t−1

q
(s)
2,t−1

]
+

[
ϵ
(s)
1,t

ϵ
(s)
2,t

]
, (43)

or equivalently

As Y
(s)
t = Ai +AyY

(s)
t−1 +Aqq

(s)
t−1 + ϵ

(s)
t , (44)

5The optimal number of explanatory variables in replacing qt is out of scope of this paper.
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where

As =

[
1 0

−0.5 1

]
, (45)

with Ai, Ay, Aq as defined in (42), q
(s)
t := [Quant0.3(y

(s)
1,t |Ft,0),Quant0.3(y

(s)
2,t |Ft,1)]

′, and {ϵ(s)t − Ai} is i.i.d.

in t(3) with Quant0.3(ϵ
(s)
t −Ai|Ft−1) = [0, 0]′ for all t.

It is easy to simulate samples from these two DGPs. Specifically on simulating a sample in the bivariate

DGP (41) with its sample size denoted as T , we first generate a sample of {ϵ(r)t −Ai}
D∼ t(3) in sample size

T + 200. And simulate
{
Y

(r)
t

}T+200

t=1
based on the following equation:

Y
(r)
t =

t−1∑
i=1

(Ay +Aq)
i−1Ai + (Ay +Aq)

t−1
q1 + ϵt +

t−1∑
i=1

(Ay +Aq)
i−1Ayϵ

(r)
t−i (46)

with setting the initial value q
(r)
1 = [0, 0]′. Delete the first 200 observations due to the burn-in effect of

the initial value q
(r)
1 = [0, 0]′ in the simulation, and return

{
Y

(r)
t

}T+200

t=201
as the generated sample in the

DGP (41). Analogously, we simulate a sample in the systemic bivariate DGP (44) by the following equation:

Y
(s)
t =

t−1∑
i=1

(A−1
s Ay+A

−1
s Aq)

i−1A−1
s Ai+

(
A−1

s Ay +A−1
s Aq

)t−1
q
(s)
1 +ϵt+

t−1∑
i=1

(A−1
s Ay+A

−1
s Aq)

i−1A−1
s AyA

−1
s ϵ

(s)
t−i

(47)

with the same set-up that q
(s)
1 = [0, 0]′ and the burn-in period of 200 observations.6

We can visually compare Y (r) and Y (s) by a plot of their samples as shown in Figure 1. As can be seen

in Figure 1, {q(r)
t } is quite smooth , not as bumpy or comovement-like as {q(s)} which is due to the fact

that in the systemic DGP the movement of y1,t immediately influences the conditional distribution of y2,t
so as to be reflected in y2,t.

After obtaining samples {Y (r)
t } and {Y (s)

t } of sample size T = 5000 from the DGPs (41) and (44)

respectively, we regress both {Y (r)
t } and {Y (s)

t } onto the bivariate CAViaR model specification (41) of
quantile index 0.3. After regressions, we run the DQ tests to check if y1,t still has significant contemporaneous
explanatory power on the conditional 0.3-th quantile of y2,t with the hypothesis statement as in (17). We

use two methods to estimate the asymptotic covariance matrix of the bivariate CAViaR model for {Y (r)
t },

namely the adaptive random bandwidth method (Hecq and Sun, 2020) and the kernel method with the
optimal bandwidth used by White et al. (2015). From the size performances of these two methods in the

DQ test of {Y (r)
t } (see Table 1), we found that the adaptive random bandwidth (ARB) can well adapt to

multivariate CAViaR models and robust in estimating the model asymptotic covariance matrix for various
inference tests. Hereafter we only show test results in use of the adaptive random bandwidth method. The

size performances of the DQ tests of {Y (r)
t } and {Y (s)

t } are shown in Table 1. We can see that the DQ test
works robustly in indicating if some contemporaneous terms are significant to be involved into the modelling.

