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Abstract

We make three contributions to the volatility impulse response function (VIRF) of

Hafner and Herwartz (2006). Firstly, we derive the law of the VIRF in the BEKK

model. Secondly, we present a structural embedding of the VIRF by relying on recent

developments for identification in MGARCH models. This broadens the use case of

the VIRF, to date limited to historical analyses, by allowing for counterfactual and out-

of-sample scenario analyses. Thirdly, we show how to endow the VIRF with a causal

interpretation. We illustrate the merits of a structural VIRF analysis by investigating

the impacts of historical and counterfactual shock events as well as the consequences

of well-defined future shock scenarios on the U.S. equity, government bond and for-

eign exchange market.
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1 Introduction

The impulse response function (IRF) is the tool of choice to analyze how dynamic multi-

variate systems respond to shocks. It imparts how an unanticipated perturbation impacts

the modelled variables and exhibits how sign, magnitude and persistence of the response

evolve over time. In its standard use case in vector autoregressions, the focus of IRF anal-

ysis rests on learning about the feedback in the mean process (Inoue and Kilian, 2013;

Lütkepohl, 2010). By contrast, in volatility models of high-frequent speculative asset re-

turns, where the mean equation is often mundane, it is the second-order response that is

of commanding interest. For example, a mutual fund manager may be concerned about

how the variance matrix of certain asset classes may react to an unforeseen monetary pol-

icy shock. In this situation, the volatility impulse response function (VIRF) affords her the

relevant insights.

The VIRF as first conceptualized by Hafner and Herwartz (2006) extends ideas of the

generalized IRF of Koop et al. (1996) to second-order moments. It conditions on past

information and an exogenous shock component and traces the nonlinear effects of the

shocks on volatility dynamics. Among extant VIRF specifications, the VIRF of Hafner and

Herwartz (2006) is especially attractive because it admits a closed-form expression within

the BEKK(p, q) model, which is among the most general multivariate GARCH models. In

this work, we take a fresh look at the VIRF and add to the extant literature in three ways:

Firstly, we derive the asymptotic distribution of the VIRF in the BEKK model, which is

most frequently applied in the empirical VIRF literature. More specifically, we show that,

like the VIRF, its asymptotic variance matrix can be written as a function of the forecast

horizon in a compact recursive form. This allows for an efficient numerical evaluation of

confidence intervals, which to date can only be obtained by time-consuming simulation

techniques, such as the bootstrap. Secondly, we endow the VIRF with a structural inter-
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pretation by relying on recent advances for identification in MGARCH models (Hafner

et al., 2020; Fengler and Polivka, 2021). This new interpretation broadens the use cases of

the VIRF, which to date has been limited to historical analyses, materially. A structural

volatility model featuring identified and labeled structural shocks raises the curtain for

proper scenario analyses as is common in traditional structural VAR analyses (Amisano

and Giannini, 2012). It allows one, e.g., to define counterfactual scenarios or to obtain

insights into the average volatility impact of certain families of well-defined shock sce-

narios. We coin the term “scenario VIRF” for this novel use case. Our third contribution

is to empower the VIRF with a causal interpretation. To this end, we build on recent ad-

vances on causal inference in the time series context by Rambachan and Shephard (2020,

2021). This allows us to use the microeconometricians’ notion of causality when analyz-

ing scenarios relevant for risk management purposes, e.g., the causal effects of tail events

in a specific financial market on the asset return system.

Identifying the impact of structural shocks on financial volatility is crucial for models

of asset price dynamics, risk management and portfolio optimization and has been inves-

tigated, among others, by Gallant et al. (1993), Lin (1997), Hafner and Herwartz (2006)

and more recently by Liu (2018). However, despite this long history, structural advances

of volatility impulse response analysis have remained in their infancies. The conditional

moment profile developed by Gallant et al. (1993) suffers from difficulties in choosing

realistic shocks and a sensible baseline for setting the conditional volatility profile into

context. In volatility analysis – in contrast to impulse response analysis for the (condi-

tional) mean – the choice of a baseline shock to returns is non-trivial as it cannot rep-

resent the long-run volatility state (Hafner and Herwartz, 2006). Lin (1997) bases his

univariate volatility impulse response analysis on reduced-form GARCH models such

that the shocks lack structural interpretation. Hafner and Herwartz (2006) tackle the is-

sues of Gallant et al. (1993) by developing a VIRF concept in the spirit of the GIRF of
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Koop et al. (1996). However, their shock identification strategy – while not building on

a reduced form model approach as in Lin (1997) – relies on statistical concepts. Thus,

their modeling framework lacks economic interpretability. Its ambit is therefore limited

to retrospective historical analyses with model-implied past shocks. Moreover, the ma-

jority of the aforementioned studies do not provide asymptotic properties for statistical

inference of their VIRFs. While Liu (2018) embarks upon deriving confidence intervals,

his VIRF framework is defined for DCC models, which are generally considered to be

less flexible than BEKK models. Furthermore, he applies his VIRF to shocks which are

identified statistically via time-varying heteroscedasticity and thus lack a direct economic

interpretation.

The remainder of the paper is structured as follows. Section 2 presents the concept of the

VIRF including rigorous mathematical derivations, derives its asymptotic distribution

and establishes connections to structural and causal modeling. Section 3 shortly presents

the structural model we use for identification of the asset return system covering equity,

fixed income and foreign exchange markets. It then showcases historical as well as out-

of-sample scenario VIRFs for well-defined risk scenarios. Section 4 concludes.

2 Volatility impulse response analysis

2.1 Modeling framework

We consider the system of n speculative (log) returns given by

rt = µt +εt (t ∈ Z) (1)

where µt = E[rt|Ft−1] and Ft = σ({εs : s ≤ t}) denotes the information available up

to time t, generating the filtration F . The n-dimensional innovation vector εt is assumed
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to be square integrable, satifies E[εt|Ft−1] = 0 (E[|εt|] < ∞) and has the conditional

covariance matrix Var[εt|Ft−1] = Ht. The process (Ht)t∈Z is assumed to be almost surely

symmetric, positive definite for all t and covariance stationary and is by definition F -

adapted. We denote by H1/2
t ∈ Rn×n the principal matrix square root1 of Ht which exists

for all t and is uniquely defined. Furthermore, we define R̃ to be a structural rotation

matrix2 and ξ = (ξt)t∈Z an n-dimensional real-valued white noise process of structural

shocks with zero mean and identity covariance matrix, i.e., ξt ∼WN(0, In).

Definition 2.1. The process (εt)t∈Z follows a structural multivariate GARCH process if it

satisfies:

εt = H1/2
t R̃ξt. (2)

If ξt ∼ SWN(0, In), (εt)t∈Z is said to follow a strong structural multivariate GARCH

process.

The structural rotation matrix R̃ in (2) endows the model with a structural interpretation

and specifies the propagation channels of the structural shocks. For example, choosing R̃

to be the identity matrix implies a symmetric volatility spillover mechanism as the prin-

cipal matrix square root preserves the positive definiteness as well as the symmetry of

Ht. In contrast, if one chooses the rotation which transforms the principal matrix square

root into, e.g., a Cholesky decomposition, the volatility spillovers obey a recursive order-

ing principle imposed through the triangular structure of the decomposition. Although

both are popular ad-hoc decompositions, neither specification for R̃ rests on solid eco-

1Any real symmetric (n× n) matrix M can be factorized as M = ΓΛΓ> where Γ is an orthogonal (n× n)

matrix with the normalized eigenvectors of M as columns, and Λ the diagonal matrix of the eigenvalues.

The principal matrix square root of M is defined as ΓΛ1/2Γ> where Λ1/2 denotes the diagonal matrix of the

square root of the eigenvalues of M. It is the unique matrix square root which has non-negative eigenvalues,

see Horn and Johnson (2012, Theorem 7.2.6).
2A rotation matrix R is a real (n× n) matrix satisfying R>R = RR> = In (orthogonality) and det(R) =

+1.
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nomic grounds for asset return systems. In contrast to this, in structural volatility models

one estimates R̃ and thus identifies the economic propagation channels of labeled, inter-

pretable structural shocks to the asset return system, for example backed by external data

(Fengler and Polivka, 2021).

