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Abstract

We develop a novel filtering and estimation procedure for parametric option pricing

models driven by general affine jump-diffusions. Our procedure is based on the comparison

between an option-implied, model-free representation of the conditional log-characteristic

function and the model-implied conditional log-characteristic function which is functionally

affine in the model’s state vector. We formally derive a linear state space representation and

establish the asymptotic properties of the corresponding measurement errors. The state

space representation allows us to use suitably extended collapsed Kalman-type filtering

techniques and brings important computational advantages. We analyze the finite-sample

behavior of our procedure in Monte Carlo simulations. The applicability of our procedure

is illustrated in two case studies that analyze S&P 500 option prices and the impact of

exogenous state variables capturing Covid-19 reproduction and economic policy uncertainty.
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1 Introduction

In this paper, we develop a new latent state filtering and parameter estimation procedure for

option pricing models governed by general affine jump-diffusion processes. Our procedure lever-

ages the linear relationship between the logarithm of an option-implied, model-free spanning

formula for the conditional characteristic function and the state vector induced by the affine

jump-diffusion model assumption. Linearity of the measurement and state updating equations

of the resulting state space representation allows us to exploit Kalman-type filtering techniques.

The proposed estimation procedure is theoretically justified and moreover fast and easy to im-

plement, circumventing the typical computational burden when conducting inference on option

pricing models.

Over the past decades, explosive growth in the trading of option contracts has attracted

the attention of academics and practitioners to the development and estimation of increasingly

sophisticated option pricing models. The building blocks of many continuous-time option pricing

models are semimartingale stochastic processes that govern the dynamics of the underlying asset.

These processes are often latent with stochastic diffusive volatility as the prototypical example,

as in the classical Heston (1993) model. The literature also suggests the need to allow for a

discontinuous jump component, both in the asset price dynamics and in its volatility process,

potentially with a time-varying stochastic jump intensity.

An important econometric challenge lies in estimating the parameters of these continuous-

time models and in filtering their unobserved and time-varying components, since option prices

are highly nonlinear functions of the state vector. This stands in contrast to, for instance,

term structure models, where bond yields can be represented as a linear function of the states,

at least within the affine framework (see, e.g., Piazzesi, 2010 for a review of the affine term

structure literature). To obtain the option prices as a function of the state vector, one typically

needs to apply either Fourier-based methods or simulation-based approaches. The price to pay

in both cases is a substantial computational cost. This is one of the reasons why in much of the

empirical research on option pricing, only a subset of the available option price data is used,

such as at-the-money contracts or weekly (typically Wednesday) options data.

Exploiting the option-spanning formula of Carr and Madan (2001) for European-style payoff

functions, we replicate the risk-neutral conditional characteristic function (CCF) of the under-

lying asset price at the expiration date in a completely model-independent way. In other words,

we imply information about the CCF from the option prices without imposing any paramet-

ric assumptions on the underlying asset price dynamics.1 On the other hand, a large stream

of literature is devoted to parametric option pricing models that often belong to the general

affine jump-diffusion (AJD) family.2 The defining property of the AJD class is the exponential-

affine joint CCF, which is available in semi-closed form. By comparing the two option pricing

1A similar option-spanning approach for the CCF is used by Todorov (2019) to develop option-based non-

parametric spot volatility estimates.
2See, e.g., Heston (1993), Duffie, Pan, and Singleton (2000), Pan (2002), Bates (2006), Broadie, Chernov, and

Johannes (2007), Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015), and Andersen, Fusari, and Todorov (2017), to

name a few.
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representations—model-free and model-implied—we can obtain a linear relation between the

logarithm of the option-implied CCF and the model-dependent CCF within the affine frame-

work.

When latent factors are present in the model specification, the linear relation enables us

to exploit the rich literature on linear factor models. In particular, we extract the latent

factors using suitably extended Kalman-type filtering techniques and estimate model parameters

based on the associated quasi-maximum likelihood method. We provide a general state space

representation for the AJD class of option pricing models. The resulting linear state space

form allows us to leverage the Kalman filter to learn the unobserved intrinsic components of

the model and estimate the model’s parameters using quasi-maximum likelihood. A similar

approach is often used in the affine term structure literature, where the yields themselves are

affine functions of the state vector (see, e.g., de Jong, 2000, Driessen, 2005, Duffee, 1999).

Besides the possibility to exploit Kalman-type filtering and estimation techniques, another

advantage of our approach is that, once the model-free CCF has been obtained from the data,

no further numerical option pricing methods, such as the FFT approach of Carr and Madan

(1999) or simulation-based methods, are needed. Therefore, our method reduces computational

costs considerably relative to many existing approaches in the option pricing literature. We

note that whereas the parametric CCF is used to price options in Fourier-based methods, here

we use the CCF to directly learn about the latent factors and model parameters.

We illustrate the developed estimation procedure in Monte Carlo simulations based on sev-

eral AJD specifications. We consider both a one-factor AJD option pricing model, with latent

stochastic volatility and jump intensities being affine functions of the stochastic volatility com-

ponent, and a two-factor AJD model specification with an observable factor. We find good

finite-sample performance in both cases.

Finally, we demonstrate our new filtering and estimation approach in an empirical applica-

tion to S&P 500 index options. In particular, we filter and estimate the latent volatility from

a stochastic volatility model with double-exponential jumps. We also investigate the impact of

the Covid-19 propagation rate on the stock market within this model by embedding the repro-

duction number into the volatility and jump intensity dynamics. Our results show that while

the reproduction numbers have a mild effect on total volatility, they contribute substantially to

the likelihood of negative (but not positive) jumps. By contrast, when we consider an Economic

Policy Uncertainty index as exogenous factor, the jump intensity process is not affected, but

the exogenous factor contributes significantly to diffusive volatility.

Various estimation and filtering strategies for option pricing models have been developed in

the literature. These include the (penalized) nonlinear least squares methods in, e.g., Bakshi,

Cao, and Chen (1997), Broadie et al. (2007), Andersen, Fusari, and Todorov (2015); the efficient

method of moments of Gallant and Tauchen (1996) as applied in Chernov and Ghysels (2000)

and Andersen, Benzoni, and Lund (2002); the implied-state methods initiated by Pan (2002)

and further analyzed by Santa-Clara and Yan (2010); the Markov Chain Monte Carlo method

in Eraker (2004) and Eraker, Johannes, and Polson (2003); and the particle filtering method,

see Johannes, Polson, and Stroud (2009) and Bardgett, Gourier, and Leippold (2019). Most of
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these estimation methods use as inputs option prices or a monotonic transformation thereof,

such as implied volatilities. By contrast, we propose an estimation procedure based on the

prices of spanning option portfolios that contain all probabilistic information.

Estimation strategies based on the transform space of conditional characteristic functions

are not new in the literature. For instance, Carrasco and Florens (2000) develop GMM esti-

mation with a continuum of moment conditions based on the CCF; see also Singleton (2001),

Carrasco, Chernov, Florens, and Ghysels (2007). In applications to option prices, Boswijk,

Laeven, and Lalu (2015) and Boswijk, Laeven, Lalu, and Vladimirov (2021) propose to imply

the latent state vector from a panel of options and then estimate the model via GMM with a

continuum of moments. Bates (2006) develops maximum likelihood estimation with a filtration

constructed using CCFs. In particular, he proposes a recursive likelihood evaluation by updat-

ing the CCF of a latent variable conditional upon observed data. However, unlike our approach,

these methods suffer from a ‘curse of dimensionality’ since they require numerical integration

over the dimension of the state vector.

Our work is also related to Feunou and Okou (2018), who exploit the linear relation between

the four risk-neutral cumulants of the log-asset price and latent factors. They obtain these cu-

mulants via a portfolio of options and employ the Kalman filter to estimate the latent factors.

The main difference with our approach is that we use the CCF, instead of the first four mo-

ments. The CCF contains much richer information, leading to more efficient inference. Another

difference is in dimension reduction: Feunou and Okou (2018) use a two-step PCA procedure

to reduce the dimension of the risk-neutral cumulants observed at different maturities. Instead,

we use a collapsed approach for the Kalman filter, originally developed by Jungbacker and

Koopman (2015), which does not suffer from information losses relative to the full-dimensional

setting.

The paper is organized as follows. Section 2 provides the theoretical framework for aligning

the option-implied and model-implied CCFs of the underlying asset price. In Section 3, we

develop the filtering approach and corresponding estimation procedure for the AJD option pric-

ing models with latent state variables. Section 4 presents the Monte Carlo simulation results.

We describe the data in Section 5 and demonstrate the empirical applications in Section 6.

Conclusions are in Section 7. There are five appendices providing details on (i) the character-

istic function replication, (ii) the measurement errors and the proof of Proposition 1, (iii) the

computation of conditional moments, (iv) the extrapolation scheme for option prices, and (v)

additional simulation and empirical results.

2 Theoretical Framework

In this section we provide the theoretical framework for our approach. We start with ex-

tracting information about the conditional characteristic function from options allowing for

general underlying dynamics. Next, we consider the conditional characteristic function within

the generalized AJD class, which is exponentially affine in the model’s state variables. Finally,

we discuss how to align the two characteristic functions—option-implied model-free vs. AJD
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model-implied—in order to make inferences about the parametric model fit and unobservable

state variables.

2.1 Option-implied CCF

Throughout the paper, we fix a filtered probability space (Ω,F , {Ft}t≥0,P). On this proba-

bility space, we consider the dynamics of an arbitrage-free financial market. The no-arbitrage

assumption of the market guarantees the existence of the risk-neutral probability measure Q,

which is locally equivalent to P. Since we are interested in exploiting information from options,

we formulate the model dynamics under Q.

Let us denote by Ft the futures price at time t for a stock or an index futures contract

with some fixed maturity. The absence of arbitrage implies that the futures price process is a

semimartingale. In this subsection, we assume the following general dynamics for Ft under Q:

dFt

Ft
= vtdWt +

∫
R
xµ̃(dt,dx), (1)

where vt is an adapted, locally bounded, but otherwise unspecified stochastic volatility process;

Wt is a standard Brownian motion, defined with respect to Q; µ is a counting random mea-

sure with compensator νt(dx)dt such that µ̃(dt, dx) := µ(dt,dx) − νt(dx)dt is the associated

martingale measure and
∫
(x2 ∧ 1)νt(dx) < ∞.

We further denote out-of-money (OTM) European-style option prices at time t with time-

to-maturity τ > 0 and strike price K by

Ot(τ,K) =

EQ[e−rτ (Ft+τ −K)+|Ft], if K > Ft

EQ[e−rτ (K − Ft+τ )
+|Ft], if K ≤ Ft.

The OTM price Ot(τ,K) is a call option price if K > Ft and a put option price if K ≤ Ft. For

simplicity we assume a constant interest rate r.

Following Carr and Madan (2001), any twice continuously differentiable European-style

payoff function g(Ft+τ ) can be spanned via a position in risk-free bonds, futures (or stocks) and

options with a continuum of strikes, as follows:

g(Ft+τ ) = g(x) + g′(x)(Ft+τ − x) +

∫ x

0
g′′(K)(K − Ft+τ )

+dK +

∫ ∞

x
g′′(K)(Ft+τ −K)+dK.

Here, x ∈ R+, the first and second terms on the right-hand side correspond to risk-free bonds

and futures positions, and the third and fourth terms correspond to OTM options. Taking

expectation under the risk-neutral measure for x = Ft, we find that the price of a contingent

claim with payoff function g(Ft+τ ) discounted at time t can be expressed as a weighted portfolio

of a risk-free bond and OTM options:

EQ[e−rτg(Ft+τ )|Ft] = e−rτg(Ft) +

∫ ∞

0
g′′(K)Ot(τ,K)dK. (2)

This general spanning result lies behind the construction of one of most popular ‘fear’

indices—the VIX index, when g(Ft+τ ) = log(Ft+τ/Ft). Some other applications of the spanning
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formula (2) include, for instance, the calculation of the option-implied skewness and kurtosis

(Bakshi, Kapadia, & Madan, 2003) and the corridor implied volatility (Andersen & Bondarenko,

2007).

Applying this result to the complex-valued payoff function g(x) = eiu log(x/Ft) yields that the

discounted conditional characteristic function (CCF) of log returns can be spanned as

ϕt(u, τ) = e−rτEQ[eiu log(Ft+τ/Ft)|Ft]

= e−rτ − (u2 + iu)

∫ ∞

0

1

K2
eiu(logK−logFt) ·Ot(τ,K)dK

= e−rτ − (u2 + iu)
1

Ft

∫
R
e(iu−1)m ·Ot(τ,m)dm, (3)

where m = log K
Ft

is the log-moneyness of an option with the strike price K.

It is important to emphasize that the spanning of the CCF in equation (3) is exact and

is completely model independent akin to the VIX. Therefore, the conditional characteristic

function of log returns can be replicated in a model-free way given a single cross-sectional slice

of liquid option prices with all strikes. A similar approach of CCF spanning is taken by Todorov

(2019) to nonparametrically estimate spot volatilities from option prices.

The expression in (3) cannot be calculated analytically as we do not observe option prices for

a continuum of strikes. Nevertheless, as we show in Appendix A, equation (3) is easy to approx-

imate using a limited number of observable option prices (see equation (A.1) in Appendix A).

In our empirical applications, we further employ an interpolation-extrapolation scheme to im-

prove the reliability of the approximation and take into account the observation errors in option

prices. Appendix A provides further details of this approximation. We denote by ϕ̂t(u, τ) the

computationally feasible counterpart of the option-implied CCF.

2.2 Affine jump-diffusion CCF

The CCF of the log returns of the underlying asset is often considered under some parametric

assumptions on the return dynamics. Hence, a model-implied CCF depends on the model

parameters, that we generally do not know, and potentially on the dynamics of other latent

processes, that affect the distribution of returns. Therefore, by aligning the model-free and

parameter-dependent CCFs, we can learn model parameters and unobservable state dynamics.

We restrict our attention to a broad class of affine jump-diffusion (AJD) models defined in

Duffie et al. (2000). The main attraction of the AJD class is that the Laplace transform has

a semi-closed-form expression and is of the exponential-affine form. Suppose Xt is a Markov

process representing an dX -dimensional state vector in D ⊂ RdX with the first component

being the log price of an asset. We assume that under the physical and risk-neutral probability

measures, the state vector Xt solves the following stochastic differential equation:

dXt = µ(Xt; θ)dt + σ(Xt; θ)dWt +

dJ∑
i=1

Ji,tdNi,t, (4)

where Wt is a standard Brownian motion in RdW ; µ: D → RdX , σ: D → RdX×dW ; Ji,tdNi,t

is a pure jump process with intensity {λi(Xt; θ): t ≥ 0} with λi: D → R+ and jump size Ji,t
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with conditional distribution νi on RdX for i = {1, . . . , dJ}, and θ is the vector of unknown

parameters that governs the model for Xt. The specification (4) can also be extended, for

instance, to include infinite activity jumps and a time-dependent structure. See Duffie et al.

(2000) and Duffie, Filipović, and Schachermayer (2003) for more details on the AJD class

formulation.

Following Duffie et al. (2000), the drift µ(x), diffusive variance σ(x)σ(x)T and jump inten-

sities λi(x) are assumed to be affine on D:

µ(x) = K0 +K1x, K0 ∈ RdX , K1 ∈ RdX×dX ,

σ(x)σ(x)T = H0 +
∑dX

j=1xjH
(j)
1 , H0 ∈ RdX×dX , H

(j)
1 ∈ RdX×dX , j = {1, . . . , dX},

λi(x) = li,0 + li,1 · x, li,0 ∈ R, li,1 ∈ RdX , i = {1, . . . , dJ},

where xj is the j-th element of a vector x andH
(j)
1 for j=1, . . . , dX form a dX×dX×dX tensorH1

by stacking matrices along a new dimension. The joint regularity conditions on (D,µ, σ, λ, ν),

that guarantee a unique solution to the SDE (4), are discussed in Duffie and Kan (1996) and

Dai and Singleton (2000). These joint conditions put constraints on the parameter vector θ.

Therefore, we consider a model from the AJD class indexed by θ in a parameter space Θ

containing such admissible parameter values, on which there is a unique solution to (4) that

remains in D. For instance, in the case of the stochastic volatility component, the admissible

parameter values in Θ ensure that the volatility process remains nonnegative, by satisfying

the Feller condition. See also the discussion of the admissibility problem in Singleton (2006,

Chapter 5).

Duffie et al. (2000) show that the affine dependence of the functions µ(x), σ(x)σ(x)T and

λ(x) implies an exponential-affine form of the CCF of the state vector Xt. Specifically, the

discounted joint CCF of Xt+τ conditional on Ft with τ > 0 is given by

ϕ(u, Xt) = e−rτEQ[eiu·Xt+τ |Ft] = eα(u,τ ;θ)+β(u,τ ;θ)·Xt , (5)

where u ∈ RdX is an argument vector and α(u, τ ; θ) and β(u, τ ; θ) are solutions to the following

complex-valued ODE system in time:β̇(s) = KT
1 β(s) +

1
2β(s)

TH1β(s) +
∑dJ

i=1 l
i
1(χ

i(β(s))− 1),

α̇(s) = KT
0 β(s) +

1
2β(s)

TH0β(s) +
∑dJ

i=1 l
i
0(χ

i(β(s))− 1)− r,
(6)

with initial conditions β(0) = iu and α(0) = 0. Here, χi(c) =
∫
Rn exp(c · z)dνi(z), c ∈ CdX

are jump transforms, that determine the conditional jump-size distributions. The ODE for β

is known as the generalized Riccati equation, while the solution for the second ODE can be

obtained by simply integrating the right-hand side expression over time.