Table 1: Rejection rates (Size performances) of DQ tests (17) after regressing both Y (r) and Y (s) onto the
bivariate CAViaR model specification (41)

DQ Tests significance level: α = 0.01 α = 0.05 α = 0.1 α = 0.2 α = 0.3

Y (r) (ARB) 0.010 0.0470 0.0790 0.1900 0.2980
Y (r) (kernel) 0.005 0.0420 0.0730 0.1790 0.2790
Y (s) (ARB) 1.000 1.000 1.000 1.000 1.000

Now we regress both {Y (r)
t } and {Y (s)

t } onto the systemic bivariate CAViaR model specification (44) of
quantile index 0.3. After regressions, we run the Wald tests to check if y1,t is significant enough in explaining

6The length of burn-in periods chosen in this paper is based on our experience, and it can be adjusted for each specific DGP
based on readers’ expertise.
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Figure 1: Compare Y (r) and Y (s).
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Table 2: Rejection rates (Size performances) of Wald tests (22) after regressing both Y (r) and Y (s) onto the
systemic bivariate CAViaR model specification (44)

Wald Tests (22) significance level: α = 0.01 α = 0.05 α = 0.1 α = 0.2 α = 0.3

Y (r) (ARB) 0.0260 0.0680 0.1120 0.1980 0.2860
Y (s) (ARB) 1.000 1.000 1.000 1.000 1.000

the conditional 0.3-th quantile of y2,t with the hypothesis statement as in (22). The Wald test performances
are shown in Table 2. We can see that the Wald test works robustly on confirming if some contemporaneous
terms are significant enough to be kept in the model.

After confirming the systemic model specification for Y (s), we can use the systemic model regression

result to measure the systemic risk of Y1 by estimating CoVaR
2|y1,t=q1,t
0.3,t as instructed in Section 3. Figure 2

shows a sample of Y (s) with its q̂(s), −ĈoVaR
2|y1,t=q̂1,t

0.3,t . We plot −ĈoVaR
2|y1,t=q̂1,t

0.3,t not ĈoVaR
2|y1,t=q̂1,t

0.3,t

with Y (s) because we regard Y (s) as return variables so that we can comparatively view Y (s) with its q̂(s)

and −ĈoVaR
2|y1,t=q̂1,t

0.3,t in one plot.

Figure 2: time series plot of sample Y (s) with its q̂(s), −ĈoVaR
2|y1,t=q̂1,t

0.3,t

Now we confirm the bivariate CAViaR model for Y (r) and the systemic model for Y (s). And we study
their 0.3-th quantile impulse response functions (QIRFs) by the local 0.3-th quantile regression of Yt+h (h ≤
1) onto vector regressors {Yt,Yt−1,Yt−2, q̂t−2}. Figure 3 and 4 compare the QIRF results among using
explanatory variables {Yt, q̂t} and {Yt,Yt−1,Yt−2, q̂t−2} with the true QIRF of Y , in which we can see that
using the expansion terms of q̂t is more robust over using q̂t directly. In fact, the outperformance of using q̂t
is more obvious for tail quantile indexes like 0.1 with the sample size being relatively large enough compared
to the number of coefficients to be estimated in a local quantile regression.

In next section, we are going to implement the above application procedure on some empirical data and
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Figure 3: QIRF of Y (r) estimated by the local 0.1-th quantile regression
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Figure 4: QIRF of Y (s) estimated by the local 0.1-th quantile regression
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analyse the results for our empirical knowledge.

6 Empirical Applications

We apply the above systemic modelling procedure to study the systemic risks of JPMorgan Chase & Co.,
the Bank of America Corporation, Wells Fargo & Company, the Goldman Sachs Group, Inc., Citigroup Inc.
and Morgan Stanley which are the six largest bank holding companies in the United States ranked by total
assets of March 31, 2020 per the Federal Financial Institutions Examination Council. Systemic risk of large
financial intuitions can be as scary as the Great Recession that occurred between 2007 – 2009 in national
economies globally. Before Lehman Brothers Holdings Inc. filed for bankruptcy in 2008, it was the fourth-
largest investment bank in the United States. After Lehman Brothers filed for bankruptcy, global markets
immediately plummeted and investors lost confidence, which caused bank runs, funding liquidity shortage,
high haircuts, fire sales of assets and high counterpart credit risk in financial markets. The distress was
spreading over financial institutions globally, and triggered the financial crisis of 2007—2008 which sparked
the Great Recession (2007 – 2009), the most severe global recession since the Great Depression (1929-1933).
Therefore, we are concerned about systemic risk of big financial intuitions and would like to measure the
systemic risk of the six largest bank holding companies by our proposed method.