2.2 Volatility impulse response functions

In order to assess the impact of a shock ξt on volatility given Ft−1, Hafner and Herwartz

(2006) define the h-step ahead volatility impulse response function (VIRF) as the differ-

ence between the expected h-step-ahead covariance conditioning on the shock and past

information and the expected h-step-ahead covariance conditioning on past information

only. This choice of conditioning sets is in the tradition of the generalized impulse re-

sponse function (GIRF) developed by Koop et al. (1996) to adress the problems of history,

shock, and compositional dependence of impulse responses in non-linear multivariate

models.

Definition 2.2. We denote by F̃t = σ({ξt,εs, s ≤ t− 1}). Let h ∈ N. The h-step ahead

VIRF is given by:

Vt+h(ξt) := E[vech(Ht+h)|F̃t]− E[vech(Ht+h)|Ft−1]. (3)

Here, vech(·) denotes the operator stacking the lower triangular part of a (symmetric)

(n × n) matrix in an n∗-dimensional vector where n∗ = n(n+1)
2 such that Vt+h(ξt) is an

n∗-dimensional vector of impulse responses of the conditional (co-)variances. Note that

in spite of making reference to “volatility”, the VIRF is in fact a (co-)variance IRF. The

definition of the VIRF based on F̃t and Ft−1 is motivated by the fact that, in contrast to

impulse responses for conditional means, there is no natural baseline for shocks to volatil-

ity. In IRFs for conditional means a baseline ε0
t corresponding to the long-run mean of the
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process, is economically natural. A fixed return baseline, however, cannot represent the

steady state of volatility, because ε0
tε

0
t
> has rank one with probability one. Thus, it cannot

coincide with the average volatility state. Hence, instead of artificially adding a shock δ to

an arbitrarily chosen baseline level of volatility, ε∗t = ε0
t +δ, to generate impulse responses

as proposed by Gallant et al. (1993), Hafner and Herwartz (2006) consider responses to

shocks ξt.

The VIRF in (3) is attractive for two further reasons. On the one hand, for the analysis of

responses of volatility to historical shocks, it is sufficient to employ the principal square

root of Ht, because the VIRF as quadratic form is independent of the underlying struc-

tural model.3 This invariance allows one to quickly and efficiently infer past shocks and

to calculate corresponding historical VIRFs by means of (2) and (3) using R̃ = In – making

any additional computational effort related to structural modeling redundant in the his-

torical set-up. On the other hand however, in scenario analysis, constructing VIRFs based

on structural shocks is highly appealing. To begin with, employing a structural model

solves the so-called “composition effect” problem (Koop et al., 1996): firstly, in multi-

variate models, it is a priori not clear how a shock of interest should be chosen as it will

often have contemporaneous effects on several outcome variables; secondly, it is unreal-

istic to observe pertubations in solely one shock while keeping the others fixed because

impulse responses generally depend on compositions of shocks. A structural volatility

model, similar to structural VAR models, see e.g. (Kilian, 2013), specifies the shock com-

position mechanism and provides an economically meaningful multivariate shock time

series. This solves the composition effect problem and allows one to investigate the im-

pacts of specific future market scenarios defined by the labeled structural shocks. Such

3The VIRF traces the effects of shocks on the covariance matrix Ht and not on its structural decompo-

sition H1/2
t R̃. When considering the square of the matrix decomposition, the effect of the structural model

vanishes as R̃R̃> = 1.
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investigations using scenario VIRFs have not been possible to date, as they critically hinge

on the interpretability of the shocks. We stress this aspect further in Section 2.5.

2.3 The VIRF in the BEKK(p, q) model

To derive closed form expressions for structural VIRFs, we need to choose a model for the

dynamics of the conditional covariance matrix process. Amongst these, the parametric

VEC and BEKK GARCH models enjoy great popularity (Bauwens et al., 2006) and are

most frequently employed in the applied VIRF literature (see, e.g., Jin et al., 2012 and

Olson et al., 2014). The n-dimensional process (εt)t∈Z admits a BEKK(p, q) specification

(Engle and Kroner, 1995) if Ht satisfies for all t ∈ Z:

Ht = CC> +
p

∑
i=1

A>i εt−iε
>
t−i Ai +

q

∑
j=1

B>j Ht− jB j (p, q ∈ N) (4)

where C is a lower triangular matrix and Ai and B j are coefficient matrices in Rn×n. The

intercept matrix CC> is symmetric and positive semi-definite by construction, and strictly

positive definite if C has full rank. The latter property ensures positive definiteness of

(Ht)t∈Z. Boussama et al. (2011, Theorem 2.4) show that under weak regularity conditions

on (ξt)t∈Z, the multivariate BEKK GARCH process is ergodic, strictly and weakly sta-

tionary and invertible if the eigenvalues of ∑
p
i=1 Ai ⊗ Ai + ∑

q
j=1 B j ⊗ B j are less than one

in modulus. Hafner and Preminger (2009) provide conditions to establish consistency as

well as asymptotic normality of the QML estimator, assuming inter alia the existence of

second-order moments of (ξt)(t∈Z) and finite sixth-order moments of (εt)t∈Z. Due to the

quadratic structure of the BEKK(p, q) model, the parameter matrices are only identified

up to sign. For the BEKK(1, 1), the model is uniquely identified assuming the diagonal

elements of C and the first matrix entries of A1, a11(1), and B1, b11(1), to be positive.

For the BEKK(p, q) model, there is a closed-form expression for the h-step ahead VIRF,
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which can be further simplified for the BEKK(1, 1) case. While Hafner and Herwartz

(2006) have stated these results, we provide here a rigorous derivation for the sake of com-

pleteness, which will be of additional value for our proofs of the asymptotic properties of

the structural VIRF in Section 2.4. Because the BEKK-VIRF of Hafner and Herwartz (2006)

does not involve any structural parameters, we furthermore adjust the formulas to allow

for structural models of type (2). Let vec(·) denote the operator stacking the columns of

a matrix on top of each other.

Proposition 2.1. For a BEKK(p, q) representation of Ht in (2) with parameter vector η =(
vec(C)>, vec(Ai)

>, vec(B j)
>)>, (i = 1, . . . , p; j = 1, . . . , q; p, q ∈ N) and with VMA(∞)

representation with coefficients (Ψi)i∈N given in Proposition A.1, the h-step ahead VIRF given a

structural shock ξt is given by

Vt+h(ξt, η) = Ψh D+
n

(
H1/2

t ⊗ H1/2
t

)
Dn

(
vech(R̃ξtξ

>
t R̃> − In)

)
(5)

where Dn denotes the duplication matrix (see Equation (20)) and D+
n its Moore-Penrose inverse.

Proof. See Proof (2.1) in Appendix A.2.

Notably, the impulse response function is a nonlinear, but even function of the structural

shock. As the conditional volatility at the time of the shock occurrence enters the VIRF,

it is an F̃t-adapted process. The persistence of a shock to volatility is governed by the

moving average matrices Ψh.

Proposition 2.2. For the BEKK(1, 1) model with parameter vector η and with VMA(∞) coeffi-

cients Ψ0 = In∗ , Ψ1 = Ã1 and Ψi =
(

Ã1 + B̃1
)
Ψi−1 =

(
Ã1 + B̃1

)i−1 Ã1 (i ≥ 2), the VIRF

given an initial shock ξt and a corresponding variance level Ht reduces to the recursion:

Vt+h(ξt, η) =
(

Ã1 + B̃1
)h−1 Ã1D+

n

(
H1/2

t ⊗ H1/2
t

)
Dn vech(R̃ξtξ

>
t R̃> − In) (h ≥ 1)

⇒ Vt+h(ξt, η) =
(

Ã1 + B̃1
)

Vt+h−1(ξt) (h ≥ 2).
(6)
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Proof. For a derivation of the vech form of the BEKK(1, 1) model see Proposition A.1,

Equation (22). Inserting the VMA(∞) coefficients in (5) yields the claim.

2.4 Inference for the VIRF

2.4.1 Consistency of the VIRF

Proposition 2.3. Under the regularity conditions of Hafner and Preminger (2009) and if the

VIRF is a continuous function of the parameter vector η of the MGARCH model, Vt+h(ξt, η) can

be estimated consistently.

V̂t+h(ξt, η)
p−→ Vt+h(ξt, η) (h ∈ N) (7)

Proof. Given that the VIRF is a continuous function of the parameter vector of the under-

lying MGARCH model η, the result follows by the continuous mapping theorem.