The affine dependence of the characteristic exponent α(u, τ ; θ)+β(u, τ ; θ)·Xt on the current

state Xt is the defining property of the AJD class under some regularity conditions (see Duffie et

al., 2003). In other words, the AJD can be defined as a class in which characteristic exponents

of Xt+τ given Xt are affine functions with respect to Xt. In fact, this is a key property in our

7



estimation procedure.3

Unlike the option-implied CCF (3), the CCF in (5) is fully parametric, that is, it requires

a parametric AJD model dynamics of the state vector Xt. Although the AJD class is more

restrictive than the general dynamics of Ft in (1), it includes a myriad of popular option-pricing

models such as in Heston (1993), Duffie et al. (2000), Pan (2002), Bates (2006), Broadie et al.

(2007), (Boswijk et al., 2015), and Andersen et al. (2017) among many others.

The state process Xt might include both observed and unobserved state variables that affect

the dynamics of the log futures returns logFt. In our empirical application, we consider the

presence of both. Therefore, it is convenient to partition the state vector as X ′
t = (w′

t, x
′
t), where

wt represents the observable component and xt includes d < dX latent state variables. Then,

the dynamics Xt, given by equation (4) can be rewritten as

dwt = µw(wt, xt)dt + σw(wt, xt)dWt +

dJ∑
i=1

Jw
i,tdNi,t, (7)

dxt = µx(wt, xt)dt + σx(wt, xt)dWt +

dJ∑
i=1

Jx
i,tdNi,t, (8)

where µw: D → RdX−d, µx: D → Rd, σw: D → R(dX−d)×dJ , σx: D → Rd×dJ and Jw
i,t and Jx

i,t

are marginal jump sizes of Ji,t associated with wt and xt, respectively. In the simplest case, the

observable component includes only the log futures prices, that is, wt = logFt. In more general

settings, the stochastic volatility is often the main latent driver of the log returns dynamics, as

e.g., in Heston (1993).

2.3 Marrying the two CCFs

Given the two CCFs (3) and (5), we can now align them to conduct inferences about the

parametric model fit and unobservable state variables. For that purpose, first note that the CCF

in (5) is joint for the state vector Xt. Recall that we assume, without loss of generality, that the

first component of the state vector Xt is the log futures price. Therefore, we can easily obtain

its marginal CCF by plugging in an argument vector of the form u1 := (u, 0, . . . , 0)′ ∈ RdX with

u ∈ R. To obtain the marginal CCF for the log returns, we further subtract the term iu logFt

in the exponent. That is, the marginal CCF of log returns under the AJD specification is as

follows:

ϕAJD
t (u, τ) = e−rτEQ[eiu1·Xt+τ−iu logFt |Ft] = eα(u1,τ ;θ)+β̃(u1,τ ;θ)·Xt , (9)

where β̃(u1, τ ; θ) := β(u1, τ ; θ)− iu1; that is, β̃(u1, τ ; θ) has only the first component different

from β(u1, τ ; θ) since we are interested in the CCF of log returns rather than log prices.

Note that the log of the (joint) CCF (also known as cumulant-generating function) is linear

in the state vector Xt. Therefore, under the correctly specified AJD model we obtain a simple

3While it is also possible to obtain the CCF for some non-affine models, the exponential-affine form allows

us to use the linear Kalman filtering technique in the estimation procedure. Indeed, this is the main motivation

why we restrict our attention to the parametric models of the AJD class.
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linear relation between the log of the option-spanned CCF4 of log returns and the model’s state

vector:

log ϕt(u, τ) = α(u1, τ ; θ) + β̃(u1, τ ; θ) ·Xt. (10)

Replacing the cumulant generating function on the left-hand side with its computationally fea-

sible counterpart ϕ̂t(u, τ) (see the discussion in Appendix A), we obtain the following equation,

which will play a central role in our estimation procedure:

log ϕ̂t(u, τ) = α(u1, τ ; θ) + β̃(u1, τ ; θ) ·Xt + ξt(u, τ), u ∈ R, (11)

where ξt(u, τ) is the measurement error, which is related to the observation, discretization

and truncation errors in the option-spanning CCF calculations. We elaborate on the relation

between the computable counterpart of the CCF and the source of the measurement errors in

the next section.

Equation (11) is the key relation in our analysis and a few remarks shall be made here

regarding it. First of all, equation (11) is essentially a functional linear model since this equation

holds for any argument variable of the CCF, u ∈ R. Furthermore, the functions α(u1, τ ; θ) and

β̃(u1, τ ; θ) are parameter-dependent and solutions to the system of Riccati ODEs (6). Therefore,

if the state vector Xt is observable, then the model parameters can be obtained by solving a

continuum version of a non-linear least-squares problem.

In the case when the state vector is latent, equation (11) represents a linear factor model

with a continuum number of linear relations. The factors are the state components of the AJD

model. Therefore, we could apply, for instance, a (functional) principal component analysis to

learn the unobserved factors. In this paper, we utilize the classical Kalman filtering technique

to estimate both model parameters and latent factors.

In other words, equation (11) reveals that AJD models, often formulated in continuous time,

may be estimated using well-studied approaches from the rich literature on linear factor and

state space models. Also, in a similar way, bond yields are linear functions of the state vector

in affine term structure models (see Piazzesi (2010) for a review of this class of models). For

instance, Duffee (1999), de Jong (2000), Driessen (2005) use the Kalman filter in their estimation

of affine term structure models.

Furthermore, another advantage of this approach is that it does not require to price options

given a certain parametric model. This estimation approach is more computationally appealing

compared to many other alternative approaches, that often involve the Carr-Madan FFT pricer

(Carr & Madan, 1999) or the COS method (Fang & Oosterlee, 2008) to price options. This also

implies that the usage of the characteristic function is different: with the FFT or COS method

one needs a model-dependent CCF only to price options, while here we use the CCF to directly

learn the latent factors and model parameters.

4Although the logarithm of a complex number is a multivalued function, here, the ambiguity is resolved given

the fact that ϕ(0) = 1 and the CCF is a continuous function. In fact, in practice we ensure that the logarithm of

the CCF does not have ‘jumps’ by taking the logarithm sequentially with respect to u, starting from the origin.
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Finally, given the partition of the state vector into observable and unobservable components,

the linear relation between the option-implied and model-implied CCFs can be rewritten as

log ϕ̂t(u, τ) = α(u1, τ ; θ) + βw(u1, τ ; θ) · wt + βx(u1, τ ; θ) · xt + ξt(u, τ), u ∈ R, (12)

where βw(u1, τ ; θ) ∈ CdX−d and βx(u1, τ ; θ) ∈ Cd are such that β̃T = (βwT
, βxT

) is the so-

lution to the ODE system (6). Representation (12) serves as a basis for an observation (or

measurement) equation in our estimation procedure.

3 Estimation Procedure

In this section, we develop our filtering approach and corresponding estimation procedure for

the general class of AJD models under consideration. First, we provide the state space rep-

resentation for the defined class of models. Then, we detail our estimation strategy using the

collapsed Kalman filter.

3.1 State space representation

As discussed in the previous section, we restrict our attention to the parametric models of the

AJD class due to their exponential-affine form of the characteristic function. This form will

allow us to exploit the linearized Kalman filter in the estimation procedure. In the following,

we summarize the assumptions we impose on the parametric model:

Assumption 1 (i) The stochastic process Xt is Markov and affine process with finite second

moments under both the physical and risk-neutral probability measures P and Q. In par-

ticular, Xt is the unique solution to the SDE (4) and its characteristic function is of the

exponential-affine form (5);

(ii) The true parameter vector θ0 lies in the interior of a compact parameter space Θ containing

admissible parameter values.

Assumption 1 jointly guarantees the existence of a unique solution to the SDE (4) within the

AJD class. As discussed in Section 2.2, admissible values θ ∈ Θ reflect the regularity conditions

imposed on the elements of the AJD representation such that there is a unique solution to (4).

For instance, it imposes the Feller condition for the stochastic volatility and non-negative jump

sizes for volatility jumps. In general, the admissibility conditions will need to be checked in a

case-by-case model analysis. Assumption 1(i) also presumes the technical conditions required

to represent the AJD process, defined via the affine dependence of its drift, diffusive variance

and jump intensities on the state vector, via the exponential-affine characteristic function. For

a detailed analysis of the AJD theory we refer to Duffie et al. (2000) and Duffie et al. (2003).

In our estimation procedure we discretize the continuous-time model along two dimensions:

with respect to time and with respect to the arguments of the CCF. The former naturally

follows from the discrete observations of financial data, which we denote by the integer indices

t = 1, . . . , T . The latter allows us to rely on the existing literature about filtering techniques.

10



For that, let us denote the collection of the discretely sampled arguments as a set U ⊆ R with

cardinality q ∈ N. We further consider options with k ∈ N different time-to-maturities τ and

n ∈ N different log-moneyness values m on each day.

Since the inputs of our estimation procedure are the portfolio of options, we need to take

into account the errors of these options portfolios. For that purpose, we assume the observation

error scheme on the option prices that constitute the portfolios. The measurement errors will be

defined on the common probability space (Ω,F ,P), but in what follows, the filtration {Ft}t≥0

is generated by the state process {Xt}t≥0 only. Note that the theoretical option prices Ot(τ,m)

are Ft-measurable, and hence also functionals of the option prices such as the (theoretical)

Black-Scholes implied volatility and vega.

Assumption 2 Option prices are observed with an additive error term:

Ôt(τi,mj) = Ot(τi,mj) + ζt(τi,mj), t = 1, . . . , T, i = 1, . . . , k, j = 1, . . . , n, (13)

where the observation errors ζt(τ,m) are such that:

(i) ζt(τ,m) are Ft-conditionally independent along tenors τ , moneyness m and time t;

(ii) E[ζt(τ,m)|Ft] = 0;

(iii) E[ζt(τ,m)2|Ft] = σ2
t (τ,m) < ∞ with σt(τ,m) := σκκt(τ,m)νt(τ,m), where σκ ∈ R+,

κt(τ,m) is the Black-Scholes implied volatility, and νt(τ,m) is the Black-Scholes vega.

The additive error assumption is commonly imposed in the option pricing literature. For

instance, Andersen et al. (2015) and Todorov (2019) use additive error assumptions for option

prices quoted in terms of BSIV and dollar amount, respectively. Additive observation errors

are also often implicitly assumed when calibrating an option pricing model to market-observed

prices, since the calibration is often performed using non-linear least squares as in, e.g., Broadie

et al. (2007).

Assumption 2(i) excludes dependence of the observation errors across strikes and is also often

imposed in the literature (see, for instance, Christoffersen, Jacobs, & Mimouni, 2010, Andersen

et al., 2015 and Todorov, 2019). This assumption can be relaxed by introducing a spatial

dependence as in Andersen, Fusari, Todorov, and Varneskov (2021). This would, however,

result in more complex expressions for the covariance terms in the measurement errors, that we

derive below. Furthermore, Andersen et al. (2021) find evidence of limited dependence in the

observation errors for S&P 500 index options. They also show that this dependence declined

sharply for short-dated options in recent years due to improved liquidity. Since in our empirical

application we consider S&P 500 index options with short tenors focusing on the last three

years, the independence assumption will play a secondary role for the estimation procedure.

The conditional mean zero Assumption 2(ii) is crucial for our main result. Assumption 2(iii)

asserts the standard deviation of the observation errors to be proportional to the product of the

option’s BSIV and vega. The motivation for this structure is as follows. Let κ̂(mj) and κ(mj)

denote the error-distorted and true BSIV of an option, and assume that the relative volatility er-

rors κj = (κ̂(mj)−κ(mj))/κ(mj) are homoskedastic across the strikes, such that E[κ2
j |Ft] = σ2

κ.

11



A Taylor-series expansion of the BS pricing function OBS(κ̂(mj),mj) around κ(mj) then gives

Ô(mj) = OBS(κ̂(mj),mj) ≈ O(mj)+ ν(mj)κ(mj)κj , with ν(mj) = ∂OBS(κ(mj),mj)/∂κ(mj),

the theoretical BS vega. Homoskedastic errors in relative implied volatilities are also assumed

by Christoffersen, Jacobs, and Ornthanalai (2012) and Du and Luo (2019) in their MLE based

on the particle filter and UKF, respectively.

Finally, to assess the CCF approximation error sizes, we impose the following assumption

on the existence of moments for the underlying asset and on log-moneyness grid that allows

nonequidistant sampling:

Assumption 3 (i) The underlying process and its reciprocal process have finite second mo-

ments under the risk-neutral measure: EQ[F 2
t+τ |Ft] < ∞ and EQ[F−2

t+τ |Ft] < ∞ with

τ > 0;

(ii) For the log-moneyness grid {mj}nj=1, there exists a deterministic sequence ∆m such that

∆m → 0 as n → ∞ and

η∆m ≤ inf
j=2,...,n

∆mj ≤ sup
j=2,...,n

∆mj ≤ ∆m,

where ∆mj := mj −mj−1 and η ∈ (0, 1] is some constant.

Given n > 1 observable option prices with time-to-maturity τ > 0 and log-moneyness values

m1 < . . . < mn, we may approximate the CCF ϕt(u, τ) given in (3) by replacing the theoretical

option prices by their observed versions, and the integral by a Riemann sum:

ϕ̂t(u, τ) = e−rτ − ut

n∑
j=2

e(iu−1)mj · Ôt(τ,mj)∆mj , (14)

where we use the notation ut := (u2+iu) 1
Ft

and Ôt(τ,mj) satisfies Assumption 2. The deviation

of the option-spanned CCF from its theoretical counterpart, ζϕt (u, τ) := ϕ̂t(u, τ)−ϕt(u, τ) stems

from observation, truncation and discretization errors (where truncation refers to the fact that

the integration interval [m1,mn] does not cover the entire real line). The discretization and

truncation errors depend on the availability of option prices, but they can be efficiently reduced

by using an interpolation-extrapolation scheme (see, e.g., Jiang & Tian, 2005, Jiang & Tian,

2007 and Chang, Christoffersen, Jacobs, & Vainberg, 2012), and taking the limit as n → ∞.

A further analysis of this approximation is provided in Appendix A. As we show in Appendix

B, the observation errors will dominate the discretization and truncation errors and we will be

taking them into account in the estimation procedure.

From the preceding analysis, the functional measurement equation (12) is obtained from the

following log-linearization:

ξt(u, τ) := log ϕ̂t(u, τ)− log ϕt(u, τ) = log

(
1 +

ζt(u, τ)

ϕt(u, τ)

)
= ξ

(1)
t (u, τ) + rt(u, τ), (15)

where rt(u, τ) is the remainder term after the observation errors ξ
(1)
t (u, τ) :=

ζ
(1)
t (u,τ)
ϕt(u,τ)

with

ζ
(1)
t (u, τ) = −ut

n∑
j=2

e(iu−1)mj · ζt(τ,mj)∆mj .
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We note that the remainder term collects the log-linearization of the truncation and discretiza-

tion errors and higher-order terms from a Taylor-series expansion.

To formulate the main result, we turn the functional measurement equation (12) into a

vector measurement equation, as usual in state space model formulations. First, we stack the

log CCF and the corresponding measurement errors along q values u1, . . . , uq for the CCF

argument u ∈ U , for a fixed expiration period τi:

log ϕ̂t,i :=


log ϕ̂t(u1, τi)

log ϕ̂t(u2, τi)
...

log ϕ̂t(uq, τi)

 , ξt,i :=


ξt(u1, τi)

ξt(u2, τi)
...

ξt(uq, τi)

 .

Next, to tackle the complex-valued observation equation (12) with a real-valued state vector,5 we

stack the real and imaginary parts,6 without losing information. For that, we denote by at,i, b
w
t,i

and bxt,i the stacked outputs of the functions αt(u, τi), β
w
t (u, τi) and βx

t (u, τi), respectively. Then,

we obtain the measurement equation by stacking its real and imaginary parts as well as k time-

to-maturities:

ℜ(log ϕ̂t,1)

ℑ(log ϕ̂t,1)
...

ℜ(log ϕ̂t,k)

ℑ(log ϕ̂t,k)


︸ ︷︷ ︸

=:yt∈Rp

=



ℜ(at,1)
ℑ(at,1)

...

ℜ(at,k)
ℑ(at,k)


︸ ︷︷ ︸

=:d̃t∈Rp

+



ℜ(bwt,1)
ℑ(bwt,1)

...

ℜ(bwt,k)
ℑ(bwt,k)


︸ ︷︷ ︸

=:Wt∈Rp×(dX−d)

wt +



ℜ(bxt,1)
ℑ(bxt,1)

...

ℜ(bxt,k)
ℑ(bxt,k)


︸ ︷︷ ︸
=:Zt∈Rp×d

xt +



ℜ(ξt,1)
ℑ(ξt,1)

...

ℜ(ξt,k)
ℑ(ξt,k)


︸ ︷︷ ︸

=:ε̃t∈Rp

, (16)

where p = 2qk. The stacked observation equation (16) links all available information from

option prices with several tenors at time t to the state vectors wt and xt in a linear way.

To complete the state space model we need to augment the measurement equation (16)

by a transition equation for the unobservable state vector xt. This is a linear, discrete-time

dynamic system, to be derived from the continuous-time stochastic differential equation. An

Euler discretization of the state process (8) would converge to the true transition dynamics as

the discretization step ∆t → 0. However, the maximum likelihood (ML) estimator based on

the Euler discretization is, in general, inconsistent for fixed non-zero ∆t (Lo, 1988), because

the discretization has conditional moments different from those of the true process (Piazzesi,

2010). Fortunately, the AJD assumption implies that the first and second conditional moments

of xt+1 given Ft are linear and available in semi-closed form (possibly requiring the solution of

a system of ODEs):

E[xt+1|Ft] = ct + Ttxt, (17)

Var(xt+1|Ft) = Qt(xt), (18)

5A complex-valued state vector would have required to consider a complex Kalman filter based on the so-called

widely linear complex estimator as in Dini and Mandic (2012).
6See Singleton (2001) and Chacko and Viceira (2003), who use this approach in a GMM estimation setting

based on the empirical characteristic function.
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where Qt: Rd → Rd×d is an affine function in xt. The finiteness of the conditional moments is

ensured by Assumption 1(ii). Both conditional moments will in general be linear in both the

observed state wt and the latent state xt; but because the former does not need filtering, we

absorb its effect in the time-varying intercept ct, and similarly in the intercept of the affine func-

tion Qt.
7 In Appendix C we show how these transition coefficients can be computed for the AJD

model. Using this approach, which will be model-dependent and hence has to be applied case by

case, we obtain a discrete-time transition equation with the same conditional mean and variance

as the true continuous-time process (but possible different higher moments). Quasi-maximum

likelihood (QML) estimation based on conditionally normally distributed measurement and

transition errors in the state space representation yields consistent estimation results (Fisher &

Gilles, 1996). A similar approach has been adopted in the term structure literature (see, e.g.,

de Jong, 2000, Duffee, 2002).