We use the S&P500 as the market index of interest which is deemed vulnerable to the systemic risks
of those big banks. We downloaded daily adjusted closing stock prices of these six banks and the S&P500
from Yahoo! Finance, and each stock price time series has 3189 daily prices, ranging from 31-Dec-2006 to
01-Sep-2019. The price data were converted to percentage returns by multiplying 100 with the difference
of the natural logarithm of the daily prices. The obtained return time series of each stock contains 3188
observations in the period of 01-Jan-2007 to 01-Sep-2019. In each return time series, the last 300 observations
are used for the out-of-sample testing after the first 2888 observations are used to estimate the model.

We measure the systemic risk of each of these six banks individually by bivariate CAViaR models with
the S&P500 daily returns. The bivariate CAViaR models used for estimating the conditional 5% quantiles
of a big bank and the S&P500 daily returns are (29) and (12) for bivariate CAViaR and systemic bivariate
CAViaR regressions respectively.

We set up inference tests in the same way as we did in the preceding sections. The inference testing
results based on our systemic modelling procedure for the conditional 5% quantiles of the six banks’ and
the S&P500 daily returns are presented in Table 3 for in-sample tests and Table 4 for out-of-sample tests.
The DQ p-value (MVMQ) columns of Table 3 and 4 provide strong evidence of contemporaneous (daily)
spillovers of financial distress at individual financial institutions to the S&P500 index return. There is further
evidence that the involved contemporaneous terms are significant in the systemic bivariate CAViaR models
according to the Wald p-value (SMVMQ) columns. From the results of the out-of-sample tests in Table 4
for VaR5% backtesting, we see that we can not reject the systemic model of Goldman Sachs and the S&P500
which even has VaR5% exceedance rates close to the risk level 5%. Other systemic models are rejected by the
out-of-sample DQ tests which means that those banks still have significant explanatory power on conditional
0.5-th quantiles of the market index which is not revealed by the in-sample estimation. There are many
possible reasons behind those model rejections. One reason can be the inappropriate functional form of
the contemporaneous terms in banks’ returns we considered in those models. Another possible reason is
that those rejected models omitted some other significant contemporaneous terms such as Goldman Sachs.
The results in Table 3 and 4 let us confirm the systemic model of Goldman Sachs and the S&P500 first so
as to measure the systemic risk of Goldman Sachs, and also gives us some clues to explore the functional
forms of the contemporaneous effect of the banks on the market index. For example, we can run the
systemic model on one of the five banks in model rejections with Goldman Sachs so that we count out
the common contemporaneous effect of that bank on the market index with Goldman Sachs and focus on
their idiosyncratic parts for the contemporaneous effects and the proper functional forms. We are not going
to measure the systemic risks of these six banks together by a seven-variate CAViaR model in this paper.
Since systemic MVMQ-CAViaR models are directional, we have to decide on the contemporaneous influence
direction among these seven stocks. However, the results above of the (systemic) bivariate CAViaR models
can be the starting point to build a proper seven-variate CAViaR model and then study their systemic risks
in a whole system, which involves a enumeration of model estimations and inference tests and is left for
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Table 3: In-sample test results on the empirical data (quantile index=0.05)

tests VaR exceedance rates (MVMQ) DQ p-value VaR exceedance rates (SMVMQ) Wald p-value
[bank, the S&P500] (MVMQ) [bank, the S&P500] (SMVMQ)