Remark. When modeling the dynamics of the conditional covariance matrix by a BEKK(p, q)

model, this model is continuous in the parameter vector η.

2.4.2 Asymptotics of the BEKK-VIRF

Theorem 1. Under the regularity conditions of Hafner and Preminger (2009) and given contin-

uous differentiability of the BEKK-VIRF as function of η ∈ Rm, Vt+h(ξt, η) is asymptotically

normally distributed with:

√
T
(
V̂t+h(ξt, η)− Vt+h(ξt, η)

) d−→ N(0,Vη(E[H(η)])−1I(E[H(η)])−1V >η ) (8)

where Vη =
∂Vt+h(ξt ,η)

∂η>
denotes the n∗ × m Jacobian matrix of the VIRF with respect to the m-

dimensional parameter vector η, H(η) =
∂2 log(lt(η))

∂η∂η>
the Hessian matrix of the log likelihood

function log(lt) and I = E
[(

∂ log(lt(η))
∂η

) (
∂ log(lt(η))

∂η>

)]
the Fisher information matrix.
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Proof. The result follows by an application of the Delta method together with the asymp-

totic normality of the QML estimator and Proposition 2.4.

Without the Jacobian, the previous result is of little use. We therefore derive:

Proposition 2.4. Let h ∈ N. The (n∗ ×m) Jacobian of the VIRF with respect to η ∈ Rm which

appears in the asymptotic distribution of the VIRF under the BEKK(p, q) model is given by

∂Vt+h(ξt, η)
∂η>

=

(
V>t ⊗ In(n+1)

2

)
vec(Ψh)

∂η>
+

(
In(n+1)

2
⊗ Ψh

)
∂Vt

∂η>
(9)

where
∂Vt(ξt, η)

∂η>
= D+

[((
H1/2

t R̃ξtξ
>
t R̃> ⊗ In

)
+
(

In ⊗ H1/2
t R̃ξtξ

>
t R̃>

))
×
[(

H1/2
t ⊗ In

)
+
(

In ⊗ H1/2
t

)]−1
− In2

]
∂ vec(Ht)

∂η>

(10)

and (Ψi)i∈N denote the coefficients of the VMA(∞) representation of the BEKK(p, q) model. For

the BEKK(1, 1) model the expression

∂Vt+h(ξt, η)
∂η>

=
(

V>t+h−1 ⊗ In∗
) ∂ vec(Ã + B̃1{h>1})

∂η>
+
(

Ã + B̃1{h>1}

)
∂Vt+h−1

∂η>
(11)

is available where 1{.} denotes the indicator function being one when the condition in the subscript

is satisfied and zero otherwise.

Proof. See Proof (2.4) in Appendix A.3.

The asymptotic distribution of the structural VIRF estimator allows us to construct simul-

taneous confidence intervals for impulse responses of individual assets returns to struc-

tural shocks; see, e.g., Sims and Zha (1999) and Lütkepohl et al. (2015) for discussions of

confidence interval construction for impulse responses. For our application, we choose

a large sample approximation of Hotelling’s T2 to compute simultaneous confidence in-

tervals for all components of the VIRF for a given significance level α. This allows us to

assess the statistical significance of the responses of the (co-)variances of all assets in our

speculative return system to a structural shock.
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2.5 Structural VIRFs

In unidentified MGARCH models, volatility impulse response analysis is limited to a ret-

rospective inspection of the impact of past financial, economic or political events. We

accordingly refer to this VIRF as historical VIRF. By taking the estimated residual ε̂t and

volatility state Ĥt at time of the shock occurrence, Hafner and Herwartz (2006) define their

structural shocks ξ̂t = Ĥ−1/2
t ε̂t by means of the principal square root. However, Hafner

et al. (2020) and Fengler and Polivka (2021) provide evidence that the principal matrix

square root and its associated shocks do not comply with empirical results on asymmetry

of volatility spillovers and suggest alternative matrix decompositions for Ht.

Nonetheless, the VIRF is unaffected by this identification problem because it is invariant

to rotations in the historical context such that the results are independent of the structural

model. To see this more clearly, let Qt = H1/2
t R̃ denote a structural decomposition of Ht.

Given the return realized on the day of interest t, the h-step ahead VIRF is given by:

Vt+h(ξt) = Ψh

(
vech(Qt(ξtξ

>
t − Ik)Q>t )

)
= Ψh

(
vech

(
H1/2

t R̃
(

R̃>H−1/2
t εtε

>
t H−1/2

t R̃− Ik

)
R̃>H1/2

t

))
= Ψh vech(εtε

>
t − Ht)

(12)

Thus, when εt is known, at least in retrospect, this expression is independent of the struc-

tural mechanism decoded by R̃.

However, recent contributions to the literature on structural volatility models open up

new usage possibilities for VIRFs. Firstly, in out of sample settings, different structural

decompositions unveil their full power as they allow to process responses to synthetic but

economically meaningful interpretable structural shocks. Secondly, by investigating the

outcomes of labeled shocks, structural VIRFs allow one to conduct counterfactual analy-

ses based on defining specific scenarios. The profit of a structural approach is thus the full
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economic interpretability of the input shocks and correspondingly the full interpretability

of the structural VIRF output. We coin the term “scenario VIRF” for this new application

framework. We illustrate the merits of using a structural model in the computation of

VIRFs in the empirical application in Section 3.

2.6 Causality

Our volatility impulse response analysis connects as well to recent advances on causality

in times series. Rambachan and Shephard (2020, 2021) show that the generalized impulse

response function of Koop et al. (1996) is, under certain assumptions, endowed with a

causal interpretation. In contrast to the GIRF, the VIRF does not trace the dynamic effects

of a shock not on the conditional mean but on the conditional covariance matrix. It does

not have a causal content a priori, as it is simply the difference of two conditional expec-

tations. In contrast, a causal effect traces the effects of changes in treatments. We show

that the VIRF can be endowed with a causal interpretation as well. To this end, we adapt

assumptions postulated by Rambachan and Shephard (2020, 2021) to model (2). To define

subsequences of our entire time series, we adopt the time series path notation which in-

dicates the start and end points of a series in time by subscripts separated by a colon. We

start by rephrasing our variables of interest using terms stemming from causal inference:

Definition 2.3. Let ξ := (ξt)t∈I , (I = {1, . . . , T}), denote the stochastic treatment path

with realizations ξ̄t ∈ W ⊆ Rn and let the potential outcome path for any deterministic

trajectory ξ̄ := (ξ̄t)t∈I be given by X := Xt(ξ̄)t∈I = (X1(ξ̄), X2(ξ̄), . . . , XT(ξ̄)) where

Xt := vech(εtε
>
t ) and define F̃t :=σ({Xs,ξs (s ≤ t)}).

The demeaned return vectors respectively their outer products are the observable, con-

tinously valued, multidimensional outcomes for which the VMA(∞) representation of

the BEKK model is available. Our treatment variable features continuous parameter
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values as opposed to the classical setting with a binary or finitely discrete treatment

variable. We observe only one realization of the stochastic treatment path. Note that

F̃t ⊆ σ(εs, ξs, s ≤ t}) as the outer product of two random vectors is a Borel-measurable

function. Due to the predictability of Ht, the measurability of the principal matrix square

root operator and the fact that R̃ is known it even holds that F̃t = F̃t. Let furthermore ξ

and X satisfy the following assumptions:

Assumption 2.1 (Time series non-interference). For each t ∈ I and all deterministic (ξ̄t)t∈I ,

(ξ̄ ′t)t∈I with ξ̄t, ξ̄ ′t ∈ W :

Xt(ξ̄1:t, ξ̄t+1:T) = Xt(ξ̄1:t, ξ̄ ′t+1:T) almost surely.

Assumption 2.1 allows the potential outcomes to depend on past and contemporaneous

treatments but excludes dependence on future treatments. It links the potential outcomes

and treatments in such a way that Xt(ξ̄)t∈I=(X1(ξ1), X2(ξ1:2), . . . , XT(ξ1:T))
> and acts as

the time series analogon of SUTVA (Cox, 1958; Rubin, 1980). Our outcome series satisfies

Assumption 2.1, which follows from the definition εt = Qtξt, where Qt = H1/2
t R̃ is F̃t−1-

measurable, and the fact that the sequence of structural shocks ξ is assumed to be white

noise.