We summarize the development of the state space representation, and analyze properties

of the errors, in the following proposition. The main result contains a remainder term in the

measurement equation that collects the truncation and discretization errors in the construction

of log ϕ̂(u, τ) and higher-order terms in the log-linearization. This term vanishes under an

asymptotic scheme, where m := max1≤j≤nmj → ∞, m := min1≤j≤nmj → −∞ and ∆m → 0.

We also denote the corresponding smallest and largest strike prices as K and K, and express

the asymptotic orders with respect to the number of option prices n with fixed maturity.

Proposition 1 Suppose Assumptions 1, 2 and 3 hold, and in addition K ≍ n−α and K ≍ nα

with α > 0 and α > 0. Then {(yt, xt), t = 1, . . . , T} satisfy the linear state space representation

yt = dt + Ztxt + rt,n + εt, E[εt|Ft] = 0, E[εtε′t|Ft] = Ht, (19)

xt+1 = ct + Ttxt + ηt+1, E[ηt+1|Ft] = 0, E[ηt+1η
′
t+1|Ft] = Qt(xt), (20)

where rt,n = Op

(
n−2(α∧α) ∨ logn

n

)
and εt = Op

(√
logn
n

)
; dt = d̃t +Wtwt and Zt are defined

in (16) and ct, Tt and Qt are as given in (17)–(18); and Ht = blkdiag{Ht,1, . . . ,Ht,k}, with

Ht,i = σ2
κ ·

(
1
2ℜ(Γ̃t,i + C̃t,i)

1
2ℑ(−Γ̃t,i + C̃t,i)

1
2ℑ(Γ̃t,i + C̃t,i)

1
2ℜ(Γ̃t,i − C̃t,i)

)
, i = 1, . . . , k, (21)

where Γ̃t,i and C̃t,i are covariance and pseudo-covariance matrices of ξi,t/σκ, with elements

(Γ̃t,i)kl =
uk,tul,t

∑n
j=2 e

(i(uk−ul)−2)mjκ2t (τi,mj)ν
2
t (τi,mj)(∆mj)

2

ϕt(uk, τi)ϕt(ul, τi)
, k, l = 1, . . . , q,

(C̃t,i)kl =
uk,tul,t

∑n
j=2 e

(i(uk+ul)−2)mjκ2t (τi,mj)ν
2
t (τi,mj)(∆mj)

2

ϕt(uk, τi)ϕt(ul, τi)
, k, l = 1, . . . , q.

Furthermore,

(i) E[εtε′s] = 0 and E[ηtη′s] = 0 for s ̸= t = 1, . . . , T ;

7The transition matrix Tt will not be time-varying in stationary AJD process with equidistant observations,

but we do not impose this time-constancy in the notation, also to avoid confusion with the sample size T .
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(ii) E[εtη′s] = 0 for all s, t = 1, . . . , T ;

(iii) E[εtx′1] = 0 and E[ηt+1x
′
1] = 0 for t = 1, . . . , T .

The proof is given in Appendix B. The orders suggest that the remainder term goes to zero

faster than the observation term, we need minimum non-zero requirements for α and α. In

what follows, we assume that (α∧α) > 1
4 and neglect the remainder term in the estimation and

filtering procedures. Note that the system matrices Zt, Tt, Qt(xt) and system vectors dt and ct

are known up to a parameter vector θ, assumed to lie in the interior of a compact parameter

space Θ by Assumption 1(iii). Similarly, the system matrix Ht depends on the data and θ (via

ut, ϕt, κt and νt), and an additional unknown parameter σ2
κ. Estimation of θ and filtering of the

latent state vector via (versions of) the Kalman filter is considered in the next sub-section.

3.2 Modified and Collapsed Kalman filter

Consider the state space representation (19)–(20), where from now on we will ignore the remain-

der term rt,n, and hence assume that the set of strike prices {mj}nj=1 on each day is rich enough

to make this term negligible. Define Yt = {y1, . . . , yt}, and linear projections (denoted Ê) of the
state vector conditional on the data: x̂t|t = Ê[xt|Yt] and x̂t|t−1 = Ê[xt|Yt−1], with corresponding

mean square error matrices Pt|t = E[(xt−xt|t)(xt−xt|t)
′] and Pt|t−1 = E[(xt−xt|t−1)(xt−xt|t−1)

′].

Then a modified version of the Kalman filter reads as follows:

vt = yt − (dt + Ztx̂t|t−1), Ft =ZtPt|t−1Z
′
t +Ht,

x̂t|t = x̂t|t−1 + Pt|t−1Z
′
tF

−1
t vt, Pt|t =Pt|t−1 − Pt|t−1Z

′
tF

−1
t ZtPt|t−1,

x̂t+1|t = ct + Ttx̂t|t, Pt+1|t =TtPt|tT
′
t +Qt(x̂t|t),

for t = 1, . . . , T . Given the stationarity of the process, the initial conditions x1|0 and P1|0 for

the filter can be set to the unconditional mean and variance, respectively.

Because the error terms in the measurement and transition equations are not assumed to be

Gaussian, the filtered state x̂t|t in conventional linear homoskedastic state space models is the

linear projection (or minimum mean square error linear predictor) of the true process xt, rather

than its conditional expectation. This can be used to prove that quasi-maximum likelihood

(QML) estimation based on the Gaussian likelihood yields consistent and asymptotically normal

parameter estimates (Hamilton, 1994, Chapter 13). However, in general AJD models, the

conditional variance Qt(xt) is an affine function of the true latent state vector xt. Therefore,

the Kalman filter recursions have been modified by using Qt(x̂t|t) instead of the unobserved

Qt(xt). A similar modification is used in, e.g., de Jong (2000), Monfort, Pegoraro, Renne, and

Roussellet (2017) and Feunou and Okou (2018). Although consistency of QML based on this

modification has not been proved, Monte Carlo simulation results in these articles suggest that

the method works well in practice.

Given the large dimension of the observation vector p = 2qk, the Kalman filter and its QML

estimation will be computationally challenging if not infeasible. In fact, an important caveat

with this approach is that one needs a non-singular innovation variance matrix Ft. Since our
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CCF approximation is based on common option price data for q different arguments u and fixed

time-to-maturity τ , this matrix is likely to be (near-)singular for large q. Furthermore, with

large cross-sectional dimension, the computation of the inverse matrix for each time t adds a

significant computational burden to the estimation procedure. To overcome these issues we

consider the collapsed Kalman filter, originally developed by Jungbacker and Koopman (2015),

which we describe below. We extend their method to allow for a (near-)singular variance matrix

Ht, using generalized inverses.

The idea of the collapsed Kalman filter is to transform the observation vector yt into an

uncorrelated pair of vectors y∗t and y+t such that the first vector y∗t depends on the state vector

xt and has dimension d×1, while y+t does not depend on xt and has dimension (p−d)×1. Such a

transformation can be done using, for instance, the projection matrices A∗
t = (Z ′

tH
−
t Zt)

−1Z ′
tH

−
t

and A+
t = LtH

−
t (Ip − ZtA

∗
t ), where Lt is chosen such that A+

t has full row rank and H− is

the generalized inverse of H. Since A∗
tZt = Ip and A+

t Zt = 0, the observation equation can be

transformed into (
y∗t

y+t

)
:=

[
A∗

t

A+
t

]
yt =

(
d∗t

d+t

)
+

(
xt

0

)
+

(
ε∗t

ε+t

)
, (22)

with y∗t = A∗
t yt, y+t = A+

t yt, ε∗t = A∗
t εt, ε+t = A+

t εt, d∗t = A∗
tdt and d+t = A+

t dt. Using

H−HH− = H−, we have

Var(ε∗t ) = A∗
tHtA

∗′
t = (Z ′

tH
−
t Zt)

−1 =: H∗
t ,

Var(ε+t ) = A+
t HtA

+′
t =: H+

t ,

Cov(ε∗t , ε
+
t ) = A∗

tHtA
+′
t = A∗

tHt(Ip −A∗′
t Zt)H

−
t L′

= A∗
tHtH

−
t L′ − (Z ′

tH
−
t Zt)

−1Z ′
tH

−
t L′ = A∗

tL
′ −A∗

tL
′ = 0.

In the preceding display, it has been assumed that rank(Z ′
tH

−
t Zt) = d; this is not very

restrictive, given that the dimension d of the state vector will typically be much smaller than

the dimension p of the observation vector. We also require that the matrix At = [A∗′
t , A

+′
t ]′ is

non-singular, such that the transformation Atyt does not lead to a loss of information.

The representation (22) shows that all information about the state vector xt is contained in

the observation equation for y∗t ; thus we may ignore the second equation with y+t and focus on

the collapsed state space model:

y∗t = d∗t + xt + ε∗t , E[ε∗t |Ft] = 0, Var(ε∗t |Ft) = H∗
t , (23)

xt+1 = ct + Ttxt + ηt+1, E[ηt+1|Ft] = 0, Var(ηt+1|Ft) = Qt(xt). (24)

Let us emphasize again that the collapsing transformation into a lower dimensional state

space form is also valid for the Moore-Penrose inverse covariance matrix H−. Therefore, we

can collapse a high-dimensional data vector into a lower-dimensional vector even when the

covariance system matrix of disturbances is (near-) singular.

The logarithm of the Gaussian likelihood function of the data vector YT = (y′1, . . . , y
′
T )

′ is

l(YT ; θ) =

T∑
t=1

log pθ(yt|Yt−1),
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where pθ(yt|Yt−1) is the (misspecified) Gaussian distribution of yt conditional on Yt−1, which can

be evaluated via the prediction error decomposition based on the original state space represen-

tation (19)–(20). Given the assumption of a full rank transformation matrix |At|, the collapsed

transformation allows to decompose the log-likelihood function l(YT ; θ) into three parts to ease

computation:

l(YT ; θ) = l(Y ∗
T ; θ) + l(Y +

T ; θ) +

T∑
t=1

log |At|, (25)

where Y ∗
T and Y +

T are stacked vectors of y∗t and y+t over t = 1, . . . , T , respectively.

The first term in (25) is the quasi-loglikelihood evaluated by the Kalman filter applied to

the collapsed state space system (23)–(24):

l(Y ∗
T ; θ) = −dT

2
log 2π − 1

2

T∑
t=1

log |F ∗
t | −

1

2

T∑
t=1

v∗
′

t F
∗−1
t v∗t ,

where v∗t are the prediction errors and F ∗
t are their mean-square error (MSE) matrices from the

Kalman filter.

Since y+t does not depend on the state vector αt and |H+
t | = 1 may be imposed without loss

of generality, see Jungbacker and Koopman (2015), the second term is given by

l(Y +
T ; θ) = −(p− d)T

2
log 2π − 1

2

T∑
t=1

(y+t − d+t )
′(H+

t )−1(y+t − d+t ).

Fortunately, the last term in the expression above can be calculated without construction of the

matrix A+
t :

(y+t − d+t )
′(H+

t )−1(y+t − d+t ) = (yt − dt)
′A+′

t (A+
t HtA

+
t )

−1A+
t (yt − dt)

= (yt − dt)
′J+

t H−
t (yt − dt)

= (yt − dt)
′J+

t H−
t J+′

t (yt − dt)

= (yt − dt)
′M ′

ZH
−
t MZ(yt − dt)

= e′tH
−
t et,

where MZ = I − Zt(Z
′
tH

−
t Zt)

−1Z ′
tH

−
t = I − ZtA

∗
t , J

+
t = A+′

t (A+
t HtA

+
t )

−1A+
t Ht and et =

MZ(yt−dt), that is, these are the generalized least squares (GLS) residuals from the observation

vector yt with the covariate matrix Zt and variance matrix Ht. For derivation details,8 see

Jungbacker and Koopman (2015).

Finally, the third term in (25), |At|, can be found from the relation

|At|2 · |Ht| = |AtHtA
′
t| = |H∗

t | · |H+
t | = |H∗

t |, (26)

which follows from the fact that the covariance matrix AtHtA
′
t is block diagonal given the

uncorrelated error terms ε∗t and ε+t and using again |H+
t | = 1.

8The derivation in Jungbacker and Koopman (2015) is based on the invertible covariance matrix Ht, but the

same result and the same derivation are valid when using the pseudo-inverse matrix H−
t .
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Given the measurement error structure as implied by Proposition 1, the single scale param-

eter σ2
κ of the covariance matrix can be factored out as Ht = σ2

κ · H̃t. The matrix H̃t has a

block-diagonal structure; although its blocks depend on the state vector and parameters via

the theoretical BSIV κt(τ,m) and vega νt(τ,m), we estimate these quantities directly from the

data, hence they are not updated as we optimize over θ. Thus, we have from (26) that

log |At| =
1

2
(log |H∗

t | − log |Ht|)

=
1

2

(
log |H∗

t | − log σ2p
κ − log |H̃t|

)
∝ 1

2
log |H∗

t | − p log σκ.

Therefore, the log-likelihood (25) is proportional to

l(YT ; θ) ∝
1

2

T∑
t=1

(
− log |F ∗

t | − v∗
′

t F
∗−1
t v∗t − e′tH

−
t et + log |H∗

t |
)
− pT log σκ. (27)

Note that the inversions and determinants of the matrices F ∗
t and H∗

t can be computed effi-

ciently since they have small dimensions d × d. This eases maximization of the log-likelihood

function (27) substantially.

The quasi maximum-likelihood parameter estimates θ̂ are obtained by maximizing (27) over

the model parameter space Θ. Its asymptotic properties are analogous to QML estimation

based on the (modified) Kalman filter, as discussed at the beginning of this sub-section. In

cases where the conditional covariance matrix Qt does not depend on the latent state vector

xt, and the latent state process xt is stationary, QML based on the Kalman filter will yield

consistent and asymptotically normal estimators. When Qt is affine in xt, then QML based on

the modified Kalman filter appears to have comparable properties in Monte Carlo simulations,

but no formal consistency proof is available.

4 Monte Carlo Study

In this section we study the finite-sample performance of our estimation procedure. In partic-

ular, we consider two AJD specifications: a one-factor and two-factors option pricing models.

Before we turn to the Monte Carlo, we note that our developed estimation and filtering

approach utilizes the information from the option prices, but is agnostic about the equity risk

premia. The reason is that the measurement equation is a portfolio of options rather than the

underlying asset. On the other hand, since the transition equation in the state space represen-

tation reflects the dynamics of the latent components, it is, in general, possible to learn the risk

premia associated with this latent process (for instance, the volatility risk premia). However,

our simulation results suggest that the Q-information in the option prices largely dominates

the P-information making the identification of the volatility risk premia hardly possible. There-

fore, in what follows, we assume no volatility (or state related) risk premia, that is, the latent

components has the same dynamic under the both probability measures.
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4.1 SVCDEJ

As a starting point, we illustrate the developed estimation approach based on the modification

of the widely used ‘double-jump’ stochastic volatility model of Duffie et al. (2000). The modi-

fication is due to the double-exponential jump sizes in returns as in Kou (2002) and Andersen

et al. (2015), and stochastic jump intensity that is multiple of stochastic variance as in Pan

(2002). We label this specification as ’SVCDEJ’ for stochastic volatility model with co-jumps

in volatility and double-exponential jumps in returns.

In particular, we assume the following data-generating process for the log forward price

under the both P and Q probability measures:

d logFt = (−1

2
vt − µλt)dt +

√
vtdW1,t + ZtdNt, (28)

dvt = κ(v̄ − vt)dt + σ
√
vtdW2,t + Zv

t 1{Zt<0}dNt, (29)

where two Brownian motions W1 and W2 are assumed to be correlated with the coefficient ρ

and Nt is the Poisson jump process with jump intensity which is proportional to the stochastic

variance λt = δvt. We further assume that Zt is the double-exponentially distributed jump sizes

in returns with the pdf

fZ(x) = p+
1

η+
e
− 1

η+
x
1{x≥0} + p−

1

η−
e

1
η− x

1{x<0},

where p+ and p− are probability of positive and negative jumps, respectively, and η+ and η−

are corresponding conditional means of the jump sizes. We assume that all of these parameters

are positive, p+ + p− = 1 and η+ < 1. Given the jump size distributions, the expected relative

jump size in returns is

µ := E[eZ−1] =
p+

1− η+
+

p−

1 + η−
−1.

Finally, we allow the volatility to co-jump only with negative jumps sizes in returns with expo-

nentially distributed jump sizes with mean µv. We assume no risk premia associated with the

volatility, that is, the volatility process is the same under the physical and pricing probability

measures.

The model in (28)-(29) belongs to the AJD class and exhibits all important ingredients

for the option-pricing models: stochastic volatility, jump components in returns and volatility,

time-varying jump intensity and self-excitation feature. Furthermore, this specification assumes

a double-exponential jump distribution for jump sizes in returns, which has been recently ad-

vocated in the literature (see, e.g., Kou, 2002, Andersen et al., 2015 and Bardgett et al., 2019).