BAC [0.0502, 0.0499] 0 [0.0495, 0.0495] 0
C [0.0506, 0.0502] 0 [0.0502, 0.0506] 0
GS [0.0516, 0.0509] 0 [0.0519, 0.0492] 0
JPM [0.0502, 0.0533] 0 [0.0499, 0.0488] 0
MS [0.0512, 0.0506] 0 [0.0509, 0.0519] 0
WFC [0.0499, 0.0561] 0 [0.0495, 0.0495] 0

Table 4: Out-of-sample test results on the empirical data (quantile index=0.05)

tests VaR exceedance rates (MVMQ) DQ p-value VaR exceedance rates (SMVMQ) DQ p-value
[bank, the S&P500] (MVMQ) [bank, the S&P500] (SMVMQ)

BAC [0.0733, 0.0367] 0 [0.0833, 0.0733] 0
C [0.0667, 0.0367] 0 [0.0867, 0.0800] 0
GS [0.0500, 0.0400] 0 [0.0567, 0.0700] 0.4576
JPM [0.0167, 0.0400] 0 [0.0167, 0.0767] 0.0005
MS [0.0267, 0.0433] 0 [0.0467, 0.0700] 0
WFC [0.0367, 0.0433] 0 [0.0467, 0.0833] 0.0015

future research.
After confirming the systemic model specification for the conditional 5%-th quantiles of Goldman Sachs

and the S&P500, we can use the systemic model regression result to measure the systemic risk of Goldman

Sachs by estimating CoVaR
SP500|yGS,t=qGS,t(5%)

5%,t as instructed in Section 3.

∆CoVaR
SP500|yGS,t

5%,t := CoVaR
SP500|yGS,t=qGS,t(5%)

5%,t − CoVaR
SP500|yGS,t=qGS,t(50%)

5%,t

is defined by Adrian and Brunnermeier (2011) as the part of Goldman Sachs’ systemic risk that can be

attributed to the S&P500. To view ∆CoVaR
SP500|yGS,t

5%,t , we also need to model and estimate the conditional

50%-th quantiles of Goldman Sachs’ returns. Analogously, we regress the returns of Goldman Sachs and the
S&P500 onto the bivariate CAViaR (29) and the systemic bivariate CAViaR model (12) of quantile index
0.50 respectively, and perform the inference tests as we did before which results in Table 5 and 6.

Table 5: In-sample test results on the returns of Goldman Sachs and the S&P500 (quantile index=0.50)

tests VaR exceedance rates (MVMQ) DQ p-value VaR exceedance rates (SMVMQ) Wald p-value
[bank, the S&P500] (MVMQ) [bank, the S&P500] (SMVMQ)

GS [0.5000, 0.4997] 0 [0.4997, 0.4997] 0

As we can see that the systemic model is not rejected for the conditional 0.5-th quantiles of Goldman
Sachs’ and the S&P500 returns so that we can use its estimated conditional 0.5-th quantiles of Goldman Sachs’

returns to calculate CoVaR
SP500|yGS,t=qGS,t(50%)

5%,t so for us to view ∆CoVaR
SP500|yGS,t

5%,t . The estimated condi-
tional 0.05-th and 0.5-th quantiles of Goldman Sachs’ and the S&P500 returns are plotted in Figure 8 and 9

respectively, see Appendix A. Figure 5 shows the returns of the S&P500 index, −CoVaR
SP500|yGS,t=qGS,t(5%)

5%,t

and −CoVaR
SP500|yGS,t=qGS,t(50%)

5%,t . We plot −CoVaR
SP500|yGS,t=qGS,t

0.05,t not CoVaR
SP500|yGS,t=qGS,t

0.05,t with the

returns so that we can comparatively view the returns of the S&P500 index with −CoVaR
SP500|yGS,t=qGS,t