Assumption 2.2 (Time series unconfoundedness). For each t ∈ I and all h > 0:

ξt ⊥⊥ (ξt+1:t+h, {Xt+h(ξ̄1:t−1, (ξ̄s)t≤s≤t+h) : ξ̄s ∈ W}) |F̃t−1

Assumption 2.2 encompasses non-anticipating treatment paths conditional on the infor-

mation available up to time t − 1. With ξt being iid, Assumption 2.2 is fulfilled due to

the serial independence of the structural shocks and the predictability of the conditional
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covariance matrix in the MGARCH model given the past information contained in the

returns. This guarantees the independence of the treatment ξt of future treatments and

the associated potential outcomes. Francq and Zakoı̈an (2010, Thm 11.5) provide the con-

ditions for which vector GARCH models admit a strictly stationary and non-anticipative

solution.4

Assumption 2.3 (Positivity/Sequential overlap). Let T ⊂ W be a Borel set with positive

measure. For each t ∈ Z the stochastic treatment path satisfies

0 < Pr(ξt ∈ T ) < 1

almost surely for all T ⊂ W .

Assumption 2.3 mirrors the overlap assumption of cross-sectional causality analyses in

the time series setting and is essential for the proof steps of Corollary 1.1 to be well-

defined. As we are handling a continuous treatment variable, the overlap assumption is

stated for Borel sets which can be chosen as ε-neighbourhoods of the structural shock of

interest ξ̄t: T = {ξ̃ ∈ W : d(ξ̄t, ξ̃) < ε} for some metric d on Rn and ε > 0, which can be

arbitrarily small. In empirical practice, the set-based definition aligns well with the con-

cept of scenario and sensitivity analysis. As the BEKK model and thus the BEKK-VIRF are

continuous in the structural shock, applying them to a set Tt results in a connected Borel

set of conditional covariance matricesHt, outer return products Xt and VIRF vectors.

Based on these assumptions, we can now show that the VIRF applied to anε-neighbourhood

Tt of a structural shock of interest ξ̄t can be decomposed into a filtered treatment effect,

i.e. a filtered causal volatility impulse response, and a selection bias term which vanishes

under time series unconfoundedness.

4A non-anticipative solution is defined as a process (εt)t∈Z such that εt is a measurable function of

ξt−s (s ≥ 0) with H1/2
t ⊥⊥ σ(ξt+h, h ≥ 0) and εt ⊥⊥ σ(ξt+h, h > 0).
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Corollary 1.1. Let Assumptions 2.1 – 2.3 hold, let h ≥ 0 and assume that for any deterministic

ξ̄t ∈ W and any ξ̃t ∈ T = {ξ̃ ∈ W : d(ξ̄t, ξ̃) < ε} for some metric d on Rn and ε > 0:

E[Xt+h(ξ̃t)− Xt+h|F̃t−1] < ∞. Then it holds:

Vt+h(Tt) = E[Xt+h − Xt+h|F̃t−1] + ∆t+h(Tt|F̃t−1)

where ∆t+h(Tt|F̃t−1) =
cov[vech(Xt+h),1{ξt∈Tt}|Ft−1]

E[1{ξt∈Tt}]
is a selection bias which vanishes under As-

sumption 2.2.

Proof.

Vt+h(Tt) = E[vech(Ht+h(Tt))|F̃t]− E[vech(Ht+h)|Ft−1]

= E[vech(Ht+h)|Ft−1, Tt]− E[vech(Ht+h)|Ft−1]

= E[vech(Xt+h)|Ft−1, Tt]− E[vech(Xt+h)|Ft−1]

=
E[vech(Xt+h(Tt))1{ξt∈Tt}|Ft−1]

E
[
1{ξt∈Tt}|Ft−1

] − E[vech(Xt+h)|Ft−1]

=
E [vech(Xt+h(Tt)|Ft−1] E

[
1{ξt∈Tt}|Ft−1

]
+ cov(vech(Xt+h(Tt)), 1{ξt∈Tt}|Ft−1)

E
[
1{ξt∈Tt}|Ft−1

]
− E[vech(Xt+h)|Ft−1]

= E[vech(Xt+h(Tt))− vech(Xt+h)|Ft−1] +
cov(vech(Xt+h(Tt)), 1{ξt∈Tt}|Ft−1)

E[1{ξt∈Tt}]︸ ︷︷ ︸
:=∆t+h(Tt|F̃t−1)

and under Assumption 2.2 which asserts that the contemporaneous treatmentξt is jointly

independent of all future treatments and potential outcomes: ∆t+h(Tt|F̃t−1) = 0. Hence,

the VIRF identifies the filtered impulse causal effect.

Remark. The filtered treatment effect resembles the causal response function defined by

Rambachan and Shephard (2020) which compares the effects of two finitely discrete treat-

ments ξ̄t and ξ̄∗t given past information. In the VIRF, the occurence of the shock ξ̄t given

past information is however contrasted with the model results given only the past infor-

mation instead of conditioning on an artifical base shock ξ̄∗t . By integrating out the effect
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of the shock ξ̄∗, the integrated causal response function coincides with the VIRF. This

gives a causal meaning to the VIRF as vectorized integrated causal response function ap-

plied to the outer product of returns.

Thus, the VIRF allows us not only to investigate the effects of structural shocks, but to

assess the causal impacts of these interpretable structural “treatment” shocks on volatility.

3 Empirical Application

We illustrate the merits of the structural VIRF approach by analysing a system of spec-

ulative daily asset returns covering three important asset classes for portfolio optimiza-

tion and key ingredients in financial systemic stress analysis by the ECB (Kremer et al.,

2012): equity, fixed income and the foreign exchange markets. To obtain an economi-

cally directly interpretable structural model, we employ the structural proxy-MGARCH

approach of Fengler and Polivka (2021) from which we identify labeled structural shocks

for our volatility impulse response analyses.

3.1 Structural volatility model

The structural proxy-MGARCH model of Fengler and Polivka (2021) derives the struc-

tural rotation matrix by means of a proxy variable scheme; see also Stock and Watson

(2012) and Mertens and Ravn (2013). Assume there exists a centered (n− 1)-dimensional

instrument process Z = (Zt)t∈I such that, for all i = 1, . . . , n− 1,

E[ξitZit] = φi ∈ R \ {0} (relevance) (13)

E[ξ i∗
t Zit] = 0(n−1)×1 (exogeneity) (14)
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where the product process (ξtZit)(t=1,...,T) is weakly stationary and the index i relates to

the i-th vector element, the superscript i∗ denotes all vector elements apart from the i-th

element. Based on these assumptions, the columns of the rotation matrix are given by

R̃.i = ± E[utZit]
(

E[Zitu>t ] E[utZit]
)−1/2

(15)

and one can estimate the full rotation matrix by means of a recurrence scheme based on

the chaining of Givens rotations (Fengler and Polivka, 2021). Formally, the first k columns

of the rotation matrix can be expressed analytically without involving the rotation angles

using the Hadamard product � by

R̃n×k = E[utZ>t ]
[

In×k ·
(

E[u>t � Zt] E[Z>t � ut]� Ik

)−1/2
]

(16)

where the last column is given up to sign by the orthonormality property of the rotation

matrix. Consistent estimation of the rotation matrix and asymptotic inference is possible

by replacing expectations with their sample mean analogues.

We borrow the empirical analysis from Fengler and Polivka (2021) and study daily price

data ranging from 1/1/1998 to 12/31/2014 taken from Bloomberg. Our asset triple con-

sists of the S&P 500 Composite Index (SP500), the yield of the U.S. constant maturity 10

year treasury note (FRTCM10) and the Finex U.S. Dollar Index (NDXCS00). We compute

daily log returns rt for each asset; see Figure 1.

Typical proxy variables employed for identification are of narrative nature, for exam-

ple records of monetary policy interventions, such that the resulting structural shocks

ξt = R̃>H−1/2
t εt are endowed with a direct economic interpretation. For our high fre-

quent asset triple we use news data taken from Thomson Reuters MarketPsych Indices

(TRMI) to proxy for the underlying structural shocks. The TRMIs are available on a daily

level. As in Fengler and Polivka (2021), we choose the U.S. stock index sentiment and the

U.S. bond sentiment and distill the unexpected innovations to the proxy series by fitting
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Figure 1: Demeaned daily log returns of the S&P 500 Composite Index (SP500), the yield

of the U.S. constant maturity 10 year treasury note (FRTCM10) and the Finex U.S. Dollar

Index (NDXCS00) from 1/1/1998 to 12/31/2014.

flexible ARMA models to identify an equity market and an unconventional monetary pol-

icy shock. As bond yields move in opposite direction to bond prices, a structural shock

identified by means of the bond market sentiment is connected to the treasury yield with

reversed sign.