The discounted marginal CCF of the log forward prices in the SVCDEJ model is given by

ϕt(u, τ) = e−rτE[eiu·Xt+τ |Ft] = eα(u,τ)+β1(u,τ) logFt+β2(u,τ)vt , (30)

where u ∈ R is an argument and α(u, τ) and β(u, τ) are solutions to the complex-valued ODE

system in time:
β̇1(s) = 0,

β̇2(s) = −
(
1
2 + µδ

)
β1(s)− κβ2(s) +

1
2β1(s) + ρσvβ1(s)β2(s) +

1
2σ

2β2
2(s) + δ(χ(β1, β2)−1),

α̇(s) = κv̄β2(s)− r,
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with initial conditions β1(0) = iu, β2(0) = 0 and α(0) = 0. Here the ‘jump transform’ is

χ(β1, β2) =
p+

1− β1η+
+

p−

(1 + β1η−)(1− β2µv)
.

The CCF (30) of the log price is used to price options. For the state space representation,

we turn it into the CCF of the log returns as described in Section 2.3. Then, the linear relation

between the log of the option-spanned CCF and the state vector is given by

log ϕ̂t(u, τ) = α(u, τ) + β2(u, τ)vt + ξt(u, τ), u ∈ R,

where ϕ̂t(u, τ) is the option-implied CCF, τ > 0 is the time-to-maturity of available options

and ξt(u, τ) is the measurement error term due to observation and approximation errors in the

option-spanned CCF. We use this linear relation to construct the measurement equation as

discussed in Section 3.1.

Following Appendix C, the conditional mean and variance of the latent stochastic volatility

process are given by

E[vt+1|Ft] = eg1∆tvt +
g0
g1

(
eg1∆t − 1

)
, (31)

Var(vt+1|Ft) = −σ2 + 2p−δµ2
v

2g21

[
2g1
(
eg1∆t − e2g1∆t

)
vt − g0

(
1− eg1∆t

)2]
, (32)

with g0 = κv̄ and g1 = −κ+ p−δµv. Equations (31) and (32) are then used to define the state

updating equation:

vt+1 = c+ Tvt + ηt+1 (33)

where c = g0
g1

(
eg1∆t − 1

)
, T = eg1∆t and Var(ηt+1|Ft) = Var(vt+1|Ft) =: Qt(vt). We also

impose the Feller condition 2κv̄ > σ2 and the covariance stationary condition κ > p−δµv.

The model specification has nine parameters of interest and a single parameter that char-

acterizes the observation errors. We note that the parameter δ often enters as a multiple of p−,

which can possibly cause identification issue in the estimation procedure. Therefore, to avoid

the identification issues we fix the probability of positive jumps to be p− = 0.7. This is con-

sistent with findings in Aı̈t-Sahalia et al. (2015) and our empirical results for the unrestricted

model.

In the simulation exercise we use T = 500 time points with ∆t = 1/250. The time-series of

the log prices and true spot volatilities are simulated using the Euler scheme from the specifi-

cation (28)-(29). The options data are generated using the COS method of Fang and Oosterlee

(2008) based on the CCF, specified in (30). The model parameters in the simulation are indi-

cated in Table 1 along with the Monte Carlo results. The initial values are set to F0 = 100 and

v0 = 0.015.

In the simulation exercise we consider three tenors for options equal to 10, 30 and 60 days.

For each tenor we simulate a finite number of options with log-moneyness between m = −10 ·
σATM,τ

√
τ and m = 4 · σATM,τ

√
τ , where σATM,τ is the BSIV of the ATM option with time-to-

maturity τ . Furthermore, the strikes are generated equidistantly with ∆K = 0.01 · Ft. Finally,
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we distort the options data by adding the observation errors into the option prices for each

tenor τ and each log-moneyness level m as specified in Assumption 2, that is,

Ôt(τ,m) = Ot(τ,m) + σκ · κt(τ,m)νt(τ,m) · ϵ

where ϵ is an i.i.d. standard normal random variable and σκ = 0.02. The distorted option

prices are then interpolated using the cubic spline and linearly extrapolated in total variance

as discussed in Appendix D.

The covariance matrix of the errors in the measurement equation is calculated as given by

equation (21). To calculate the pseudo-inverse of the n × n covariance matrix H̃t,i for each of

the maturities i = 1, . . . , k, we set the following level of the threshold for the singular values:

tol := s̄ · n ·max
j

sj

with s̄ = 10−7 and where sj are all singular values of H̃t,i. We also consider robustness to the

choice of s̄.

Table 1 provides the Monte Carlo results for the SVCDEJ model for six different ranges of

the argument sets U . The results are in general show a good finite performance of the QMLE.

We notice that for smaller ranges of the arguments of the CCF, the estimates exhibit biases for

some model parameters. This is expected since the larger ranges provide larger information on

which we build the filtering and parameter estimation procedures. On the other hand, we also

notice that the variance of some parameter estimates starts increasing for a very large range of

arguments (u = 1, . . . , 30). This is likely due to an increased variance in the CCF approximation

for large arguments u.

To explore the robustness to the choice of the truncation level in the pseudo-inversion of

the covariance matrix, we also consider another values for s̄. In particular, we run N = 300

simulations for each level of s̄ with the same parameters as in Table 1 and construct the mean

root square percentage error (MRSPE) metrics, defined as 1
N

∑N
i=1

∣∣∣∣ θ̂i−θ0
θ0

∣∣∣∣. Figure 1 plots the

MRSPE for different levels of s̄ and three different ranges of arguments. As we can see, the

levels s̄ in between 10−7 and 10−6 yield the smallest MRSPE. In the following simulations and

empirical part we therefore set s̄ = 10−7.

We end this subsection by noting that we have also performed simulation exercises for some

other alternative one-factor specifications. In Appendix E we include the simulation results for

the SVCJ model with Gaussian jump size distribution and the model with two separate for

positive and negative jumps counting processes. The former shows a very good finite sample

performance, while the latter, a richer specification, shows reasonable results, reaching the

identification limits.

4.2 SVCDEJ with external factors

Now we extend the one-factor specification by adding an external factor. This modification can

be seen as a two-factor specification, but we will assume that the second factor is observable.

The motivation comes from the fact that in some situations we might have an understanding

21



Table 1: Monte Carlo experiment for the SVCDEJ model, 300 iterations

params σ κ v̄ ϱ δ η+ η− µv σκ

u=1,. . . ,5

trues 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.498 8.213 0.0151 -0.8983 105.906 0.021 0.048 0.048 0.032

std 0.007 0.257 0.0005 0.0088 7.567 0.001 0.001 0.001 0.005

q10 0.494 7.965 0.0146 -0.9097 96.930 0.021 0.047 0.046 0.026

q50 0.498 8.198 0.0151 -0.8956 105.936 0.021 0.048 0.048 0.032

q90 0.504 8.503 0.0158 -0.8904 114.125 0.022 0.049 0.049 0.038

u=1,. . . ,10

trues 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.440 8.779 0.0136 -0.9968 136.200 0.023 0.045 0.043 0.035

std 0.017 0.310 0.0007 0.0119 13.316 0.001 0.002 0.002 0.006

q10 0.427 8.409 0.0130 -1.0000 118.640 0.022 0.043 0.041 0.027

q50 0.437 8.836 0.0134 -1.0000 139.079 0.023 0.045 0.043 0.036

q90 0.451 9.102 0.0142 -1.0000 150.730 0.024 0.047 0.046 0.042

u=1,. . . ,15

trues 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.440 8.723 0.0139 -0.9942 128.617 0.022 0.046 0.045 0.027

std 0.013 0.316 0.0005 0.0151 10.260 0.001 0.001 0.002 0.005

q10 0.428 8.330 0.0134 -1.0000 113.412 0.021 0.044 0.043 0.022

q50 0.438 8.741 0.0138 -1.0000 130.575 0.022 0.045 0.044 0.028

q90 0.455 9.102 0.0144 -0.9785 139.999 0.023 0.048 0.047 0.033

u=1,. . . ,20

trues 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.455 8.143 0.0147 -0.9558 110.734 0.022 0.048 0.046 0.023

std 0.007 0.205 0.0003 0.0126 4.847 0.001 0.001 0.001 0.006

q10 0.449 7.919 0.0144 -0.9707 105.192 0.021 0.047 0.045 0.018

q50 0.454 8.142 0.0147 -0.9563 110.689 0.021 0.048 0.046 0.022

q90 0.461 8.389 0.0150 -0.9430 116.719 0.022 0.049 0.047 0.027

u=1,. . . ,25

trues 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.460 7.918 0.0150 -0.9404 105.489 0.021 0.049 0.047 0.023

std 0.008 0.188 0.0003 0.0126 3.881 0.000 0.001 0.001 0.008

q10 0.453 7.697 0.0148 -0.9492 103.098 0.021 0.048 0.046 0.017

q50 0.459 7.958 0.0150 -0.9449 105.744 0.021 0.049 0.047 0.020

q90 0.468 8.082 0.0152 -0.9229 108.351 0.022 0.050 0.048 0.032

u=1,. . . ,30

trues 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.457 7.815 0.0149 -0.9432 111.115 0.022 0.049 0.044 0.026

std 0.011 0.209 0.0003 0.0190 5.794 0.001 0.001 0.002 0.010

q10 0.448 7.523 0.0147 -0.9596 104.771 0.021 0.048 0.042 0.019

q50 0.453 7.857 0.0148 -0.9514 111.854 0.022 0.048 0.044 0.023

q90 0.472 8.016 0.0151 -0.9105 116.199 0.023 0.049 0.046 0.038

Note: This table provides Monte Carlo simulation results for the SVCDEJ model. Six different settings with

different range of the arguments are considered. We use T = 500 time points with ∆t = 1/250. The initial

values are set to F0 = 100 and v0 = 0.015. The threshold for singular values is set to s̄ = 10−7. The probability

of negative jumps is fixed to p− = 0.7.
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Figure 1: MRSPE for different levels of s̄

Note: This figure plots the MRSPE for different levels of s̄ for three different ranges of ar-

guments. In particular, for each dot we estimate N = 300 simulations and consider s̄ =

{10−9, 5·10−9, 10−8, 5·10−8, 10−7, 5·10−7, 10−6, 5·10−6, 10−5, 5·10−5} and plot it in the log-scale.

of possible drivers of the risks in the market. Therefore, we would like to embed and quantify

the impact of an exogenous variables to the model’s risk.

In particular, next to the stochastic volatility component we introduce the exogenous factor

ht, which affects the intensity of jumps and the diffusive component. The model reads as follows:

d logFt = (−1

2
Vt − µλt)dt +

√
vtdW1,t + q

√
htdW3,t + ZtdNt, (34)

dvt = κ(v̄ − vt)dt + σ
√
vtdW2,t + Zv

t 1{Zt<0}dNt, (35)

dht = κh(h̄− ht)dt + σh
√
htdW4,t, (36)

where Vt = vt + q2ht is the total diffusive variance of the process and the intensity processes λ

is now also loaded on the process ht, that is, λt = δvt + γht. We assume that W3,t and W4,t are

independent Brownian motions. Therefore, the process ht is exogenous process to the SVCDEJ

dynamics, meaning that the dynamics of yt and vt do not affect the dynamics of ht. In turn,

the exogenous factor ht affects the intensity of jumps and the diffusive component of the log

return dynamics. This is similar specification to two-factor model in Andersen et al. (2015),

in which they have short- and long-term stochastic volatility components. However, we further

assume that the exogenous process ht is observable, although its parameters are unknown.

In the Monte Carlo simulation we consider two possible estimation approaches. In the first

approach, we assume the correct specification of the dynamics for ht with known true parameters

κh, h̄ and σh. In practice, these parameters can be pre-estimated given the observed path of

the exogenous process. In the second approach we estimate the misspecified model, in which

the contribution of ht is constant throughout the maturity of an option. In other words, in this

case we ignore the dynamics of ht when pricing options, but ht still affects the level of intensity

and of total variance. The motivation is that when the exogenous process is persistent and

smooth relative to vt, its dynamics can be neglected when pricing options with short expiration

periods. Moreover, the true parametric specification for an exogenous variable is likely unknown
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in practice. However, if its dynamics is persistent and smooth, we can find its affect on option

prices via this specification. Therefore, in the Monte Carlo experiment, we simulate ht with

lower mean-reversion rate than in vt, mimicking what we will use in the empirical application.

The Monte Carlo setting for the SVCDEJ model with external factor is the same as in the

SVCDEJ specification. The parameters of the external factor are set to be κh = 1, h̄ = 1

and σh = 0.1. The simulation results are provided in Table 2. The parameters of the SVCDEJ

model exhibit similar performance in the both estimation settings. Importantly, the parameters

related to the external factors γ and q also show similar performance in the misspecified setting

as in the correctly specified model. We emphasize that the latter is achieved due to simulating

relatively smooth and persistent exogenous process ht and using short-dated options in the

estimation procedure.

Table 2: Monte Carlo experiment for the SVCDEJ model with external factor

(a) estimation with fixed parameters for ht

params σ κ v̄ ϱ δ η+ η− µv γ q σκ

trues 0.450 8.00 0.0150 -0.950 100.00 0.0200 0.050 0.050 1.500 0.050 0.020

mean 0.452 8.15 0.0150 -0.939 116.21 0.0211 0.049 0.046 1.480 0.046 0.024

std 0.034 0.36 0.0019 0.047 11.37 0.0008 0.001 0.002 0.167 0.005 0.011

q10 0.423 7.65 0.0140 -0.977 102.67 0.0206 0.048 0.044 1.348 0.042 0.016

q50 0.442 8.22 0.0145 -0.954 117.07 0.0209 0.048 0.045 1.531 0.048 0.019

q90 0.502 8.52 0.0167 -0.857 128.02 0.0218 0.050 0.047 1.565 0.049 0.043

(b) estimation of misspecified model

trues 0.450 8.00 0.0150 -0.950 100.00 0.0200 0.050 0.050 1.500 0.050 0.020

mean 0.450 8.16 0.0150 -0.939 116.93 0.0210 0.049 0.046 1.473 0.046 0.024

std 0.034 0.37 0.0022 0.044 11.47 0.0016 0.001 0.002 0.165 0.006 0.012

q10 0.425 7.70 0.0140 -0.973 106.71 0.0206 0.048 0.044 1.380 0.043 0.016

q50 0.441 8.23 0.0146 -0.954 117.78 0.0209 0.048 0.045 1.516 0.047 0.019

q90 0.492 8.55 0.0159 -0.861 128.68 0.0214 0.049 0.047 1.546 0.048 0.043

Note: This table provides Monte Carlo simulation results for the SVCDEJ model with exogenous factor. We

use T = 500 time points with ∆t = 1/250. The range for the arguments is set to u = 1, . . . , 20 and the

threshold s̄ = 10−7. The initial values are set to F0 = 100 and v0 = 0.015. The probability of negative jumps

is fixed to p− = 0.7. The parameters of the external factor are set to be κh = 1, h̄ = 1 and σh = 0.1.

5 Data

This section details the data and data selection process we use in our empirical application.

Since our estimation procedure utilizes the option-implied CCFs, we also pay careful attention

in this section to the construction of these characteristics.

5.1 Data description

In this paper we use options data on the S&P 500 stock market index obtained from the

Chicago Board Options Exchange (CBOE). We focus on the period from May 1, 2017 to April

1, 2021, that covers the turbulent period in the stock market due to the Covid-19 pandemic.

The CBOE provides end-of-day option quotes and a snapshot at 3:45 pm ET, 15 minutes prior
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the market closure. We use the latter to calculate mid-quotes since it is considered to be

a more accurate representation of market liquidity than the former. The data contain both

the ‘standard’ AM-settled SPX options and Weeklys and End-of-Months PM-settled SPXW

products. The settlement value for the SPX options is based on the open level of the S&P 500

index on settlement day, while for the SPXW options it is based on the closing prices of the

index.

Table 3: Descriptive statistics for S&P 500 index options

k ≤ 0.8 0.8 < k ≤ 0.95 0.95 < k ≤ 1.03 1.03 < k ≤ 1.1 1.1 < k Total

Panel A: Total volume of option contracts (in millions)

τ ∈ (2, 9] 4.52 52.61 167.09 13.27 1.25 238.73

τ ∈ (9, 30] 25.47 74.58 168.06 29.93 3.96 302.00

τ ∈ (30, 60] 25.85 61.97 109.53 28.80 4.22 230.38

τ ∈ (60, 90] 11.68 21.70 40.82 11.05 3.05 88.30

τ ∈ (90, 180] 19.93 22.83 27.23 10.59 4.57 85.15

τ ∈ (180, 365] 10.74 10.91 10.82 4.54 5.12 42.12

Total 98.19 244.60 523.55 98.18 22.16 986.68

Panel B: Volume of OTM option contracts (in millions)

τ ∈ (2, 9] 4.12 52.03 139.33 11.94 0.96 208.37

τ ∈ (9, 30] 24.04 73.54 133.21 27.87 3.36 262.03

τ ∈ (30, 60] 23.82 61.11 83.72 27.28 3.85 199.79

τ ∈ (60, 90] 10.62 21.21 26.72 10.44 2.78 71.77

τ ∈ (90, 180] 18.77 22.15 18.23 9.92 4.30 73.35

τ ∈ (180, 365] 10.34 10.29 6.96 4.06 4.88 36.53

Total 91.71 240.32 408.17 91.51 20.14 851.85

Panel C: Average OTM option price ($)

τ ∈ (2, 9] 0.43 1.38 8.69 2.69 1.73 4.32

τ ∈ (9, 30] 0.92 5.53 23.53 5.47 2.68 10.07

τ ∈ (30, 60] 2.42 13.28 40.10 11.84 4.68 16.73

τ ∈ (60, 90] 5.05 24.89 63.56 22.00 6.17 24.93

τ ∈ (90, 180] 10.97 50.74 104.11 47.11 11.76 43.14

τ ∈ (180, 365] 18.80 90.42 155.53 85.29 19.67 53.05

Total 7.97 22.29 47.73 22.35 9.64 24.02

Note: Descriptive statistics for filtered option data on S&P 500 stock market index. The sample contains daily option data

from 1 May 2017 to 1 April 2021. Observations are bucketed into six categories based on the time-to-maturity, τ , and into

five categories with respect to the moneyness level, defined as strike-to-forward ratio k = K/F .