0.05,t

in one plot. Figure 6 reflects the part of Goldman Sachs’ systemic risk attributed to the S&P500 index

over time by plotting {∆CoVaR
SP500|yGS,t

5%,t }. We can see from Figure 6 that the part of Goldman Sachs’
systemic risk attributed to the S&P500 index was cumulating after Lehman Brothers filed for bankruptcy
on September 15, 2008, and reached unprecedentedly high until mid-2009. Figure 6 is quite story-telling and
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Table 6: Out-of-sample test results on the returns of Goldman Sachs and the S&P500 (quantile index=0.05)

tests VaR exceedance rates (MVMQ) DQ p-value VaR exceedance rates (SMVMQ) DQ p-value
[bank, the S&P500] (MVMQ) [bank, the S&P500] (SMVMQ)

GS [0.5133, 0.5033 ] 0 [0.5233, 0.4700] 0.5607

links almost every peak in the figure to a distress event on Goldman Sachs, which can be informative for
financial market regulators in systemic risk management.

Figure 5: CoVaR plot of Goldman Sachs on the SP500

The 0.05-th QIRF coefficients of Goldman Sachs on the SP500 is obtained by the local 0.05-th quantile
regressions (see Section 4) in use of the expansion terms up to 3-step lagged return vector variables, which
is plotted in Figure 7. The 0.05-th QIRF coefficient drawn at h = 0 in Figure 7 is the estimated coefficient
of the contemporaneous term in Goldman Sachs’ return on the conditional 0.05-th quantile of the SP500
return by the systemic model regression 12.7 Figure 7 says that a shock to Goldman Sachs’ return at h = 0
contemporaneously shifts the conditional 0.05-th quantile of the S&P500 return in tandem considerably, and
in the rest of days the conditional 0.05-th quantile of the S&P500 returns are less memorable of this shock.

From the empirical application above, we have seen that the contemporaneous effects of the big banks’
returns are significant on conditional quantiles of the S&P500 returns, and it is informative to use systemic
MVMQ CAViaR models proposed in this paper with the systemic modelling procedure (see Section 3) to
monitor and analyse the systemic risks of big financial institutions.

7When we used the expansion terms up to 4-step lagged return vector variables in the local 0.05-th quantile regression, we
got a similar result to the 0.05-th QIRF coefficientsin Figure 7.
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Figure 6: ∆CoVaR
SP500|yGS,t

5%,t plot over time

Figure 7: 0.05-th QIRF coefficient of Goldman Sachs on the SP500
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7 Conclusions

We generalized multivariate multi-quantile CAViaR models (MVMQ-CAViaR, see White et al., 2015) by
incorporating CoVaR specification (see Adrian and Brunnermeier, 2011) into the model specification in this
paper. Our proposed model presents a vector-autoregressive (VAR) specification of financial institutions’
value-at-risk (VaR) as well as their CoVaR. This model generalization is able to capture contemporaneous
tail dependence of financial institutions and market indexes so that we can interpret the systemic risks of
the institutions over time. The consistency and asymptotic normality proofs of this generalized model are
provided in this paper along with some relevant inference tests, for which we implemented simulation tests and
showed robust model performances. For tracing the transmission of a single shock to a financial institution
in the financial system, we also constructed quantile impulse response functions (QIRF) accordingly in use
of the local projection idea (Jordà, 2005) and expansion of estimated terms. Based on our simulation results,
we can see that using the expansion terms of q̂t is more robust than directly using q̂t in the local quantile
regression for QIRF estimation. Applications to real data provided empirical support to this methodology.
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A Appendix: Extra Figures

Figure 8: time series plot of the returns of Goldman Sachs with its fitted conditional 0.05-th and 0.5-th
quantiles by the systemic MVMQ CAViaR regression with the SP500
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Figure 9: time series plot of the returns of the SP500 with its fitted conditional 0.05-th and 0.5-th quantiles
by the systemic MVMQ CAViaR regression with Goldman Sachs
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B Appendix: Proofs