Following Fengler and Polivka (2021), we estimate the structural model using a BEKK(1, 1)

specification. The results of Table 1 show that the rotation angles of the structural rota-

tion differ from zero. This suggests a deviation from the volatility spillover symmetry

imposed by the spectral decomposition H1/2
t obtained when R̃ = In. This can be nicely

seen, as the structural model shifts mass from the unit diagonal entries of the identity

matrix of no rotation in an asymmetric fashion to the off-diagonal matrix elements of the

rotation matrix in Table 1. Furthermore, the third section of Table 1 shows that the stock
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market index Z1 and bond market sentiment Z2 seem to be relevant instruments. Fen-

gler and Polivka (2021) conduct a narrative corroboration of the first percentiles of the

structural shocks with the major financial market news issued on the day of the shock

occurrence. They can connect each structural shock to specific economic and financial

turmoil events reported in the news and identifyξ1 as equity shock, ξ2 as unconventional

monetary policy shock and refer to ξ3 as currency shock.

proxy-MGARCH model(
θ̂12, θ̂13, θ̂23

)> 0.3811 −0.1885 −2.9164

ˆ̃R 0.9118 0.3238 −0.2526
0.3654 −0.9204 0.1393
−0.1874 −0.2193 −0.9575

ξ1 ξ2 ξ3

correlations Z1 0.3347 0.0000 −0.0000
Z2 0.0052 0.1936 0.0000

p-values Z1 0 1.0000 1.0000
Z2 0.7286 0 1.0000

Wald test distribution statistic critical value p-value

symmetric spillovers χ2
(4) 107.85 9.4877 0.0000

Table 1: Estimation results of the structural MGARCH model of the demeaned daily log
returns of the S&P 500 Composite Index (SP500), the yield of the U.S. constant maturity 10
year treasury note (FRTCM10) and the Finex U.S. Dollar Index (NDXCS00) from 1/1/1998
to 12/31/2014 when using the stock market index (Z1) and bond market sentiment (Z2)
TRMIs as proxy variables. The table shows, from top to bottom, the estimated rotation
angles, the estimated rotation matrix and the correlations of the proxies with the inferred
structural shocks ξ1,ξ2 and ξ3 including Wald test for symmetry of volatility spillovers.
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3.2 Structural volatility impulse response analysis

As Bauwens et al. (2006) state, one of the most important applications of MGARCH mod-

els is the analysis of responses of volatility to shocks. With identified and labeled struc-

tural shocks at hand, we turn to an analysis of the structural VIRFs implied by our model

starting with historical VIRFs followed by scenario VIRFs.

3.2.1 Historical VIRFs

We showcase three economic key events in our sample: Firstly, as an example of a struc-

tural 1% equity tail shock, we consider Freddie Mac’s announcement to stop buying the

most risky subprime mortgages and related securities on February 27, 2007. Secondly, we

consider the bankruptcy of Lehman Brothers on September 15, 2008 as an example of an

1% equity and bond market tail shock. Thirdly, we examine the Fed FOMC statement to

buy treasury securities worth 300B on March 18, 2009 which marked off the start of the

first quantitative easing period after the financial crisis as example for an unconventional

bond market shock. The corresponding shock vectors are documented in Table 2 and

the resulting VIRFs are displayed in Figures 2 to 4. Note that the VIRF is of conditional

nature, i.e. the impact of the structural shocks depends on the volatility state at the time

of the shock occurrence. To compare the impacts of the three shocks directly, one has to

conduct a counterfactual analysis.

The structural shock of the Freddie Mac announcement (see Figure 2) causes a statistically

significant and strong response of the variance of the S&P 500 as well as of its covariances

with the other assets. Even though the bond market shock is only about one standard

deviation, there is as well a strong reaction of the 10 year treasury yield volatility. The

conditional variance of the Finex U.S. Dollar Index increases as well, assuming a humped

shape over the following months. Its conditional covariances with both, the S&P 500 and
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Event dates

Structural shock components 02/27/2007 09/15/2008 03/18/2009

Equity -7.2849 -3.7002 0.2395
Bond 1.0465 3.5972 7.3030
Currency 2.4019 0.1334 1.8027

Table 2: Structural shock vectors selected for historical VIRF analysis from the 1% quan-
tiles with respect to each shock component identified by the proxy MGARCH model.

the treasury yield, increase in response to the shock with a short-lived effect with regard

to the S&P 500 and a longer-lasting impact with regard to the conditional covariance with

the treasury yield. This reflects that the near-term implications of this announcement may

be negative for the U.S. Dollar due to possible flight from the currency and lack of confi-

dence in the U.S. economy. Overall, the structural model indicates that the Freddie Mac

announcement increases conditional variances and covariances in all market segments

which aligns well with findings on tail events (Longin and Solnik, 1995).

Moving to the impact of the Lehman Brothers bankruptcy (see Figure 3), the structural

shock causes an immediate sharp increase in the conditional variances of the S&P 500

and even more so in the 10 year treasury yield as well as in their conditional covariance.

The latter corroborates the correct identification of the shock. The impacts are statistically

significant and appear to be very persistent. In contrast, the bankruptcy appears to have

a short-lasting but level reducing impact on the conditional variance of the Finex U.S.

Dollar Index as the VIRF dies out quickly to zero from below. In the conditional (co-)

variances we observe an immediate decline in volatility as well. This reduction is most

pronounced and persistent for the conditional covariance with the S&P 500 and extremely

sharp and short-lived for the conditional covariance with the U.S. 10 year treasury yield.

The covariance VIRF bounces back to statistical insignificance after one year but shows a

22



persistent covariance level reduction in the long term again.

The structural shock of the FOMC announcement of the first round of quantitative easing

(see Figure 4) causes a very strong and persistent increase in the conditional variance of

the treasury yield. While the first impact on the conditional covariance with the S&P 500

and the variance of the S&P 500 is negative – the pledge initially has calming effects on

the market, even though this reaction is not statistically different from zero at the 5% level

– we observe a delayed increase in humped shape form demonstrating the increasing ner-

vousness of the markets in the long term. Furthermore, we observe a comparably strong

but very short lived increase in the level of the conditional variance of the Finex U.S. Dol-

lar Index accompanied by an equally strong increase in its conditional covariance with

the treasury yield which, however, subsides quickly. These results are backed by general

findings of higher foreign exchange volatility upon FOMC news (Mueller et al., 2017).

On a general note, the VIRFs of our structural model show long-lasting impacts of the

structural shocks to the system for the S&P 500 and the treasury yield, whereas the volatil-

ity impulse responses of the (co-)variances of the Finex U.S. Dollar Index are shorter-lived.

This finding aligns well with empirical findings in the finance literature suggesting that

volatility spillover effects between equity and foreign exchange markets are very small

in normal market times and only show effects in time periods preceding crises, see, e.g.,

Grobys (2015) or Cenedese and Mallucci (2016).

3.2.2 Scenario VIRFs

Historical VIRFs are useful for understanding volatility events in hindsight, but beyond

that are of limited value because a single event, such as the Lehman Brothers’ default,

will never occur again. With the help of a structural model, however, meaningful shock
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scenarios – in an out-of-sample context or as counterfactuals – can be considered. A port-

folio manager might, for instance, be interested in understanding the instant volatility

impact on her portfolio resulting from certain tail events of FOMC decision days. A mag-

nifold of other scenarios are conceivable. For illustration, we here adopt a risk manager’s

perspective and investigate the VIRFs of two scenario families associated with the 1% tail

events in the equity and monetary policy shocks on the out-of-sample date 01/02/2015.

The median VIRFs and 25 and 75% quantile VIRFs of the corresponding scenario families

are plotted in Figures 5 and 6.