Given that we need a reliable and wide coverage of option prices for each tenor, we use

a fairly generous set of filters. In particular, we retain option observations that satisfy the

following criteria: (i) bid price is strictly positive and ask-to-bid ratio is less than 10; (ii) the

maturity is larger than or equal to 2 calendar days, but less than or equal to 365 calendar days;

(iii) it is not an early-closure day. The first criterion filters out illiquid observations and the

second one limits our consideration in terms of options’ maturity. The third criterion rules out

shortened trading sessions, which in total constitute 10 days in our sample.
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Figure 2: Stacked bar chart of time-to-maturity frequency

Note: This figure plots a stacked bar chart for the frequency of tenors in S&P 500 index

options. The sample contains daily option data from 1 May 2017 to 1 April 2021. Root’s

indicators ‘spx’ and ‘spxw’ correspond to AM-settled ‘standard’ and PM-settled ‘weeklys’

and end-of-month contracts, respectively.

For each tenor we determine the moneyness based on the forward index level, Ft(τ). For

that, we use the put-call parity to calculate the forward price for close to at-the-money (ATM)

options. Specifically, we use up to 5 option pairs with the smallest absolute difference between

the call and put prices. The median of their forward-implied prices is taken as the forward index

level for the corresponding tenor. The risk-free rates are obtained by interpolating the LIBOR

rates to a particular tenor. Finally, given the calculated forward prices and moneyness levels, we

retain only out-of-the-money (OTM) options for further exploitation. The descriptive statistics

of the S&P 500 index options data sample is provided in Table 3. We observe that the largest

portion of trading volume is due to trades of OTM contracts and options with time-to-maturity

less than 60 calendar days. Figure 2 plots frequency of tenors up to 70 calendar days.

5.2 CCF-spanning option portfolios

The construction of the CCF-spanning option portfolios requires reliable option slices with

wide coverage of strikes. Given that most of the trading volume is concentrated in the option

contracts with time-to-maturity less than 60 days, in our empirical analysis we use several short-

dated options with expiration period no more than 2 months. In particular, on each trading

day we keep six tenors closest to 8, 15, 22, 29, 36 and 61 days9 from the left with the largest

trading volume and number of quoted OTM option contracts. Specifically, starting with option

slices closest to the indicated tenors, we compare them with every next further distant from the

left option slice and prefer the next one if it has larger trading volume and larger number of

9The first five of these tenors are the most representative in the sample. See Figure 2.
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Table 4: Descriptive statistics for the selected sample

Number 1 2 3 4 5 6 Total

avg. tenor 6.97 12.10 18.95 26.08 33.95 53.67 25.29

avg. min put 0.08 0.09 0.10 0.11 0.11 0.14 0.10

avg. min call 0.09 0.09 0.10 0.11 0.12 0.14 0.11

avg. max price 22.48 31.65 40.24 47.56 54.83 71.05 44.64

avg. # options 133.75 183.64 204.47 206.90 216.50 238.84 197.35

avg. min K/F 0.79 0.69 0.60 0.54 0.49 0.42 0.59

avg. max K/F 1.06 1.09 1.12 1.14 1.16 1.21 1.13

avg. atm bsiv 0.147 0.151 0.151 0.152 0.154 0.158 0.152

Note: Descriptive statistics for the selected sample data of options on S&P 500 stock market index.

The sample contains daily option data from 1 May 2017 to 1 April 2021. For each trading day, we

select six option tenors closest to 8, 15, 22, 29, 36 and 61 days from the left and with the largest

trading volume and number of quoted OTM option contracts. The table provides the descriptive

statistics for each of the six tenors over the sample.

quoted contracts for OTM options. Table 4 provides the descriptive statistics for each of the

six selected tenors over the considered time span. We notice the wide coverage of strikes since

the average minimum put and call prices are close to the tick size of $0.05, especially for very

short-dated options. We also notice that in the selected option sample, each option slice at each

trading day contains at least 55 different quoted contracts. Therefore, no additional filters on

the minimum number of contracts are imposed. In total, we have 978 trading days, with six

different tenors at each of them, resulting in 1,158,059 number of contracts in the sample.

The inputs of our estimation procedure are option portfolios representing CCFs rather than

BSIVs, as is common in the literature. Therefore, we pay careful attention to the construction of

the option-implied CCF. As discussed in Appendix A, we use the Riemann sum approximation

to obtain a computable counterpart of the CCF spanning (3). However, in order to reduce the

discretization and truncation errors, we employ the interpolation-extrapolation technique that

we discuss below. The importance of the interpolation-extrapolation scheme is also discussed

in Appendix A.

For each trading day and for each tenor, we interpolate option prices using cubic splines.

We interpolate option data, expressed in terms of their total implied variance, defined as

v(m, τ) = κ2(m, τ) · τ , where κ(m, τ) is the Black-Scholes implied volatility for an option with

log-moneyness m and tenor τ . This is similar to interpolating on the implied volatility domain,

but it will provide us further advantages when we go to the extrapolation scheme.

The cubic splines provide a great tool for the interpolation of options data and are commonly

used in the literature, see, for instance, Jiang and Tian (2007), Malz (2014) among many others.

Furthermore, they are also used as an approximation method, that allows to smooth out noise

in the data; see, for instance, Bliss and Panigirtzoglou (2002), Fengler (2009). For the latter it

is common to penalize the squared second derivative of the spline. This, however, might lose

flexibility of a spline leading to larger approximation errors, especially for short-dated options,

which are of great importance in our analysis. In this paper, we use the standard cubic spline,

but instead of providing all data as knot points, we explicitly specify which data points shall be
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Figure 3: Spline interpolation-extrapolation example. April 1, 2021, 15 days-to-maturity

Note: This figure plots an example of the interpolation-extrapolation scheme for options traded on April 1, 2021 with

15 days-to-maturity. The option data (blue dots) are interpolated using the cubic spline (orange line). Interpolation is

conducted on the total implied variance domain. The left panel plots the data in terms of Black-Scholes implied volatility,

while the right panel plots the data in terms of log prices.

used as knots for spline interpolation. This allows us to interpolate in some domains and smooth

out in others, taking the best out of the interpolation and approximation spline schemes.

In fact, close to ATM options are more liquid than very deep OTM counterparts. Thus,

intuitively, information in these options is more reliable, and we would not like to distort it,

by imposing smoothing constraints. Very deep OTM options, on the other hand, may be quite

illiquid. Furthermore, the tick size for deep OTM options becomes larger relative to their

value. This might lead to observing a sequence of the same midpoint quote prices in the data.

Figure 3 provides an example of such ‘flat’ prices for put options, visible on the right panel

for very deep OTM options. These prices clearly violate arbitrage-free assumptions. However,

throwing them away would reduce available information, needed to extract CCF.10 Therefore,

instead of eliminating ‘flat’ prices, we will just not include them as knot points in our spline

interpolation scheme. In other words, we would not require the spline function to go through

all data points for deep OTM options, but rather let it approximate information in them.11

More formally, first, we include the closest to ATM put option, m1, to the knot sequence

and then iteratively include put options to the left mi for i = 2, . . . , n−1 such that all following

conditions are satisfied: (i) P (mi) < P (mi−1) and C(mi) > C(mi−1); (ii) P (mi+1) < P (mi) and

C(mi+1) > C(mi); (iii) daily trading volume for P (mi) is larger than one. The first two criteria

check for arbitrage conditions. The third one filters out possible stale prices from being a knot

point. Similar mirrored conditions are applied to OTM call prices. Such a constructed knot

sequence will likely contain more closer to ATM options and less deep OTM options, resulting

in more interpolation in the former range and more approximation in the later one.

We note that we do not filter out option data that violate arbitrage conditions. Instead,

we do not include these points into the knot sequence, thus we do not require the spline to go

10These prices are not completely uninformative, it is just that the tick size distorts information in these prices.
11Recall that we interpolate/approximate data on the total implied variance domain, not in terms of implied

volatility, option prices or log prices as illustrated in Figure 3.
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exactly through these points. Furthermore, another reason is that we use the option-implied

CCFs rather than option prices themselves as inputs in our estimation procedure. Similarly,

the CBOE does not impose any arbitrage filters in the calculation of the VIX index, except

eliminating zero-bid quotes (CBOE, 2015). Figure 3 provides an example for interpolation-

extrapolation scheme for option slice traded on April 1, 2020 with 15 days-to-maturity.

Truncation errors are more challenging to address than the discretization errors, since one

needs to make assumptions on the dynamics of option prices (either in dollar or volatility terms)

beyond the observable range of strikes. On the other hand, as the OTM option prices decrease

with |m|, the impact of the truncation error is expected to be small for very liquid options

(such as index options) that cover a wide range of strike prices. However, the truncation might

deteriorate the CCF approximation even for small argument values. This is especially might be

a serious issue after a sudden market movements, since options with smaller (or larger) strikes

might simply not be issued immediately to cover a new range of strikes.

It is common in the literature to use the flat extrapolation; see as example again Bliss and

Panigirtzoglou (2002), Jiang and Tian (2005), Malz (2014). Under the flat extrapolation scheme

the implied volatility is simply set to be equal to the volatility of the observable extreme-strike

options, that is κ(ml, τ) for the left hand-side and κ(mu, τ) for the right hand-side of volatility

smile. Very simple to implement, this approach allows to significantly reduce the truncation

error. However, the main caveat of the flat extrapolation is that it presumes the Black-Scholes

assumptions beyond the observable range of strikes. In other words, it assumes the log-normal

distribution of the underlying asset in the tails. From the RND perspective, it means that a

shape of the lognormal distribution is used beyond the highest and lowest available strike prices.

Therefore, in this paper, we extrapolate the total implied variances v(m, τ) linearly in the

log-moneyness m beyond the observable range of strikes. This particular linear parametrization

is motivated by the asymptotic result of Lee (2004), who established the behavior of the implied

volatility smile as strikes tend to infinity. Another example of the parametrization that satisfies

Lee’s asymptotic result is the SVI model, commonly used among practitioners (Gatheral &

Jacquier, 2014). However, it is well known that the SVI might not fit well the short dated

options’ shapes. Thus, we use more flexible cubic spline for interpolation within the observable

range of strikes, as detailed above, and, similar to SVI, extrapolate implied variance linearly in

the log-moneyness.

Given the fitted cubic spline on the implied variance domain, we evaluate the spline deriva-

tives at the moneyness levels, corresponding to the second smallest OTM quote price from the

left (that is, for put options) and from the right (that is, for call options). We use the second

smallest prices to eliminate the boundary effect of the spline. After obtaining the derivatives, we

extrapolate the wings linearly in the total variance after checking the arbitrage-free conditions.

We provide greater details of the extrapolation scheme together with arbitrage-free conditions

on the extrapolation slopes in Appendix D.

Finally, the calculation of the option-implied CCF uses the Riemann sum approximation

as discussed in Appendix A applied to the result of the interpolation-extrapolation scheme.

The construction is conducted for each day and for each maturity separately. In particular,
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for equation A.2 we set ∆m = 0.0001 with sufficiently wide range of log-moneyness between

ml = −6 and mu = 2.

To conclude this section we emphasize again that the option prices or a monotonic trans-

formation thereof are not used as inputs in our developed estimation procedure as is common

in many existing approaches. Instead, we use the option portfolios that replicate the CCF of

the log returns. Furthermore, unlike in many other papers, our option dataset is daily and

utilizes the information from the short-dated options with maturities between two days and two

months.

6 Empirical Applications

After having constructed the dataset of the option-implied CCF for the S&P 500 index options,

we now turn to the empirical application of our estimation approach.

6.1 SVCDEJ

We start with estimating the SVCDEJ model, specified in Section 4.1, equations (28)-(29).

Table 5 provides the results of the parameter estimates for the SVCDEJ model based on the

range of arguments u = 1, . . . , 20 and s̄ = 10−7. To avoid identification issues we with the

parameter p− = −0.7 following results in Aı̈t-Sahalia et al. (2015). The standard errors are

calculated using the sandwich form covariance matrix.

Table 5: SVCDEJ parameter estimates

σ κ v̄ ϱ δ η+ η− µv σκ

θ̂ 0.5051 8.325 0.0153 -0.997 157.51 0.0204 0.0424 0.0519 0.253

s.e. 0.0075 0.207 0.0005 0.012 7.28 0.0005 0.0007 0.0009 0.004

The parameter estimates in Table 5 are consistent with the literature and intuitive. For

instance, Andersen et al. (2015) found the mean jump sizes to be 1.71% and -5.33% for positive

and negative jumps in their three-factor model specification. They, however, use only the

Wednesday options with different time period from 1996 to 2010.

We note that the leverage parameter ϱ comes very close to the boundary. Although the

literature suggests that the leverage is negative and low, almost perfectly correlated diffusive

parts in the return and volatility are very unlikely. This might be possibly due to exploitation

of the short-dated options that typically exhibit steeper implied volatility slopes. Andersen et

al. (2017) also found the correlation to be close to -1 in their dataset dominated by the option

contracts with maturities less than 2 months.

Figure 4 plots the square root of the filtered variance v̂t+1|t given the parameter estimates

of the SVCDEJ model. As expected, the filtered volatility exhibits a relatively stable volatility

regime prior to 2020 and jumps up in March 2020 at the beginning of the Covid-19 pandemic.
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Figure 4: SVCDEJ filtered volatility

Note: This figure plots the filtered volatility (square root of the filtered state x̂t+1|t) given the

parameter estimates of the SVCDEJ model. The Kalman filter recursions and the model parameter

estimates are used for the filtering.

6.2 SVCDEJ with external factor

Now we turn to the specification with embedded external factors. The motivation comes from

the fact that in some situations we might have an understanding of possible drivers of the risks

in the market, and thus, we would like to quantify it.

An example is the recent Covid-19 crisis. The Covid-19 pandemic has dramatically affected

our lives. It has also had a tremendous impact on the world’s economy and financial markets.

The beginning of the pandemic was especially associated with a spike in uncertainty. This

uncertainty surrounded many aspects of the beginning of the Covid-19 pandemic: the conta-

giousness and lethality of the virus, the time needed to develop vaccines, the effectiveness of

measures, the work-from-home policies, travel bans and etc.

In this paper we analyse the impact of the Covid-19 pandemic on the stock market through

the lens of option prices. In particular, we consider how the spread of the virus affected the

likelihood of jump events and volatility in the U.S. stock market.

Figure 7 plots the daily cases of the Covid-19 infections around the world obtained from

the World Health Organization (WHO). As we can see from the figure, the reported number

of daily cases does not represent well the contagiousness of the virus. Therefore, Panel (b) of

Figure 7 provides the reproduction number dynamics taken from the web-site ’Our world in

Data’ and calculated as the ratio Rt =
It

It−7
, where It is number of infected people in day t and

7 is the reported serial interval for the Covid-19. The former is based on the methodology of

Arroyo-Marioli et al. (2021) and is already smoothed in time.12 The latter is unsmoothed and

12In fact, Arroyo-Marioli et al. (2021) use the Kalman smoother.
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Figure 5: Covid-19 world daily cases and reproduction numbers.

(a) Daily cases (b) Reproduction numbers

Note: This figure plots the world daily Covid-19 cases and the two reproduction numbers: one is taken from the web-site

’Our world in Data’ (uses methodology of Arroyo-Marioli, Bullano, Kucinskas, and Rondón-Moreno (2021)); the second is

calculated as the ratio It
It−7

, where It is number of infected people in day t and 7 is the reported serial interval for Covid-19.

based on the assumption that the serial interval is 7 days, which is consistent with the recent

epidemiology literature (see, e.g., Maier & Brockmann, 2020, Prem et al., 2020, Flaxman et al.,

2020, Arroyo-Marioli et al., 2021). We will use the latter as the reproduction number for our

analysis below.

To quantify the effect of the Covid-19 pandemic on the financial market, we simply embed the

reproduction numbers to the (time-varying) levels of the volatility and jump intensity processes

as described in Section 4.2. In other words, given that the reproduction number is relatively

persistent process, we will treat it as a deterministic process when pricing the options. In a

similar way, the risk-free rate and dividend yields are often assumed to be deterministic in the

option pricing literature. This allows us to be agnostic about the parametric dynamics of the

reproduction number. Furthermore, given the short-dated options in the consideration, the

errors due to the deterministic assumption will likely to be negligible.13

Table 6: SVCDEJ with reproduction number as external factor

σ κ v̄ ϱ δ η+ η− µv γ q σκ

θ̂ 0.5678 11.549 0.0140 -1.000 130.12 0.0181 0.0413 0.0667 2.64 0.0003 0.245

s.e. 0.0176 0.646 0.0007 0.023 11.93 0.0007 0.0012 0.0029 0.25 0.0001 0.004

Note: this table provides the parameter estimates for the SVCDEJ model with the reproduction number as external

factor. The model is estimated based on u = 1, . . . , 20 and s̄ = 10−7 with fixed p− = 0.7.

Table 6 provides the results for the SVCDEJ model with the reproduction number as an

exogenous factor. The results suggest that the reproduction number dynamics has no significant

effect on the total volatility and the likelihood of the positive jumps. However, a unit of the

reproduction number increases the intensity of negative jumps by 2.64. In other words, the

13Similarly, Andersen et al. (2017) and Boswijk et al. (2021) consider approximation of the return process with

‘freezed’ spot volatility when estimating their option pricing models with short-dated options.
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reproduction number partly explains the source of the negative jump intensity dynamics. Figure

6 illustrates the dynamics of the negative jump intensity with and without added effect of the

reproduction number Rt.