Proof of Theorem 2. The proof builds on Engle and Manganelli (2004)’s Thoerem 1 and White et al.
(2015)’s Theorem 1, and can be obtained immediately by following the proof of White et al. (2015)’s Theorem
1 on pp. 184.
Proof of Theorem 3. The proof builds on Engle and Manganelli (2004)’s Thoerem 2 and White et al.
(2015)’s Theorem 2, and can be obtained by following the proof of White et al. (2015)’s Theorem 2 on pp.
186.
Proof of Theorem 4. The proof builds on Engle and Manganelli (2004)’s Thoerem 3 and White et al.
(2015)’s Theorem 3, and can be obtained immediately by following the proof of White et al. (2015)’s Theorem
3 on pp. 186.
Proof of Theorem 5.
Since {(αz − α̂)}Nz=1 is i.i.d in N(0, Ils×ls), we can get that for each t ∈ {1, . . . , T},{

I{yi,t≤qi,j,t(α̂)+∇′qi,j,t(α̂)(αi−α̂)} − I{yi,t≤qi,j,t(α̂)}

∇′qi,j,t(α̂) (αi − α̂)

}N

z=1

is a sequence of independent random variables with finite second moments by Assumption 5(iii) of White
et al. (2015) that 

D1,t := max
i=1,...,n

max
j=1,...,p

max
s=1,...,ls

sup
α∈Θ

∣∣∣∣∂qi,j,t(α)

∂αs

∣∣∣∣ ,
E[D1,t] <∞,

E[D2
1,t] <∞.

(48)

Hence, we can use the Law of Large Number to get that

f̂i,j,t(0)
p−→ E

[
I{yi,t≤qi,j,t(α̂)+∇′qi,j,t(α̂)(αi−α̂)} − I{yi,t≤qi,j,t(α̂)}

∇′qi,j,t(α̂) (αi − α̂)

∣∣∣∣Ft−1

]
,

as N → ∞. Denote Fi,t(·) and fi,t(·) as the probability distribution function and the probability density
function of yi,t conditional on Ft,i−1 respectively. By Assumption 2(i) and 3(ii) of White et al. (2015)
that Fi,t(·) and fi,t(·) are continuous in R and qi,j,t(·) is continuously differential on Θ with the conditional
probability density of yi,t at its conditional θi,j-th quantile qi,j,t(α

o) being fi,j,t(0), we can get that

E
[
I{yi,t≤qi,j,t(α̂)+∇′qi,j,t(α̂)(αi−α̂)} − I{yi,t≤qi,j,t(α̂)}

∇′qi,j,t(α̂) (αi − α̂)

∣∣∣∣Ft−1

]
= E

[
E
[
I{yi,t≤qi,j,t(α̂)+∇′qi,j,t(α̂)(αi−α̂)} − I{yi,t≤qi,j,t(α̂)}

∇′qi,j,t(α̂) (αi − α̂)

∣∣∣∣αi,Ft−1

]∣∣∣∣Ft−1

]
= E

[
Fi,t (qi,j,t(α̂) +∇′qi,j,t(α̂) (αi − α̂))− Fi,t (qi,j,t(α̂))

∇′qi,j,t(α̂) (αi − α̂)

∣∣∣∣Ft−1

]
= E

[
fi,t(qi,j,t(α̂))∇′qi,j,t(α̂) (αi − α̂) +Op

(
(αi − α̂)

′ ∇qi,j,t(α̂)∇′qi,j,t(α̂) (αi − α̂)
)

∇′qi,j,t(α̂) (αi − α̂)

∣∣∣∣∣Ft−1

]
= E [fi,t(qi,j,t(α̂)) +Op (∇′qi,j,t(α̂)(αi − α̂))|Ft−1]

= E [fi,j,t(0) +Op (∇′qi,j,t(α̂)(αi − α̂))|Ft−1]

= fi,j,t(0),

(49)

where the second to last line is obtained by applying the mean value theorem, and the last line is obtained
by applying the dominated convergence theorem as E[D1,t] <∞.

Therefore, we have that f̂i,j,t(0)
p→ fi,j,t(0) for t ∈ {1, 2, . . . , T} as N → ∞, and conclude this proof.