Figure 5 shows a pronounced positive median impact of the historical 1% quantile equity

shocks on the conditional (co-)variance of the S&P 500 and the treasury yield on the first

trading day of 2015. The increase in conditional (co-)variances is persistent and decreases

only slowly over time. The covariance impulse responses of the Finex U.S. Dollar index

to the equity tail event scenario family do not exhibit a clear sign and magnitude and

indicate a wide spectrum of possible outcome paths. The median variance impulse of the

index itself, however, shows a slight positive impact indicating a volatility increase over

the medium term. In contrast, the median impact of the historical 1% quantile monetary

policy shocks in Figure 6 has a small effect on the conditional covariance of the treasury

yield and the S&P 500 and almost none on the conditional variance of the S&P 500. Re-

markably, there is a strong positive effect on the conditional covariance of the Finex U.S.

Dollar index and the treasury yield which displays a long persistence. Figures 5 and 6

hence give, dependent on the scenario materializing on the upcoming day, very different

indications which (co-)variance levels in the asset return system can be expected to rise

and to which extent – thus allowing for different risk managerial precautions.
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4 Conclusion

In this paper, we have taken a new look at the volatility impulse response function (VIRF)

developed by Hafner and Herwartz (2006) which is a handy device to analyze the im-

pact of shocks on conditional variance matrices of MGARCH models. By deriving the

asymptotic law of the VIRF in the BEKK model, we top up VIRF plots with analyti-

cal confidence intervals to assess the statistical significance of responses of volatilities

to shocks. We show that the asymptotic variance matrix can, like the VIRF, be written

as a function of the forecast horizon in a compact recursive form, which allows for an

efficient numerical evaluation of confidence intervals. Building on recent advances for

identification in MGARCH models, we extend the VIRF to benefit from the advantages of

structural volatility models: interpretable, labeled shocks and specified structural propa-

gation channels allow us to broaden the use case of the VIRF, to date limited to historical

analyses, to counterfactual and out-of-sample scenario analyses. Moving even beyond a

structural interpretation, we show how to endow the VIRF with a causal interpretation

which allows one to use the microeconometricians’ notion of causality when analyzing

the impact of well-defined shock scenarios. In an empirical illustration to an identified

system of equity, government bond and foreign exchange returns we demonstrate the

abundance of use cases of the structural VIRF in historical and scenario analyses. For

example, we illustrate how structural VIRFs can visualize the impact and persistence of

structural tail event scenarios on forecasted out-of-sample (co-)variances.
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Figure 2: Plots of the estimated VIRFs with 5% confidence intervals (in blue) under the

proxy-based identification scheme of the return system of the S&P 500 Composite Index

(S&P500), the yield of the U.S. constant maturity 10 year treasury note (Yield) and the

Finex U.S. Dollar Index (USD Index) in response to the structural shock on 02/27/2007

(Freddie Mac announcement).
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Figure 3: Plots of the estimated VIRFs with 5% confidence intervals (in blue) under the

proxy-based identification scheme of the return system of the S&P 500 Composite Index

(S&P500), the yield of the U.S. constant maturity 10 year treasury note (Yield) and the

Finex U.S. Dollar Index (USD Index) in response to the structural shock on 09/15/2008

(Lehman Brothers bankruptcy)
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Figure 4: Plots of the estimated VIRFs with 5% confidence intervals (in blue) under the

proxy-based identification scheme of the return system of the S&P 500 Composite Index

(S&P500), the yield of the U.S. constant maturity 10 year treasury note (Yield) and the

Finex U.S. Dollar Index (USD Index) in response to the structural shock on 03/18/2009

(FOMC announcement).
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Figure 5: Plots of the median scenario VIRF and its 25 and 75% quantiles under the

proxy-based identification scheme of the return system of the S&P 500 Composite In-

dex (S&P500), the yield of the U.S. constant maturity 10 year treasury note (Yield) and

the Finex U.S. Dollar Index (USD Index) from 1/1/1998 to 12/31/2014 in response to

a scenario family of 1% structural equity tail event shocks on the out-of-sample date

01/02/2015.
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Figure 6: Plots of the median scenario VIRF and its 25 and 75% quantiles under the

proxy-based identification scheme of the return system of the S&P 500 Composite In-

dex (S&P500), the yield of the U.S. constant maturity 10 year treasury note (Yield) and

the Finex U.S. Dollar Index (USD Index) from 1/1/1998 to 12/31/2014 in response to a

scenario family of 1% structural bond market tail event shocks on the out-of-sample date

01/02/2015.
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A Proofs

A.1 VMA(∞) representation of the BEKK model

Proposition A.1. The VMA(∞) representation of the BEKK(p, q) model (4) is given by

Xt = vech(H) +
∞
∑
i=0

ΨiYt−i (17)

where vech(H) = Φ(1)−1c denotes the long-run covariance matrix with c = vech(CC>) and
the (n∗× n∗) coefficient matrices Ψi are given by Ψ0 = In∗ and Ψi = −B̃i +∑

i
j=1
(

Ã j + B̃ j
)
Ψi− j

(i = 1, 2, . . .) where Ã j = D+
n (Ai ⊗ Ai)

> Dn and B̃ j = D+
n
(

B j ⊗ B j
)> Dn.

For the BEKK(1, 1) model, these expressions simplify to: Ψ0 = In∗ , Ψ1 = Ã1 and Ψi =(
Ã1 + B̃1

)
Ψi−1 =

(
Ã1 + B̃1

)i−1 Ã1 (i ≥ 2).

Proof. Transforming (4) to its equivalent VEC representation by applying the vec(·) oper-
ator

vec(Ht) = vec(CC>) +
p

∑
i=1

vec(A>i εt−iε
>
t−i Ai) +

q

∑
j=1

vec(B>j Ht− jB j) (18)

and using
vec(ABC) =

(
C> ⊗ A

)
vec(B) (19)

for appropriately defined matrices A, B and C and exploiting

vec(M) = Dn vech(M) (20)

for any symmetric (n× n) matrix M, where Dn denotes the unique (n2 × n(n+1)
2 ) dupli-

cation matrix and noting that M> ⊗M> = (M⊗M)> for any matrix M, we get:

Dn vech(Ht) = Dn vech(CC>) +
p

∑
i=1

(Ai ⊗ Ai)
> Dn vech(εt−iε

>
t−i)

+
q

∑
j=1

(
B j ⊗ B j

)> Dn vech(Ht− j).
(21)

Multiplication with the Moore-Penrose inverse D+
n of the duplication matrix results in:

vech(Ht) = vech(CC>)︸ ︷︷ ︸
=:c

+
p

∑
i=1

D+
n (Ai ⊗ Ai)

> Dn︸ ︷︷ ︸
=:Ãi

vech(εt−iε
>
t−i)

+
q

∑
j=1

D+
n
(

B j ⊗ B j
)> Dn︸ ︷︷ ︸

=:B̃ j

vech(Ht− j)

(22)
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To derive the equivalent VARMA(max(p, q), q) representation as in Hafner and Herwartz
(2006), set Xt := vech(εtε

>
t ) and Yt := Xt − vech(Ht). Yt is a weak white noise process

with E[Yt] = 0, Var(Yt) = HY and E[YtY>s ] = 0 (t 6= s). Rearranging (22) yields:

Xt = c +
max(p,q)

∑
i=1

(
Ãi + B̃i

)
Xt−i −

q

∑
j=1

B̃ jYt− j + Yt (23)

where Ãi = 0 for i > p and B̃i = 0 for i > q. Given stationarity of (4), this can be rewritten
in VMA(∞) form using the lag operator L:(

In∗ −
max(p,q)

∑
i=1

(
Ãi + B̃i

)
Li

)
︸ ︷︷ ︸

=:Φ(L)

Xt = c +

(
In∗ −

q

∑
j=1

B̃ jL j

)
︸ ︷︷ ︸

=:Θ(L)

Yt

⇔ Xt = Φ(1)−1c +Φ(L)−1Θ(L)︸ ︷︷ ︸
=:Ψ(L)

Yt

(24)

such that Xt admits the VMA(∞) representation

Xt = vech(H) +
∞
∑
i=0

ΨiYt−i (25)

where H satisfying vech(H) = Φ(1)−1c denotes the long-run covariance matrix. The
(n∗ × n∗) coefficient matrices Ψi can be determined recursively by coefficient matching
which yields the claim.

A.2 Mathematical prerequisites for the VIRF

The following statements provide justification for interchanging infinite summation and

expectation operators when exploiting vector moving average representations. Let (Ω,F , P)

denote the probability space and let ‖ · ‖ be a matrix norm on Rn×n.