Figure 6: SVCDEJ jump intensity

Note: This figure plots the filtered jump intensity given the parameter estimates of the SVCDEJ

model with reproduction number dynamics.

Table 7: SVCDEJ with EPU as external factor

σ κ v̄ ϱ δ η+ η− µv γ q σκ

θ̂ 0.4887 10.254 0.0116 -1.000 223.94 0.0144 0.0410 0.0462 0.00 0.0369 0.249

s.e. 0.0186 0.783 0.0006 0.037 7.96 0.0011 0.0008 0.0024 0.13 0.0027 0.003

Note: this table provides the parameter estimates for the SVCDEJ model with the EPU as external factor. The

model is estimated based on u = 1, . . . , 20 and s̄ = 10−7 with fixed p− = 0.7.

It is also possible to investigate the contribution of some other external factors on the

diffusive volatility and jump intensity. For instance, in Table 7 we provide the estimation

results for the SVCDEJ model with the Economic Policy Uncertainty (EPU) index as the

external factor. The EPU index, developed by Baker, Bloom, and Davis (2016), reflects the

policy-related economic uncertainty based on newspaper coverage frequency. The estimation

results suggests that, unlike the reproduction number, the EPU index shows no effect on the

jump intensity process, but exhibits larger contribution to the diffusive volatility of the model.

7 Conclusion

In this paper, we have proposed a novel state filtering and parameter estimation procedure

for option pricing models that belong to the affine jump-diffusion class. Our procedure uti-

lizes the log of the option-implied and model-free conditional characteristic function as well

as the model-implied conditional log-characteristic function, which is functionally affine in the

model’s state vector. We have provided a corresponding linear state space representation for
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Figure 7: EPU index and filtered diffusive volatility

(a) EPU index (b) Total and filtered diffusive volatility

Note: Panel (a) plots the EPU index of Baker et al. (2016). The data is divided by 100 and one week moving average is

applied. Panel (b) plots the total and filtered diffusive volatility from the estimation result of the SVCDEJ with the EPU

index. The total volatility is given as
√

vt + q2ht, where ht is the external factor.

the considered class of option pricing models, which allows us to exploit suitably adapted col-

lapsed Kalman-type filtering techniques. Our novel estimation procedure is fast and easy to

implement, circumventing the typical computational burden when working with option pricing

models. We have demonstrated the applicability of our procedure in two empirical illustrations

that analyze S&P 500 index options and the impact of exogenous variables capturing Covid-19

reproduction and economic policy uncertainty data.
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Appendix A Conditional Characteristic Function Replication

This appendix provides further details on the CCF ‘payoff’ replication given a portfolio of option

prices. As discussed in Section 2, the discounted CCF of log returns over the time horizon τ > 0

can be spanned via positions in a risk-free bond and OTM options:

ϕt(u, τ) = e−rτ − (u2 + iu)
1

Ft

∫
R
e(iu−1)m ·Ot(τ,m)dm, u ∈ R, (A.1)

where Ot(τ,m) is the price of OTM options with log-moneyness level m = log(K/Ft) and

time-to-maturity τ .

Figure A.1 provides an illustration of OTM option prices and corresponding spanning, option

portfolio weights for simulated data from the stochastic volatility (SV) model of Heston (1993).

The option portfolio weights are scaled by the factor in front of the integral in (A.1). We notice

that the spanning option portfolios require both short and long positions in OTM options

and the weights start oscillating for larger values of arguments u. Figure A.2 further provides

an example of the real and imaginary parts of the integrands e(iu−1)m · Ot(τ,m) against the

log-moneyness level m = log(K/Ft) for four different values of the arguments u with fixed time-

to-maturity τ = 30 days. The corresponding integrals need to be calculated to replicate the

CCF ‘payoff’ function.

In practice, the integral
∫
R e(iu−1)m · Ot(τ,m)dm in equation (3) cannot be calculated ex-

plicitly as we observe option prices only for a finite set of strikes. Nevertheless, given a set of

observable option prices we can use, for instance, the Riemann sum to make a first approxi-

mation of this integral. Defining a finite sequence of log-moneyness levels that corresponds to

observable options by m := m1 < · · · < mn =: m, this approximation of the CCF is given by

ϕt(u, τ) ≈ e−rτ − (u2 + iu)
1

Ft

n∑
j=2

e(iu−1)mj ·Ot(τ,mj)∆mj , (A.2)

where ∆mj = mj −mj−1. When maxj ∆mj → 0 accompanied in this case by m → −∞ and

m → ∞, the Riemann sum converges to the option-spanned CCF.

A similar integral approximation is at the core of the VIX index—one of the most widely

used volatility indices.14 Like in VIX calculation, the approximation (A.2) exhibits two types of

errors: truncation and discretization errors. Jiang and Tian (2005) and Jiang and Tian (2007)

study the impact of these errors on the VIX index calculation and Chang et al. (2012) examines

their impact on other option-implied measures of risk. The literature on risk-neutral density

extraction also addresses the effect of these errors; see, for instance, Bliss and Panigirtzoglou

(2002) and Malz (2014). To reduce the impact of the approximation errors, we follow this

literature and use an interpolation-extrapolation scheme based on cubic splines. We provide

the details of this scheme in Section 5, where we discuss the construction of the spanning option

portfolios for our empirical application.

Next to the truncation and discretization errors in the option-spanned CCF in equation

(A.2), approximation errors may also arise due to observation errors in option prices. That is,

14To be precise, the VIX methodology is based on the trapezoidal rule (CBOE, 2015).
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Figure A.1: OTM option prices and corresponding (scaled) option portfolio weights for the SV

model of Heston (1993).

(a) OTM option prices

(b) Re, option portfolio weights (c) Im, option portfolio weights

Note: Panel (a) of this figure plots OTM option prices for the simulated SV model of Heston (1993) against the log-

moneyness level m = log(K/Ft) for three different levels of maturity τ . Panels (b) and (c) provide the (scaled) option

portfolio weights e(iu−1)m to replicate the CCF for different arguments u and fixed time-to-maturity τ = 30 days. The

following parameters are used: κ = 8, σv = 0.45, v̄ = 0.015, ρ = −0.95, F0 = 100 and v0 = 0.015.

the true option prices Ot(τ,m) are not observed in the market. Instead, what we observe is their

distorted signal Ôt(τ,m) due to e.g., bid-ask spreads, liquidity reasons, and minimum tick size.

Therefore, we also take into account the observation errors when making assumptions on the

measurement errors. In fact, as we elaborate in Appendix B, the observation errors constitute

the main source of the measurement errors in the state space representation.

Overall, the replication of the CCF ‘payoff’ uses the Riemann sum approximation based on

an interpolation-extrapolation scheme applied to the set of observable option prices. We denote

by ϕ̂t(u, τ) the computationally feasible counterpart of the option-implied CCF ϕt(u, τ).

Figure A.3 provides an illustration of the impact of different measurement errors on the

option-implied CCF. For the illustration, we simulate option prices from the SVCJ model using

a similar setup as described in Section 4. In particular, at each time point we have a discrete

set of strikes and additive observation errors in the observed option prices. We fix the time-to-

maturity to τ = 10 days, u = 20 and focus only on the real part of the CCF. These values are
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Figure A.2: Integrands e(iu−1)m ·Ot(τ,m) for the SV model of Heston (1993).

(a) ℜ
(
e(iu−1)m ·Ot(τ,m)

)
(b) ℑ

(
e(iu−1)m ·Ot(τ,m)

)
Note: This figure plots the real and imaginary parts of four integrands e(iu−1)m ·Ot(τ,m) for the simulated SV model of

Heston (1993) against the log-moneyness level m = log(K/Ft) for different arguments u and fixed time-to-maturity τ = 30

days. The following parameters are used: κ = 8, σv = 0.45, v̄ = 0.015, ρ = −0.95, F0 = 100 and v0 = 0.015.

chosen to emphasize the impact of the measurement errors. The impact of the discretization

errors, for instance, is typically smaller for larger maturities and smaller argument values.

Figure A.3 (a) plots the measurement errors when we use a finite set of observed option prices

Ôt(τ,m). That is, it shows the total measurement errors ζϕt (u, τ) that aggregate the three types

of errors: observation, ζ
(1)
t (u, τ), truncation, ζ

(2)
t (u, τ), and discretization, ζ

(3)
t (u, τ), errors,

formally defined in Appendix B. As we can see, the discretization and truncation errors yield a

small bias in the CCF approximation. In Figure A.3 (b) we turn off the impact of observation

errors, that is, we use a finite set of true option prices Ot(τ,m). Thus, the errors in the option-

spanned CCF contain only the discretization and truncation errors, ζ
(2)
t (u, τ) + ζ

(3)
t (u, τ). We

overlay this plot with the ATM BSIV to illustrate that these errors are due to the value of

options, that is, they are driven by the model’s dynamics. Figure A.3 (c) plots the sum of the

first two figures, that is, ζ
(1)
t (u, τ). This figure is already centered around zero.

For Figures A.3 (d) and (e), we use a cubic spline interpolation and extrapolate option

prices outside of the observed range as described in Appendix D. Figure A.3 (d) plots errors in

the CCF approximation when we use the true finite set of option prices, interpolated with the

cubic spline to reduce the discreteness of the observed strikes. As we can see, the discretization

and truncation errors are largely reduced (note the scale of the y-axis). Finally, Figure A.3 (e)

illustrates the errors in the CCF approximation when options are observed with errors and the

cubic spline is also applied to Ôt(τ,m). As we can see, the errors in this case are mostly coming

from the observation errors. Hence, this figure largely resembles Figure A.3 (c). In other words,

the interpolation-extrapolation scheme kills off the level effect that comes from the impact of

the discretization and truncation errors, but not the observation errors.

37



Figure A.3: Impact of the three types of measurement errors: Illustration.

(a) ζ
(1)
t + ζ

(2)
t + ζ

(3)
t (b) −ζ

(2)
t − ζ

(3)
t and ATM BSIV

(c) ζ
(1)
t (d) ϕ(u, τ)− ϕ(spl(O))

(e) ϕ(u, τ)− ϕ(spl(Ô))
Note: This figure plots the impact of the three types of measurement errors on the option-implied CCF. The figures

illustrate the approximation for the real part of the CCF with τ = 10, u = 20. The same Monte Carlo simulation setup as

described in Section 4 is used here to simulate data from the SVCJ model.

Appendix B Proofs

In this appendix, we elaborate on the measurement errors in the option-implied CCF given the

observable option prices and provide the proof of Proposition 1.

We start by formally defining the measurement errors in the CCF approximation. Under

the observation error structure specified in Assumption 2 and the CCF approximation given by

equation (14), the total measurement error in the option-spanned CCF is defined by its three
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components:

ζϕt (u, τ) := ϕ̂t(u, τ)− ϕt(u, τ)

=− ut

n∑
j=2

e(iu−1)mj · Ôt(τ,mj)∆mj + ut

∫ ∞

−∞
e(iu−1)m ·Ot(τ,m)dm

=− ut

 n∑
j=2

e(iu−1)mj ·Ot(τ,mj)∆mj +
n∑

j=2

e(iu−1)mj · ζt(τ,mj)∆mj


+ ut

∫ ∞

−∞
e(iu−1)m ·Ot(τ,m)dm

=−ut

n∑
j=2

e(iu−1)mj · ζt(τ,mj)∆mj︸ ︷︷ ︸
=:ζ

(1)
t (u,τ)

+ ut

∫ m1

−∞
e(iu−1)m ·Ot(τ,m)dm+ ut

∫ ∞

mn

e(iu−1)m ·Ot(τ,m)dm︸ ︷︷ ︸
=:ζ

(2)
t (u,τ)

+ ut

n∑
j=2

∫ mj

mj−1

[
e(iu−1)m ·Ot(τ,m)− e(iu−1)mj ·Ot(τ,mj)

]
dm︸ ︷︷ ︸

=:ζ
(3)
t (u,τ)

= ζ
(1)
t (u, τ) + ζ

(2)
t (u, τ) + ζ

(3)
t (u, τ).

The error terms ζ
(1)
t (u, τ), ζ

(2)
t (u, τ) and ζ

(3)
t (u, τ) represent observation, truncation and dis-

cretization errors, respectively.

We now formally show that the discretization and truncation errors will be negligible in

the limit. We start with the following auxiliary result for upper bounds of (normalized) option

prices:

Lemma 1 Let ft+τ = Ft+τ

Ft
be the normalized to value at time t futures price for τ > 0. For

each p > 0 we have for all m > 0 the call price bounds

Ot(τ,m)

Ft
≤
(

p

p+ 1

)p e−rτEQ[fp+1
t+τ |Ft]

p+ 1
e−pm. (B.1)

For each q > 0 we have for all m < 0 the put price bounds

Ot(τ,m)

Ft
≤
(

q

q + 1

)q e−rτEQ[f−q
t+τ |Ft]

q + 1
e(1+q)m. (B.2)

Proof: The result is the straightforward adaptation of Theorem 2.1 in Lee (2004).

Lemma 1 relates the moments of the underlying process and of its reciprocal to the bounds

of the option prices. Similar to Qin and Todorov (2019) and Todorov (2019), we assume

the existence of at least second order moment of the underlying process and of its reciprocal,
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formulated in Assumption 3. If higher moments exist, then we can obtain even tighter bounds

for the remainder term in Proposition 1 due to (B.1) and (B.2).

The following lemma establishes the order of magnitude of the truncation and discretization

errors under the joint asymptotic scheme, expressed with respect to the number of option prices

n with fixed maturity. We denote the smallest and largest log-moneyness as m = min1≤j≤nmj

and m = max1≤j≤nmj , and the corresponding strike prices as K and K.

Lemma 2 Suppose EQ[F p+1
t+τ |Ft] < ∞ and EQ[F−q

t+τ |Ft] < ∞ for some p > 0 and q > 0,

Assumption 3(ii) holds, and in addition K ≍ n−α and K ≍ nα with α > 0 and α > 0. Then

for n → ∞ we have

ζ
(2)
t (u, τ) = Op

(
n−(qα∧(1+p)α)

)
, (B.3)

and

ζ
(3)
t (u, τ) = Op

(
log n

n1+qα∧(p+1)α

)
(B.4)

for a fixed u ∈ U and τ > 0.

Proof: We start with the truncation error. For mn > 0 and m1 < 0 and using Lemma 1 we

can bound the upper and lower truncation parts as follows:∣∣∣ 1
Ft

∫ ∞

mn

e(iu−1)m ·Ot(τ,m)dm
∣∣∣ ≤ ∫ ∞

mn

∣∣∣e(iu−1)m
∣∣∣ · ∣∣∣Ot(τ,m)

Ft

∣∣∣dm ≤ C̄te
−(1+p)mn ,∣∣∣ 1

Ft

∫ m1

−∞
e(iu−1)m ·Ot(τ,m)dm

∣∣∣ ≤ ∫ m1

−∞

∣∣∣e(iu−1)m
∣∣∣ · ∣∣∣Ot(τ,m)

Ft

∣∣∣dm ≤ P̄te
qm1 ,

where C̄t and P̄t are Ft-adapted random variables that do not depend on m. Therefore, for

m → −∞ and m → ∞ we have

ζ
(2)
t (u, τ) = ut

∫ m

−∞
e(iu−1)m ·Ot(τ,m)dm+ ut

∫ ∞

m
e(iu−1)m ·Ot(τ,m)dm

= Op

(
e−q|m|

)
+Op

(
e−(1+p)|m|

)
= Op

(
e−(q|m|∧(1+p)|m|)

)
= Op

(
n−(qα∧(1+p)α)

)
.

For the discretization errors we use the following decomposition:∫ mj

mj−1

[
e(iu−1)m ·Ot(τ,m)− e(iu−1)mj ·Ot(τ,mj)

]
dm

=

∫ mj

mj−1

[(
e(iu−1)m − e(iu−1)mj

)
·Ot(τ,mj) + e(iu−1)m (Ot(τ,m)−Ot(τ,mj))

]
dm.

By applying the mean value theorem we have∣∣∣e(iu−1)m − e(iu−1)mj

∣∣∣ ≤ |iu− 1|
∣∣∣e(iu−1)m̃

∣∣∣∆mj ≤ e−mj−1(|u| ∨ 1)∆mj ,

and ∣∣∣e(iu−1)m (Ot(τ,m)−Ot(τ,mj))
∣∣∣ ≤ e−mj−1

∣∣∣∣∣∂Ot(τ,m)

∂m

∣∣∣
m=m̃

∣∣∣∣∣∆mj

≤ e−mj−1

∣∣∣∣∣∂Ot(τ,m)

∂K

∣∣∣
K=K̃

∣∣∣∣∣em̃Ft∆mj

≤

∣∣∣∣∣∂Ot(τ,m)

∂K

∣∣∣
K̃

∣∣∣∣∣e∆mjFt∆mj ,
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where m̃ = log K̃
Ft

is between m and mj .

Lemma 1 implies that for all m

Ot(τ,m)

Ft
≤ ce−[pm∨−(1+q)m],

with some Ft-adapted random variable c. Furthermore, the derivative with respect to the strike

price is the risk neutral distribution or survival functions, which can be bounded using the

Markov inequality. In particular, for m > 0:∣∣∣∣∣∂Ot(τ,m)

∂K

∣∣∣∣∣ = e−rτQ(Ft+τ > K) = e−rτQ (ft+τ > em)

≤ e−rτEQ[fp+1
t+τ |Ft]e

−(p+1)m,

and for m < 0 ∣∣∣∣∣∂Ot(τ,m)

∂K

∣∣∣∣∣ = e−rτQ(Ft+τ < K) = e−rτQ
(
f−1
t+τ > e−m

)
≤ e−rτEQ[f−q

t+τ |Ft]e
qm.