Proof of Theorem 6. Denote that

Q̄T :=
1

T

T∑
t=1

n∑
i=1

p∑
j=1

f̂i,j,t(0)∇qi,j,t(αo)∇′qi,j,t(α
o), . (50)
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Note that
Q̂T −Q = Q̂T − Q̄T + Q̄T −Q. (51)

It is straightforward to get that
Q̂T − Q̄T = op (1) , (52)

because that f̂i,j,t(0) converges in probability to fi,j,t(0), i.e, f̂i,j,t(0) − fi,j,t(0) = op (1) for t ∈ 1, 2, . . . , T
which is proved in Theorem 5, and by Assumption 5(iii) of White et al. (2015) as shown in (48).
And we can get that

Q̄T −Q = op (1) , (53)

since that V̂T
p−→V in Theorem 4 and qi,j,t(·) is bounded so as for fi,t(qi,j,t(·)).

Therefore, we have that Q̂T −Q = op (1) and conclude this proof.
Proof of Theorem 7. To prove this theorem, we need to find out the limiting distribution of

1√
T

T∑
t=1

yic,t
(
I{yi,t≤qi,j,t(α̂)} − θi,j

)
. First we define



Hiti,j,t(α) := I{yi,t≤qi,j,t(α)} − θi,j ,

Hiti,t(α) := [Hiti,1,t(α), . . . ,Hiti,p,t(α)]′,

Hitt(α) := [Hit′1,t(α), . . . ,Hit′n,t(α)]′,

qi,t(α) := [qi,1,t(α), . . . , qi,p,t(α)]′,

qt(α) := [q′
1,t(α), . . . , q′

n,t(α)]′,

(54)

and start to derive the the limiting behaviour of 1√
T

T∑
t=1

yic,t
(
I{yi,t≤qi,j,t(α̂)} − θi,j

)
as follows:

1√
T

T∑
t=1

yic,t
(
I{yi,t≤qi,j,t(α̂)} − θi,j

)
=

1√
T

T∑
t=1

yic,t (Hiti,j,t(α̂)−Hiti,j,t(α
o) + Hiti,j,t(α

o))

=
1√
T

T∑
t=1

yic,t (Hiti,j,t(α̂)−Hiti,j,t(α
o)) +

1√
T

T∑
t=1

yic,tHiti,j,t(α
o).

(55)

Use the result proved by Engle and Manganelli (2004) that

Hit⊕i,j,t(α) :=

(
1 + exp

(
yi,t − qi,j,t(α)

cT

))−1

− θi,j ,

1√
T

T∑
t=1

yic,tHit⊕i,j,t(α
o)− 1√

T

T∑
t=1

yic,tHiti,j,t(α
o) = op(1),

1√
T

T∑
t=1

yic,tHit⊕i,j,t(α̂)− 1√
T

T∑
t=1

yic,tHiti,j,t(α̂) = op(1),

(56)

where cT is a nonstochastic sequence such that lim
T→∞

cT = 0. We can approximate the first term in the last
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line of (55) as follows:

1√
T

T∑
t=1

yic,t (Hiti,j,t(α̂)−Hiti,j,t(α
o))

=
1√
T

T∑
t=1

yic,t
(
Hit⊕i,j,t(α̂)−Hit⊕i,j,t(α

o)
)
+ op(1)

=
1√
T

T∑
t=1

yic,tfi,j,t(0)
∂qi,j,t(α

o)

∂αo′
(α̂−αo) + op(1)

=
√
T (α̂−αo)′

1

T

T∑
t=1

yic,tfi,j,t(0)
∂qi,j,t(α

o)

∂αo′
+ op(1)

= − 1√
T

(
T∑

t=1

n∑
i=1

Hit′t(α
o)
∂qt(α

o)

∂αo′

)
Q−1G+ op(1),

(57)

where G := 1
T

T∑
t=1

yic,tfi,j,t(0)
∂qi,j,t(α

o)

∂αo′
, and the third and last lines are obtained by respectively applying

(B.5) of Engle and Manganelli (2004) on pp. 379 and

√
T (α̂−αo)′ = − 1√

T

(
T∑

t=1

n∑
i=1

Hit′t(α
o)
∂qt(α

o)

∂αo′

)
Q−1 + op(1)

D∼ N(0, Q−1V Q−1)

(58)

which is in the proof of White et al. (2015) on pp.187. So we substitute(57) back into (55) and get

1√
T

T∑
t=1

yic,t
(
I{yi,t≤qi,j,t(α̂)} − θi,j

)
= − 1√

T

(
T∑

t=1

n∑
i=1

Hit′t(α
o)
∂qt(α

o)

∂αo′

)
Q−1G+

1√
T

T∑
t=1

yic,tHiti,j,t(α
o) + op(1).