Definition A.1. A sequence of matrices (Ψ j)( j∈Z) ⊂ Rk×k is called absolutely summable
if ∑ j∈Z ‖Ψ j‖ < ∞. Similarly, the sequence (Ψ j)( j∈Z) is called quadratically summable if
∑ j∈Z ‖Ψ j‖2 < ∞.

Corollary 1.2. A sequence of matrices (Ψ j)( j∈Z) in Rk×k is absolutely summable if and only if
∑ j∈Z |Ψmn, j| < ∞, where ψmn, j denotes the (m, n)-th entry of Ψ j.
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Proof. ”⇒”: Let (Ψ j)( j∈Z) in Rk×k be an absolutely summable sequence of matrices. Then

∑ j∈Z |ψmn, j| ≤ ∑ j∈Z ∑
k
m=1 ∑

k
n=1 |ψmn, j| = ∑ j∈Z ‖Ψ j‖1, where ‖ · ‖1 refers to the L1-norm.

Invoking the equivalence of matrix norms and the absolute summability of (Ψ j)( j∈Z) the
claim follows immediately.
”⇐”: Let (ψmn, j)( j∈Z), for all m, n = 1, . . . , k, be absolutely summable scalar sequences.
By positivity and equivalence of matrix norms choosing the Frobenius norm: 0 ≤ ‖Ψ j‖ =√

∑
k
m=1 ∑

k
n=1 |ψmn, j|2 ≤ ∑

k
m=1 ∑

k
n=1

√
|ψmn, j|2 = ∑

k
m=1 ∑

k
n=1 |ψmn, j| such that ∑ j∈Z ‖Ψ j‖

≤ ∑ j∈Z ∑
k
m=1 ∑

k
n=1 |ψmn, j| = ∑

k
m=1 ∑

k
n=1

(
∑ j∈Z |ψmn, j|

)
. As the scalar sequences are abso-

lutely summable by assumption and the outer sums are finite the claim follows immedi-
ately.

Definition A.2. A random vector Z ∈ Rk is called (square-) integrable if all its compo-
nents Z1, . . . , Zk are (square-) integrable.

Corollary 1.3. If the random vector Z ∈ Rk is square integrable, then vech(ZZ>) is integrable.

Proof. Let Z ∈ Rk with E[Z2
j ] < ∞ ( j = 1, . . . , k). Then by the Cauchy-Schwarz inequality

| E[ZmZn]| ≤
√

E[Z2
m] E[Z2

n] < ∞ as each component is square integrable.

Corollary 1.4. Let (Zt)(t∈Z) denote a random sequence on the probability space (Ω,F , P) with
values in Rk and E[ZtZ>t ] = Hz < ∞. Then ∃M ∈ R such that for all j = 1, . . . , k: E[|Z j,t|] <
M < ∞.

Proof. The remark follows immediately by an application of Hölder’s inequality and defin-
ing M :=

√
‖Hz‖max < ∞ where ‖ · ‖ denotes the matrix maximum norm.

Based on the previous auxiliary results, we can now prove the following:

Theorem 2. Let (Yt)(t∈N0) be a sequence of integrable random vectors in Rk defined on a prob-
ability space (Ω,F , P) and let (φi)(i∈N0) be a sequence of absolutely summable matrices in
Rk×k. If for all m, j = 1, . . . , k the series ∑

∞
i=0 |φm j,i| E[|Yj,h−i|] converges then ∑

∞
i=0φiYh−i(ω)

(ω ∈ Ω) converges to a limiting random variable Y almost everywhere in Ω and E[Y] =

∑
∞
i=0φi E[Yi−h].

Proof. Owing to Corollary 1.2 it is sufficient to consider sums of the form ∑
∞
i=0φm j,iYj,h−i

where m, j = 1, . . . , k are arbitrary but fixed. An application of the monotone convergence
theorem (Davidson, 1994, Theorem 4.5) then yields:

E

[ ∞
∑
i=0
|φm j,iYj,h−i|

]
=

∞
∑
i=0

E
[
|φm j,iYj,h−i|

]
=

∞
∑
i=0
|φm j,i| E

[
|Yj,h−i|

]
< ∞,
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where the right hand side is finite by assumption. Hence, ∑
∞
i=0φm j,iYj,h−i exists. Hence,

by the dominated convergence theorem (Davidson, 1994, Theorem 4.12): E
[
∑
∞
i=0φm j,iYj,h−i

]
=

∑
∞
i=0 E

[
φm j,iYj,h−i

]
. Using Corollary 1.2 this translates by means of finite summation into

the claim: E[Y] = ∑
∞
i=0φi E[Yi−h].

In order to apply the above theorem to the VIRF framework, we need to extend the pre-

vious result to conditional expectations. This generalization is based on the conditional

versions of the monotone and dominated convergence theorem:

Corollary 2.1. Let (Xn)n∈N denote an increasing sequence of non-negative random variables on
the probability space (Ω,F , P) with almost sure limit X on Ω and let F̄ be aσ-algebra on Ω with
F̄ ⊂ F . Then E[X|F̄ ] = limn→∞ E[Xn|F̄ ] almost surely.

Proof. For F ∈ F̄ : By means of the tower property and the monotone convergence the-
orem it holds that E[E[X|F̄ ]1F] = E[X1F] = limn→∞ E[Xn1F]. By another applica-
tion of the tower property and the monotone convergence theorem: limn→∞ E[Xn1F] =

limn→∞ E[E[Xn1F|F̄ ]] = limn→∞ E[E[Xn|F̄ ]1F] = E[limn→∞ E[Xn|F̄ ]1F] which com-
pletes the proof.

Corollary 2.2. Let (Xn)n∈N denote a sequence of random variables on the probability space
(Ω,F , P) and suppose (Xn)n∈N converges almost surely to a random variable X. Let further-
more F̄ be a σ-algebra on Ω with F̄ ⊂ F . If there exists an integrable random variable Y such
that for all n: |Xn| ≤ Y almost surely then we have: limn→∞ E[Xn|F̄ ] = E[X|F̄ ] almost surely.

Proof. For all F ∈ F̄ : By means of the tower property and the dominated convergence
theorem it holds that E[E[X|F̄ ]1F] = E[X1F] = limn→∞ E[Xn1F] where |X1F| ≤ Y ∈
L1 and |Xn1F| ≤ Y ∈ L1. By another application of the tower property this equals
limn→∞ E[E[Xn|F̄ ]1F] which completes the proof.

With these extensions at hand we can now formulate the following claim:

Corollary 2.3. Let (Yt)(t∈N0) be a sequence of integrable random vectors in Rk defined on a prob-
ability space (Ω,F , P), let F̃ be aσ-algebra on Ω with F̃ ⊂ F and let (φi)(i∈N0) be a sequence of
absolutely summable matrices inRk×k. If for all m, j = 1, . . . , k it holds ∑

∞
i=0 |φm j,i| E[|Yj,h−i|] <∞ then ∑

∞
i=0φiYh−i(ω) exists and E[∑∞

i=0φiYi−h|F̃ ] = ∑
∞
i=0φi E[Yi−h|F̃ ]. Thus we can inter-

change infinite summation and conditional expectation.