Therefore ∣∣∣∣∣∂Ot(τ,m)

∂K

∣∣∣∣∣ ≤ de−[(p+1)m∨−qm]

with some Ft-adapted random variable d. Combining all these inequalities together we get∣∣∣ 1
Ft

∫ mj

mj−1

[
e(iu−1)m ·Ot(τ,m)− e(iu−1)mj ·Ot(τ,mj)

]
dm
∣∣∣

=
∣∣∣ 1
Ft

∫ mj

mj−1

[(
e(iu−1)m − e(iu−1)mj

)
·Ot(τ,mj) + e(iu−1)m (Ot(τ,m)−Ot(τ,mj))

]
dm
∣∣∣

≤
(
c(|u| ∨ 1)∆mje

−mj−1e−[pmj−1∨−(1+q)mj−1] + de∆me−[(p+1)mj−1∨−qmj−1]∆mj

)
∆mj

≤ c̃e−[(p+1)mj−1∨−qmj−1](∆mj)
2.

Then, for fixed m and m, and ∆m → 0, we have

ζ
(3)
t (u, τ) = ut

n∑
j=2

∫ mj

mj−1

[
e(iu−1)m ·Ot(τ,m)− e(iu−1)mj ·Ot(τ,mj)

]
dm = Op(∆m). (B.5)

However, under the joint asymptotic scheme the order (B.5) changes. In particular,∣∣∣ n∑
j=2

1

Ft

∫ mj

mj−1

[
e(iu−1)m ·Ot(τ,m)− e(iu−1)mj ·Ot(τ,mj)

]
dm
∣∣∣

≤ c̃

n∑
j=2

e−[(p+1)mj−1∨−qmj−1](∆mj)
2

≤ c̃∆m

n∑
j=2

e−[(p+1)mj−1∨−qmj−1]∆mj .
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The sum on the right hand side of the inequality is the Riemann approximation that converges

to the following integrals:

n∑
j=2

e−[(p+1)mj−1∨−qmj−1]∆mj −→
∫ m

m
e−[(p+1)m∨−qm]dm =

∫ 0

m
eqmdm+

∫ m

0
e−(p+1)mdm

= Op

(
n−qα

)
+Op

(
n−(p+1)α

)
= Op

(
n−(qα∧(p+1)α)

)
.

Given Assumption 3(ii) on the log-moneyness grid, we can bound ∆m as

m−m

ηn
≥ ∆m ≥ m−m

n
.

Hence ∆m = Op

(
logn
n

)
. Then the order of the discretization error under the joint asymptotic

scheme is

ζ
(3)
t (u, τ) = Op

(
n−(qα∧(p+1)α)

)
Op

(
log n

n

)
= Op

(
log n

n1+qα∧(p+1)α

)
.

Proof of Proposition 1:

Using Lemma 2, Assumption 3 on the moments of the underlying process and observation

error Assumption 2, we can decompose the CCF approximation as

ϕ̂t(u, τ)− ϕt(u, τ) = ζ
(1)
t (u, τ) +Op

(
log n

n1+2(α∧α) ∨ n−2(α∧α)
)

(B.6)

= ζ
(1)
t (u, τ) +Op

(
n−2(α∧α)

)
(B.7)

with

ζ
(1)
t (u, τ) = −ut

n∑
j=2

e(iu−1)mj · ζt(τ,mj)∆mj . (B.8)

We now show that ζ
(1)
t (u, τ) = Op

(√
logn
n

)
. In fact, the standard deviation of the obser-

vation errors is proportional to the Black-Scholes vega, which decreases with |m| → ∞. More

specifically, the vega is given by

νt(τ,m) = Ft

√
τN ′(d+)

d+ = −mv−1/2 +
1

2
v1/2,

where N ′(x) is the standard normal pdf and v(m) := κ2(τ,m)τ . Hence

ν2t (τ,m) = F 2
t τ

1

2π
e−d2+ = F 2

t τ
1

2π
e−(v−1m2−m+ 1

4
v).
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Therefore, given Assumption 2, we get

E
[∣∣∣ζ(1)t (u, τ)

∣∣∣2∣∣∣Ft

]
≤ |ut|2

n∑
j=2

e−2mj · E
[
ζt(τ,mj)

2|Ft

]
(∆mj)

2

≤ |ut|2
n∑

j=2

e−2mj · σ2
κκ

2(τ,mj)F
2
t τ

1

2π
e−(v−1

j m2
j−mj+

1
4
vj)(∆mj)

2

≤ C̃t∆m

n∑
j=2

vje
−v−1

j m2
j−mj− 1

4
vj∆mj

≤ C̃t∆m

n∑
j=2

vje
−d2−(mj)∆mj ,

where d−(m) := −mv−1/2(m) − 1
2v

1/2(m) and C̃t is some Ft-adapted random variable, that

does not depend on the log-moneyness level. Then the right-hand side summation converges to∫ ∞

−∞
v(m) exp

(
−d2−(m)

)
dm =:

∫ ∞

−∞
h(m)dm,

provided that the function h(m) is integrable. To show the latter, we focus on the tail behavior

since h is continuous and bounded on the definite interval (m,m). For that, we will make use

of the asymptotic results of Lee (2004):

lim sup
m→−∞

v(m)

|m|
= β∗

l with β∗
l ∈ [0, 2] and

1

2β∗
l

+
β∗
l

8
− 1

2
= sup{q : E[F−q

t+τ |Ft] < ∞},

lim sup
m→∞

v(m)

|m|
= β∗

r with β∗
r ∈ [0, 2] and

1

2β∗
r

+
β∗
r

8
− 1

2
= sup{p : E[F 1+p

t+τ |Ft] < ∞}.

That is, for m < 0, the implied variance v(m) grows at most as fast as −β∗
l m with some β∗

l .

Given Assumption 3 on moments of the reciprocal process, we have β∗
l < 1, which implies that

h(m) = v exp

(
−v−1m2 −m− 1

4
v

)
≤ −β∗

l m exp

(
m

β∗
l

−m

)
is integrable on the left tail. The integrability on the right tail is achieved even without the use

of moment conditions. Therefore, since the summation converges under the joint asymptotic

scheme to the integral above, we have that ζ
(1)
t (u, τ) = Op

(√
∆m

)
= Op

(√
logn
n

)
.

From Assumption 2 it also follows that E[ζ(1)t (u, τ)|Ft] = 0, while the discretization and

truncation errors ζ
(2)
t (u, τ) and ζ

(3)
t (u, τ) are Ft-measurable. Therefore, the covariance and the

pseudo-covariance terms of the CCF approximation are given by the second moments of the
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observation errors ζ
(1)
t (u, τ), that is,

Cov(ζϕt (ui, τ), ζ
ϕ
t (uj , τ)) : = E

[(
ζϕt (ui, τ)− E[ζϕt (ui, τ)]

)(
ζϕt (uj , τ)− E[ζϕt (uj , τ)]

)∣∣∣∣∣Ft

]
= E

[
ζ
(1)
t (ui, τ)ζ

(1)
t (−uj , τ)

∣∣∣Ft

]
= ui,tuj,t

n∑
j=2

e(i(ui−uj)−2)mj · σ2
t (τ,mj)(∆mj)

2

= σ2
κ · ui,tuj,t

n∑
j=2

e(i(ui−uj)−2)mj · κ2t (τ,mj)ν
2
t (τ,mj)(∆mj)

2

︸ ︷︷ ︸
=:γt(ui,uj ,τ)

= σ2
κ · γt(ui, uj , τ),

and

PCov(ζϕt (ui, τ), ζ
ϕ
t (uj , τ)) : = E

[(
ζϕt (ui, τ)− E[ζϕt (ui, τ)]

)(
ζϕt (uj , τ)− E[ζϕt (uj , τ)]

) ∣∣∣∣∣Ft

]
= E

[
ζ
(1)
t (ui, τ)ζ

(1)
t (uj , τ)

∣∣∣Ft

]
= σ2

κ · ui,tuj,t
n∑

j=2

e(i(ui+uj)−2)mj · κ2t (τ,mj)ν
2
t (τ,mj)(∆mj)

2

︸ ︷︷ ︸
=:ct(ui,uj ,τ)

= σ2
κ · ct(ui, uj , τ),

for any ui, uj ∈ U , where z denotes the complex conjugate of a complex number z ∈ C. In

other words, the covariances of the total measurement errors in the CCF approximation are

determined by the properties of the observation errors in option prices only. Note that the

terms γt(ui, uj , τ) and ct(ui, uj , τ) depend only on option’s characteristics such as BSIV, BS

vega and moneyness levels. That is, the covariance terms are parametrized using only a single

parameter σκ that reflects the variance of the observation errors in option prices.

The measurement equation for the filtering problem is given in terms of the log CCF.

Therefore, by applying a Taylor-series expansion to the difference of the logs and using the

error decomposition of the CCF approximation we have

ξt(u, τ) := log ϕ̂t(u, τ)− log ϕt(u, τ) = log

(
1 +

ζ
(1)
t (u, τ) + ζ

(2)
t (u, τ) + ζ

(3)
t (u, τ)

ϕt(u, τ)

)
= ξ

(1)
t (u, τ) + rt(u, τ),

where

ξ
(1)
t (u, τ) :=

ζ
(1)
t (u, τ)

ϕt(u, τ)
= Op

(√
log n

n

)
and rt(u, τ) = Op

(
n−2(α∧α) ∨ log n

n

)
.

We note that the remainder term collects the log-linearization of the truncation and discretiza-

tion errors and higher-order terms from a Taylor-series expansion.
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After stacking each component of the measurement equation (12) as well as the observation

errors ξ
(1)
t (u, τ) and remainder rt(u, τ) along arguments, real and imaginary parts, and maturity,

we get state space measurement equation (19) in Proposition 1.

To derive the covariance matrix of the measurement errors, we first consider the covariance

and pseudo-covariance matrices of the stacked vector ξ
(1)
t,τ =

(
ξ
(1)
t (u1, τ), ξ

(1)
t (u2, τ), . . . , ξ

(1)
t (uq, τ)

)T
for a fixed time t and time-to-maturity τ are given by

Γt,τ : = E
[
ξ
(1)
t,τ ξ

(1)
t,τ

T
]
=
[
E[ξ(1)t (ui, τ)ξ

(1)
t (−uj , τ)]

]
1≤i,j≤q

(B.9)

= σ2
κ ·
[

γt(ui, uj , τ)

ϕt(ui, τ)ϕt(−uj , τ)

]
1≤i,j≤q

=: σ2
κ · Γ̃t,τ ,

Ct,τ : = E
[
ξ
(1)
t,τ ξ

(1)
t,τ

T
]
=
[
E[ξ(1)t (ui, τ)ξ

(1)
t (uj , τ)]

]
1≤i,j≤q

(B.10)

= σ2
κ ·
[

ct(ui, uj , τ)

ϕt(ui, τ)ϕt(uj , τ)

]
1≤i,j≤q

=: σ2
κ · C̃t,τ .

Since the ξ
(1)
t,τ is the complex-valued random vector, the covariance matrix of the stacked

real and imaginary parts of ξ
(1)
t,τ is of the following form:

Ht,τ = Var

[(
ℜ(ξ(1)t,τ )

ℑ(ξ(1)t,τ )

)]
=

(
1
2ℜ(Γt,τ + Ct,τ )

1
2ℑ(−Γt,τ + Ct,τ )

1
2ℑ(Γt,τ + Ct,τ )

1
2ℜ(Γt,τ − Ct,τ )

)

= σ2
κ·

(
1
2ℜ(Γ̃t,τ + C̃t,τ )

1
2ℑ(−Γ̃t,τ + C̃t,τ )

1
2ℑ(Γ̃t,τ + C̃t,τ )

1
2ℜ(Γ̃t,τ − C̃t,τ )

)
= σ2

κ·H̃t,τ .

Given Assumption 2, the error terms ζ
(1)
t,τ and ξ

(1)
t,τ are conditionally independent along

maturity and time. This implies that the stacked along maturities measurement errors εt are

also conditionally independent, thus E[εtε′s] = 0 for s ̸= t, and their covariance matrix has a

blog-diagonal form: Ht = blkdiag{Ht,1, . . . ,Ht,k}.
The disturbance term in the state updating equation is given by ηt+1 = xt+1 − E[xt+1|Ft].

Therefore, ηt is martingale difference sequences, thus E[ηtη′s] = 0 for s ̸= t = 1, . . . , T .

Since the measurement errors εt have zero mean conditional on filtration Ft, we also have

that E[εtxt] = 0. Given the state process is stationary and the initial condition is the un-

conditional mean, E[εtx′1] = 0 and E[ηt+1x
′
1] = 0. All of these imply that E[εtη′s] = 0 for all

s, t = 1, . . . , T .

Appendix C Conditional Moments

In this appendix, we show how the conditional mean and variance can be computed for the

AJD class of models. In particular, we derive the closed-form expressions for the conditional

mean and variance in the univariate case and discuss how these moments can be obtained in the

multivariate setting numerically with little computational costs. While semi-closed expressions

are also available in the multivariate setting, they are more cumbersome to work with in practice

since they require matrix exponential and integrations.
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We start with considering the univariate version of the AJD process in (4), denoted as xt:

dxt = µ(xt)dt + σ(xt)dWt + ZtdNt, (C.1)

with µ(xt) = k0 + k1xt, σ2(xt) = h0 + h1xt, λ(xt) = l0 + l1xt, where all coefficients are

real-valued numbers and the standard Brownian motion Wt and the counting process Nt are

univariate processes. The jump size distribution is independent of time and of any form of

randomness in the model. We further assume Assumption 1 to hold. For more notational

details see Section 2.2 and Duffie et al. (2000). Furthermore, for notational simplicity, let us

introduce the following terms:

g0 := k0 + l0J1, g1 := k1 + l1J1, J1 := E[Z], J2 := E[Z2].

An infinitesimal generator D defined at a bounded C2 function f : D → R is

Df(x) = fx(x)µ(x) +
1

2
fxx(x)σ(x)

2 + λ(x)

∫
R
[f(x+ z)− f(x)]dν(z),

where fx and fxx are the bounded first and second derivatives, respectively. The Dynkin’s

formula yields

E[f(xT )|Ft] = f(xt) + E
[∫ T

t
Df(xs)ds

∣∣Ft

]
.

Therefore, we can find the conditional moments by applying Dynkin’s formula for f(x) = x:

E[xT |Ft] = xt + E
[∫ T

t

(
µ(xs) + λ(xs)

∫
R
zdν(z)

)
ds
∣∣Ft

]
= xt + E

[∫ T

t
(k0 + k1xs + (l0 + l1xs)J1) ds

∣∣Ft

]
= xt +

∫ T

t

(
k0 + l0J1 + (k1 + l1J1)E[xs

∣∣Ft]
)
ds

= xt +

∫ T

t

(
g0 + g1E[xs

∣∣Ft]
)
ds,

where Fubini’s theorem is used in the third line. Hence, we can obtain the first conditional

moment by solving the ODE:

dE[xs|Ft] =
(
g0 + g1E[xs

∣∣Ft]
)
ds,

with the initial condition E[xt|Ft] = xt. Therefore, the conditional expectation is given by

mt(T ) := E[xT |Ft] = eg1(T−t)xt +
g0
g1

(
eg1(T−t) − 1

)
. (C.2)

Now we are interested in deriving the conditional variance:

Var(xT |Ft) = E[(xT − E[xT |Ft])
2|Ft].

Note that

xT − E[xT |Ft] = E[xT |FT ]− E[xT |Ft] =

∫ T

t
dE[xT |Fs] =

∫ T

t
dms(T ).
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The dynamics of the conditional mean for fixed T > t can be obtained by using Ito’s lemma:

dmt(T ) =
[
−g1e

g1(T−t)xt − g0e
g1(T−t)

]
dt + eg1(T−t)(µ(xt)dt + σ(xt)dWt) + eg1(T−t)ZtdNt

= eg1(T−t) [−(l0 + l1xt)J1dt + σ(xt)dWt + ZtdNt] .

Note that the process mt(T ) for fixed T is a local martingale. Thus, we can use the Ito

isometry to get the conditional variance:

Var(xT |Ft) = Et

[(∫ T

t
dms(T )

)2
]

= Et

[∫ T

t
e2g1(T−s)σ2(xs)ds

]
+ J2 · Et

[∫ T

t
e2g1(T−s)λ(xs)ds

]
=

∫ T

t
e2g1(T−s)(h0 + h1Et[xs])ds + J2 ·

∫ T

t
e2g1(T−s)(l0 + l1Et[xs])ds

= (h0 + l0J2)

∫ T

t
e2g1(T−s)ds + (h1 + l1J2) ·

∫ T

t
e2g1(T−s)Et[xs]ds,

where we have used Fubini’s theorem to interchange the expectation and integration. Given the

conditional expectation, the second integral can be further simplified:∫ T

t
e2g1(T−s)Et[xs]ds =

∫ T

t
e2g1(T−s)

[
eg1(s−t)xt +

g0
g1

(
eg1(s−t) − 1

)]
ds

= e2g1T
[∫ T

t
e−g1(s+t)xt +

g0
g1

(
e−g1(s+t) − e−2g1s

)
ds

]
= e2g1T

[
− 1

g1

(
e−g1(T+t) − e−2g1t

)
xt −

g0
g21

(
e−g1(T+t) − e−2g1t

)
+

g0
2g21

(
e−2g1T − e−2g1t

)]
= − 1

g1

(
eg1(T−t) − e2g1(T−t)

)
xt +

g0
2g21

(
−2eg1(T−t) + 2e2g1(T−t) + 1− e2g1(T−t)

)
= − 1

g1

(
eg1(T−t) − e2g1(T−t)

)
xt +

g0
2g21

(
1− eg1(T−t)

)2
.