(59)

Apply Assumption 5(i)-(iii) of White et al. (2015), the ergodic theorem and the martingale difference central
limit theorem (see Theorem 3.35 and 5.24 of White (2001)) on (59) and obtain that

1√
T

T∑
t=1

yic,t
(
I{yi,t≤qi,j,t(α̂)} − θi,j

)
D∼ N(0,

1

T
θi,j(1− θi,j))

G′Q−1′
T∑

t=1

N∑
i ̸=ic

∂qi,j,t(α
o)

αo

∂qi,j,t(α
o)

αo′
Q−1G

 . (60)

And we know that
Q̂T

p→ Q,

f̂i,j,t(0)− fi,j,t(0) = op(1),

∂qi,j,t(α̂)

∂α̂′
p→ ∂qi,j,t(α

o)

∂αo′
,

(61)

where Q̂T is the estimator given in Theorem 6, f̂i,j,t(0) is the estimator given in Theorem 5, and the last

equality is obtained because that
∂qi,j,t(α)

∂α is continuous in Θ and α̂
p→ αo. So we also have that

ĜT :=
1

T

T∑
t=1

yic,tf̂i,j,t(0)
∂qi,j,t(α̂)

∂α̂′
p→ G, (62)
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and
DQIS

D∼ χ2(1),

which concludes this proof.
Proof of Theorem 8. As in the proof of Theorem 7, we apply the approximation result (56) to derive

the limiting distribution of 1√
NR

TR+NR∑
t=TR+1

yic,t
(
I{yi,t≤qi,j,t(α̂)} − θ

)
as follows:

lim
R→∞

1√
NR

TR+NR∑
t=TR+1

yic,t
(
I{yi,t≤qi,j,t(α̂)} − θ

)
= lim

R→∞

1√
NR

TR+NR∑
t=TR+1

yic,t (Hiti,j,t(α̂)−Hiti,j,t(α
o) + Hiti,j,t(α

o))

= lim
R→∞

1√
NR

TR+NR∑
t=TR+1

yic,t
(
Hit⊕i,j,t(α̂)−Hit⊕i,j,t(α

o) + Hiti,j,t(α
o)
)

= lim
R→∞

1√
NR

TR+NR∑
t=TR+1

yic,tfi,j,t(0)
∂qi,j,t(α

o)

∂αo′
(α̂−αo) + lim

R→∞

1√
NR

TR+NR∑
t=TR+1

yic,tHiti,j,t(α
o),

= lim
R→∞

√
NR

TR

√
TR(α̂−αo)′

1

NR

TR+NR∑
t=TR+1

yic,tfi,j,t(0)
∂qi,j,t(α

o)

∂αo
+ lim

R→∞

1√
NR

TR+NR∑
t=TR+1

yic,tHiti,j,t(α
o),

= lim
R→∞

1√
NR

TR+NR∑
t=TR+1

yic,tHiti,j,t(α
o).

(63)
Apply Assumption 5(i)-(iii) of White et al. (2015), the ergodic theorem and the martingale difference central
limit theorem (see Theorem 3.35 and 5.24 of White (2001)) on (63) and obtain that

lim
R→∞

1√
NR

TR+NR∑
t=TR+1

yic,t
(
I{yi,t≤qi,j,t(α̂)} − θ

)
D∼ N

(
0,
θi,j(1− θi,j)

NR

NR∑
t=1

y2ic,t

) (64)

which leads to
DQOOS

D∼ χ2(1), (65)

and concludes this proof.
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