Proof. The proof of Theorem 2 translates immediately into the proof for Corollary 2.3
by replacement of the monotone convergence theorem and the dominated convergence
theorem with their conditional counterparts (see Corollary 2.1 and Corollary 2.2).
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Proof of Proposition 2.1. Let Xt = vech(εtε
>
t ) and Yt = Xt − vech(Ht) and h ≥ 1. Exploit-

ing the tower property of the conditional expectation yielding

E[vech(Ht+h)|Ft−1] = E[E[Xt+h|Ft+h−1]|Ft−1] = E[Xt+h|Ft−1] (26)

and inserting the VMA(∞) representation in (3) we obtain:

Vt+h(ξt; η) = E

[ ∞
∑
i=0

ΨiYt+h−i|F̃t

]
− E

[ ∞
∑
i=0

ΨiYt+h−i|Ft−1

]
. (27)

By square integrability of (εt)t∈Z, (Xt)t∈Z is a sequence of integrable random variables
and as the series vech(Ht)t∈Z is integrable by the square integrability of εt (see Corollary
1.3), so is their difference (Yt)t∈Z. As Var(Yt) = HY < ∞, the absolute moments of Yt

are uniformly bounded (see Corollary 1.4). Hence, by Corollary 2.3, we can interchange
infinite summation and conditional expectation yielding:

Vt+h(ξt; η) =
∞
∑
i=0

Ψi
(
E
[
Yt+h−i|F̃t

]
− E[Yt+h−i|Ft−1]

)
. (28)

In (28), E
[
Yt+h−i|F̃t

]
− E[Yt+h−i|Ft−1] = 0 for all (t + h− i) ≤ t− 1 due to measurability

given Ft−1. Secondly, E
[
Yt+h−i|F̃t

]
− E[Yt+h−i|Ft−1] = 0 for all (t + h − i) ≥ t + 1 by

the tower property. Similarly, using the tower property and the independence of ξt+h−i
of Ft−1 and of ξt we obtain E[Yt+h−i|F̃t] = 0. Thus, (28) reduces to

Vt+h(ξt, η) = Ψh
(
E
[
Yt|F̃t

]
− E[Yt|Ft−1]

)
. (29)

Using predictability5 and tower property arguments and inserting the structural model
(2) we obtain:

Vt+h(ξt; η) = Ψh
(
E
[
Xt − vech(Ht)|F̃t

]
− E[Xt − vech(Ht)|Ft−1]

)
= Ψh

(
E
[
vech(εtε

>
t )|F̃t

]
− E

[
vech(εtε

>
t )|Ft−1

])
= Ψh

(
E
[

vech
(

H1/2
t R̃ξtξ

>
t R̃>H1/2

t
>
)
|F̃t

]
− E [vech(Ht)|Ft−1]

)
= Ψh

(
vech

(
H1/2

t R̃ξtξ
>
t R̃>H1/2

t
>
)
− vech

(
H1/2

t R̃R̃>H1/2
t
>
))

= Ψh

(
vech

(
H1/2

t (R̃ξtξ
>
t R̃> − In)H1/2

t
>
))

.

(30)

By the symmetry of (R̃ξtξ
>
t R̃> − In) and (19):

Vt+h(ξt; η) = Ψh D+
n

(
H1/2

t ⊗ H1/2
t

)
Dn

(
vech(R̃ξtξ

>
t R̃> − In)

)
. (31)

5Note that H1/2
t is Ft−1-measurable. The measurability follows from the Ft−1-measurability of Ht and

because the principal square root is a (uniformly) continuous operator in the space of positive definite
matrices. Matrix multiplication with R̃ preserves measurability.
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A.3 Asymptotic theory for VIRFs

Proof of Proposition 2.4. Let η ∈ Rm denote the vector of stacked parameters of the BEKK(p, q)
model: η =

(
vec(C)>, vec(A1)

>, . . . , vec(Ap)>, vec(B1)
>, . . . , vec(Bq)>

)>
. Starting with

the definition of the VIRF for BEKK(p, q) models we have:

Vt+h(ξt; η) = ΨhD+
(

vec(H1/2
t R̃ξtξ

>
t R̃>(H1/2

t )>)− vec(Ht)
)

(32)

where (Ψh)h∈N are given in Proposition A.1. To calculate the derivative of the VIRF with
respect to η we make use of the following results. Firstly, we use that for n× n matrices
X and Z, Z symmetric, it holds:

∂ vec(XZX)

∂ vec(X)>
= (XZ⊗ In) + (In ⊗ XZ) (33)

by an application of the chain rule (see Magnus and Neudecker, 1988, Theorem 5.12) in
conjunction with two applications of (19). Secondly,

∂ vec(H1/2
t )

∂ vec(Ht)>
=
[(

In ⊗ H1/2
t

)
+ (H1/2

t ⊗ In)
]−1

(34)

which can be derived by solving a Sylvester type equation for the differential. Moreover,
the derivatives of the BEKK model with regard to the parameter matrices are available in
closed form (Hafner and Herwartz, 2008), such that ∂ vec(Ht)

∂η>
is known. Then, for the VIRF

at time h = 0 (Ψ0 = In∗):

∂Vt(ξt; η)
∂η>

= D+

[
∂ vec

(
H1/2

t R̃ξtξ
>
t R̃>H1/2

t

)
∂ vec

(
H1/2

t

)> ∂ vec
(

H1/2
t

)
∂ vec (Ht)

>
∂ vec(Ht)

∂η>
− ∂ vec(Ht)

∂η>

]

×
[(

H1/2
t ⊗ In

)
+
(

In ⊗ H1/2
t

)]−1 ∂ vec(Ht)

∂η>
− ∂ vec(Ht)

∂η>

]

= D+

[((
H1/2

t R̃ξtξ
>
t R̃> ⊗ In

)
+
(

In ⊗ H1/2
t R̃ξtξ

>
t R̃>

))
×
[(

H1/2
t ⊗ In

)
+
(

In ⊗ H1/2
t

)]−1
− In2

]
∂ vec(Ht)

∂η>
.

Now let h ∈ N. Exploiting the fact that the VMA coefficients Ψi, i = 1, . . . , h are recur-
sively defined, the general derivative of the BEKK(p, q) VIRF can be derived building on
the product rule (see Magnus and Neudecker, 1988, Theorem 5.12):

∂Vt+h(ξt; η)
∂η>

=

(
V>t ⊗ In(n+1)

2

)
∂ vec(Ψh)

∂η>
+

(
In(n+1)

2
⊗ Ψh

)
∂Vt(ξt; η)

∂η>
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Moreover, we can establish the recursion

∂ vec(Ψh)

∂η>
=

∂ vec(−B̃h)

∂η>
+

h

∑
j=1

∂ vec
((

Ã j + B̃ j
)
Ψh− j

)
∂η>

=
∂ vec(−B̃h)

∂η>
+

h

∑
j=1

(
Ψ>h− j ⊗ In∗

) ∂ vec
(

Ã j + B̃ j
)

∂η>
+
(

In∗ ⊗
(

Ã j + B̃ j
)) ∂ vec

(
Ψh− j

)
∂η>

.

To evaluate this expression, we derive
∂ vec(Ã j)

∂η>
, ( j = 1, . . . , h). The derivations for B̃ j fol-

low analogously and the vec operator is a linear operator. To this end, we make use of the
following relations: For some (n× n) matrices M, P it holds (see Magnus and Neudecker
(1988, Theorem 3.10))

vec(M⊗ P) = (In ⊗ Kn ⊗ In) [vec(M)⊗ vec(P)] (35)

where Kn denotes the (n2×n2) commutation matrix which satisfies Kn vec(M) = vec(M>).
Furthermore, it holds that ∂ vec(M)⊗vec(P)

∂ vec(M)>
= In⊗ vec(P) such that by an application of the

product rule ∂(vec(M)⊗vec(M))
∂ vec(M)>

= (In ⊗ vec(M)) + (vec(M)⊗ In). Finally, ∂ vec(M>)
∂ vec(M)>

= Kn.

Thus it holds by inserting the definition of Ã j, using (19) and the aforementioned formu-
lae:

∂ vec
(

Ã j
)

η>
=

∂ vec
(

D+
n
(

A j ⊗ A j
)> Dn

)
∂η>

=
(D>n ⊗ D+

n )∂ vec
(

A j ⊗ A j
)>

∂η>

=
(D>n ⊗ D+

n )∂ vec
(

A>j ⊗ A>j
)

∂η>

= (D>n ⊗ D+
n ) (In ⊗ Kn ⊗ In)

∂

(
vec(A>j )⊗ vec(A>j )

)
∂η>

.

Thus, the formula for the derivative of the BEKK(p, q) VIRF can be implemented recur-
sively.

For the BEKK(1, 1) model, we can derive a more compact recursive formula for ∂Vt+h(η)
∂η>

based on (6). Let h ∈ N. By an application of the product rule it holds:

∂Vt+h(ξt; η)
∂η>

=
∂ vec

((
Ã + B̃1{h>1}

)
Vt+h−1(ξt; η)

)
∂η>

=

(
Vt+h−1(ξt; η)> ⊗ In(n+1)

2

)
∂ vec

(
Ã + B̃1{h>1}

)
η>

+
(

Ã + B̃1{h>1}

)
∂Vt+h−1(ξt; η)

∂η>
.
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Hence, in this case we have to calculate
∂ vec(Ã+B̃1{h>1})

η>
only once to establish the recur-

sion for ∂Vt+h(ξt ;η)
∂η>

. This completes the proof.
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