Therefore, the conditional variance in the univariate case is given by

Var(xT |Ft) =− 1

2g1
(h0 + l0J2)

(
1− e2g1(T−t)

)
− 1

2g21
(h1 + l1J2)

[
2g1

(
eg1(T−t) − e2g1(T−t)

)
xt − g0

(
1− eg1(T−t)

)2]
. (C.3)

Equations (C.2) and (C.3) are the basis for the formulation of the transition equation (20) as

discussed in Section 3.1. It is crucial for our application to note that the conditional mean (C.2)

and conditional variance (C.3) of the univariate AJD process xT at time T > t conditional on

information at time t are affine functions in xt. The affinity of the conditional moments yields

the linear state updating equation, which, in turn, allows us to use the linear Kalman filtering

technique.

Using the same reasoning, it is also possible to derive the analogues of equations (C.2) and

(C.3) for the multivariate AJD process. However, these expressions involve matrix exponential

and their integrations, which makes it cumbersome to work with analytically. Fortunately, the

conditional moments can be easily obtained by differentiating the CCF, which is known in a

47



semi-closed form for the AJD class (see Section 2.2). The finite difference approximations of

the first and second derivatives around the origin yield very precise results with little additional

computational costs. One can also easily verify that the affine property of the conditional

moments holds in the multivariate case by differentiating the exponentially-affine CCF.

Appendix D Option Extrapolation Scheme

In this appendix, we discuss in details the extrapolation scheme we adopt to extrapolate option

prices beyond the observable range of strikes. As discussed in Section 5, we extrapolate total

implied variance linearly in log-moneyness since it is consistent with the Roger Lee’s moment

formula.

In fact, the asymptotic result of Lee (2004) for extreme strikes states that the implied

volatility wings should not grow faster than |m|1/2 and should not grow slower than |m|1/2,
unless the underlying asset has finite moments of all orders. In particular, Lee (2004) shows

that

lim sup
m→−∞

κ2(m, τ) · τ
|m|

= β∗
l with β∗

l ∈ [0, 2] and (D.1)

lim sup
m→∞

κ2(m, τ) · τ
|m|

= β∗
r with β∗

r ∈ [0, 2]. (D.2)

Furthermore, he establishes that there is a one-to-one correspondence between β∗
r and the

number of moments of the underlying Sτ , and β∗
l and the number of moments of 1/Sτ . For

instance, for the right tail the moment formula for implied volatility is

1

2β∗
r

+
β∗
r

8
− 1

2
= sup{p : E[S1+p

τ ] < ∞}.

This result allows us to conjecture the asymptotically valid parametrization to extrapolate

the implied volatility beyond the observable range of strikes. In other words, we assume that

the total variance v(m, τ) = κ2(m, τ) · τ is linear in log-moneyness:

v(m, τ) = α+ β ·m.

The intercept coefficients are introduced to guarantee continuity between interpolation and

extrapolation domains. These coefficients are exactly determined by the smallest and largest

observable strike prices (or corresponding log-moneyness levels, denoted by ml and mr, respec-

tively) given the slopes βl and βr for the left and right tails, respectively:

αl = v(ml, τ)− βl ·ml and αr = v(mr, τ)− βr ·mr.

Therefore, what we have left to do is to establish the choice of the coefficients βl and βr.

Note that the moment formulas are devoted for the upper bounds (D.1) and (D.2). Further-

more, finding the number of finite moments of the underlying would require parametrizing the

dynamics of Sτ .
15 The latter is not desirable in our application since we want to fit another

15Note that the flat-extrapolation assumes the log-normality of the underlying asset in the tails. Since all

moments of the log-normal distribution exist, it means that the slope has to be indeed zero.
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parametric model afterwards. Instead, we simply use the derivative of the fitted cubic spline at

the last observable strikes to determine the slopes:

βl = −∂v(m, τ)

∂m

∣∣∣∣∣
m=ml

and βr =
∂v(m, τ)

∂m

∣∣∣∣∣
m=mr

.

Note that Lee’s bounds for the slopes are asymptotic result. Therefore, the slopes βl and

βr should also satisfy these bounds, which translates in βl ∈ [−2, 0] for the left slope. However,

arbitrage-free conditions for our parametrization might possibly be tighter since we are in a

finite setting. To obtain these conditions, we closely follow the derivation sketched in Jäckel

(2014).

First, similar to Gatheral and Jacquier (2014) we introduce a function w : R → R:

w(m) :=

(
1− m

2
· v

′(m)

v(m)

)2

− v′(m)2

4

(
1

4
+

1

v(m)

)
+

1

2
v′′(m).

Then the second derivative of an option with respect to the strike price can be expressed via

this function as

∂2C(K, τ)

∂K2
= e−rτ φ(d2)√

v(m)K
w(m),

where φ(x) is the pdf of the standard normal distribution and d2 = − m√
v
−

√
v
2 . Since the second

derivative of on option yields the risk-neutral density, to guarantee the arbitrage-freeness of the

slice any extrapolation (and interpolation) methods should satisfy w(m) ≥ 0 for all m ∈ R.
See also Gatheral and Jacquier (2014) for more details. In the following, we investigate this

inequality for our chosen parametrization.

Substituting v(m) = α+ β ·m into the inequality w(m) ≥ 0 we have

w(m) =

(
1− m

2
· β

v(m)

)2

− β2

4

(
1

4
+

1

v(m)

)
≥ 0.

Multiplying this inequality by non-negative factor 4 · v(m)2 results in

(2v(m)−mβ)2 − β2

(
1

4
v(m)2 + v(m)

)
≥ 0

(2α+ βm)2 − β2

4
(α2 + 4α+ (2αβ + 4β)m+ β2m2) ≥ 0

β2

(
1− β2

4

)
m2 +

(
4α− β2

4
(2α+ 4)

)
βm+ 4α2 − β2

4
(α2 + 4α) ≥ 0

1

4
β2(4− β2)m2 + (4α− 1

2
β2α− β2)βm+ 4α2 − 1

4
β2α2 − αβ2 ≥ 0 (D.3)

The left-hand side is the quadratic function inm with non-negative quadratic coefficient 1
4β

2(4−
β2) since |β| ≤ 2. The discriminant of this quadratic polynomial is ∆ = β4(α2−4α+β2). Thus,

if ∆ < 0, no real roots exist, and hence, w(m) ≥ 0 for all β and m. Therefore, for the right tail

we have

∆ < 0 ⇐⇒ α2 − 4α+ β2 < 0

(vr − βmr)
2 − 4(vr − βmr) + β2 < 0

(m2
r + 1)β2 − 2mr(vr − 2)β + v2r − 4vr < 0
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where we have substituted values for α, determined by the largest extreme strike price with the

moneyness mr and the total variance vr := v(mr). The discriminant of the quadratic equation

on the left-hand side is given by ∆̃r = 4(4m2
r − v2r +4vr). Assuming vr < 4 we get that the real

roots of this polynomial have different signs. Therefore, we get a condition:

0 < βr <
mr(vr − 2) +

√
∆r

m2
r + 1

if ∆r := 4m2
r − v2r + 4vr > 0. (D.4)

If ∆r ≤ 0, then ∆ > 0. Assuming the positive density at the largest strike, that is,

w(mr) > 0, we only need to ensure that the global minimum of the quadratic function on the

left-hand side of (D.3) is to the left of mr:

β2α+ 2β2 − 8α

β(4− β2)
< mr

(vr − βmr + 2)β2 − 8(vr − βmr) < mrβ(4− β2)

(vr + 2)β2 + 4mrβ − 8vr < 0.

Since the discriminant of this quadratic function is ∆1 = 16(m2
r +2v2r +4vr) > 0 we get another

condition on βr:

0 < βr <
−2mr + 2

√
m2

r + 2v2r + 4vr
vr + 2

. (D.5)

Combining (D.4) and (D.5) we get the arbitrage-free condition for the right tail slope βr:

0 ≤ βr < min(βmax, 2)

with

βmax =


max

(
mr(vr−2)+

√
∆r

m2
r+1

,
−2mr+2

√
m2

r+2v2r+4vr
vr+2

)
if ∆r > 0

−2mr+2
√

m2
r+2v2r+4vr

vr+2 if ∆r ≤ 0.

Note that since the right boundary in (D.5) is always positive, βmax > 0 regardless of

whether vr < 4 or not. Thus, the assumption imposed above on vt < 4 is redundant.

The left-tail slope boundaries can be obtained in a similar way by substituting the observable

option price vl := v(ml) with the smallest strike price ml and taking the negative roots of

quadratic polynomials where necessary:

max(βmin,−2) < βl ≤ 0

with

βmin =


max

(
ml(vl−2)−

√
∆l

m2
l +1

,
−2ml−2

√
m2

l +2v2l +4vl
vl+2

)
if ∆l > 0

−2ml+2
√

m2
l +2v2l +4vl

vl+2 if ∆l ≤ 0.

where ∆l := 4m2
l − v2l + 4vl.
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Appendix E Additional Simulation and Empirical Results

In this appendix we provide the Monte Carlo results for another two option pricing specifications.

In particular, we consider the specification with the Gaussian jump size distribution and two

separate jump processes for positive and negative jumps.

E.1 Additional simulation results

E.1.1 SVCJ

We additionally illustrate the developed estimation approach based on the widely used ‘double-

jump’ stochastic volatility model of Duffie et al. (2000) with Gaussian jump size distribution.

In particular, we assume the following process for the log forward price under the both P and

Q probability measures:

d logFt = (−1

2
vt − µλt)dt +

√
vtdW1,t + ZtdNt, (E.1)

dvt = κ(v̄ − vt)dt + σ
√
vtdW2,t + Zv

t dNt, (E.2)

where two Brownian motions W1 and W2 are assumed to be correlated with the coefficient ϱ;

Nt is the Poisson jump process with intensity λt; Z
v ∼ exp(1/µv) are the jumps in volatility

and Z ∼ N (µj , σ
2
j ) are the jumps in prices. Given the jump size distributions, the expected

relative jump size in returns µ = exp(µj +
1
2σ

2
j ) − 1. We further extend the specification by

letting the intensity to be multiple the stochastic variance as in Pan (2002), that is, λt = δvt.

The main difference from the SVCDEJ specification in Section 4.1 is Gaussian jump sizes in

returns and the jump size in volatility being independent from jump sizes in returns.

The discounted marginal CCF of the log forward prices in the SVCJ model is given by

ϕt(u, τ) = e−rτEQ[eiu·Xt+τ |Ft] = eα(u,τ)+β1(u,τ) logFt+β2(u,τ)vt , (E.3)

where u ∈ R is an argument and α(u, τ) and β(u, τ) are solutions to the complex-valued ODE

system in time:

β̇1(s) = 0,

β̇2(s) = −
(
µδ + 1

2(1−β1(s))
)
β1(s)− κβ2(s) + ρσvβ1(s)β2(s) +

1
2σ

2
vβ

2
2(s)

+δ(χ(β1, β2)−1),

α̇(s) = κv̄β2(s)− r,

with initial conditions β1(0) = iu, β2(0) = 0 and α(0) = 0. Here the ‘jump transform’

χ(β1, β2) = exp(β1µj +
1
2β

2
1σ

2
j ) (1− β2µv)

−1. Therefore, as in the SVCDEJ specification, the

linear relation between the log of the option-spanned CCF and the state vector is given by

log ϕ̂t(u, τ) = α(u, τ) + β2(u, τ)vt + ξt(u, τ), u ∈ R,

where τ > 0 is the time-to-maturity of available options and ξt(u, τ) is the measurement error

term. We use this linear relation to construct the measurement equation as discussed in Section

3.1.
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The conditional mean and variance of the latent stochastic volatility process are given by

E[vt+1|Ft] = eg1∆tvt +
g0
g1

(
eg1∆t − 1

)
, (E.4)

Var(vt+1|Ft) = −σ2 + 2δµ2
v

2g21

[
2g1
(
eg1∆t − e2g1∆t

)
vt − g0

(
1− eg1∆t

)2]
, (E.5)

with g0 = κv̄ and g1 = −κ + δµv. Equations (E.4) and (E.5) are used to define the state

updating equation:

vt+1 = c+ Tvt + ηt+1 (E.6)

where c = g0
g1

(
eg1∆t − 1

)
, T = eg1∆t and Var(ηt+1|Ft) = Var(vt+1|Ft). We also impose the

Feller condition 2κv̄ > σ2 and the covariance stationary condition κ > δµv.

Table 8: Monte Carlo experiment for the SVCJ model, 500 iterations

params σ κ v̄ ϱ δ µj σj µv σκ

u=1,. . . ,15

trues 0.400 5.000 0.02 -0.95 20.000 -0.100 0.04 0.05 0.02

mean 0.410 4.869 0.0207 -0.9382 17.013 -0.110 0.0343 0.0520 0.0215

std 0.012 0.115 0.0007 0.0151 3.171 0.014 0.0124 0.0026 0.0044

q10 0.400 4.681 0.0201 -0.9516 11.209 -0.136 0.0100 0.0501 0.0166

q50 0.405 4.905 0.0204 -0.9445 18.537 -0.103 0.0404 0.0507 0.0206

q90 0.433 4.988 0.0219 -0.9114 19.573 -0.100 0.0431 0.0570 0.0274

u=1,. . . ,20

trues 0.400 5.000 0.02 -0.95 20.000 -0.100 0.04 0.05 0.02

mean 0.403 4.913 0.0202 -0.9444 18.866 -0.103 0.0397 0.0502 0.0198

std 0.006 0.091 0.0003 0.0085 1.420 0.006 0.0050 0.0010 0.0062

q10 0.396 4.830 0.0199 -0.9524 17.903 -0.105 0.0375 0.0496 0.0156

q50 0.403 4.930 0.0202 -0.9456 19.048 -0.102 0.0408 0.0501 0.0185

q90 0.410 5.000 0.0206 -0.9373 20.088 -0.100 0.0426 0.0506 0.0234

u=1,. . . ,25

trues 0.400 5.000 0.02 -0.95 20.000 -0.100 0.04 0.05 0.02

mean 0.395 4.907 0.0200 -0.9555 20.424 -0.097 0.0435 0.0495 0.0207

std 0.009 0.129 0.0003 0.0146 1.297 0.004 0.0029 0.0005 0.0097

q10 0.384 4.776 0.0196 -0.9710 19.209 -0.101 0.0405 0.0489 0.0152

q50 0.395 4.934 0.0200 -0.9564 20.392 -0.097 0.0436 0.0495 0.0178

q90 0.404 5.010 0.0203 -0.9409 22.029 -0.093 0.0473 0.0500 0.0284

Note: This table provides Monte Carlo simulation results for the SVCJ model. We use T = 500 time points

with ∆t = 1/250. The initial values are set to F0 = 100 and v0 = 0.02.

We use the simulation setting as in Section 4.1. The simulation results are provided in Table

8. As the richer specification in Section 4.1, the results of the SVCJ model also have good finite

sample properties. We also note that the ‘double-jump’ specification includes other widely used

option pricing models such us the stochastic volatility model of Heston (1993).

E.1.2 SVCEJ with variance risk premia

Since the transition equation in the state space representation reflects the dynamics of the

latent components, it is, in general, possible to learn the risk premia associated with this latent
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process. In this subsection, we provide the Monte Carlo simulation with the variance risk premia

(VRP) in the SVCJ model. In particular, we model the VRP πv as the difference between the

mean-reversion parameters under the P and Q measures, that is, in the state transition equation

(E.6) we change the mean-reversion parameter to κP = κ+ πv.

Table 9: Monte Carlo experiment for the SVCJ model with variance risk premium

params σ κ v̄ ϱ δ µj σj µv σκ πv

constraint πv = 1.0

trues 0.400 5.000 0.2000 -0.950 20.000 -0.100 0.0400 0.0500 0.0200 1.000

mean 0.402 4.924 0.0202 -0.946 18.882 -0.103 0.0396 0.0503 0.0158 -

std 0.007 0.073 0.0003 0.008 1.515 0.006 0.0051 0.0010 0.0031 -

q10 0.396 4.841 0.0199 -0.953 18.012 -0.105 0.0374 0.0496 0.0127 -

q50 0.401 4.931 0.0202 -0.947 19.136 -0.101 0.0408 0.0501 0.0155 -

q90 0.409 5.003 0.0205 -0.939 20.182 -0.099 0.0427 0.0508 0.0189 -

constraint πv = 0.0

trues 0.400 5.000 0.2000 -0.950 20.000 -0.100 0.0400 0.0500 0.0200 1.000

mean 0.402 4.924 0.0202 -0.946 18.882 -0.103 0.0396 0.0503 0.0158 -

std 0.007 0.073 0.0003 0.008 1.515 0.006 0.0051 0.0010 0.0031 -

q10 0.396 4.841 0.0199 -0.953 18.012 -0.105 0.0374 0.0496 0.0127 -

q50 0.401 4.931 0.0202 -0.947 19.136 -0.101 0.0408 0.0501 0.0155 -

q90 0.409 5.003 0.0205 -0.939 20.182 -0.099 0.0427 0.0508 0.0189 -

unconstrained

trues 0.400 5.000 0.2000 -0.950 20.000 -0.100 0.0400 0.0500 0.0200 1.000

mean 0.402 4.923 0.0202 -0.945 18.865 -0.103 0.0395 0.0503 0.0158 4.029

std 0.007 0.074 0.0003 0.008 1.546 0.006 0.0052 0.0011 0.0031 4.942

q10 0.396 4.835 0.0199 -0.953 17.985 -0.105 0.0373 0.0496 0.0127 -4.338

q50 0.401 4.931 0.0202 -0.947 19.136 -0.101 0.0408 0.0502 0.0155 4.558

q90 0.409 5.003 0.0206 -0.939 20.182 -0.099 0.0427 0.0508 0.0189 9.883

Note: This table provides Monte Carlo simulation results for the SVCJ model with variance risk premia. The

argument range is set to u = 1, ..., 20. We use T = 500 time points with ∆t = 1/250. The initial values are set

to F0 = 100 and v0 = 0.02.

Table 9 provides the Monte Carlo simulation results for the SVCJ model with VRP. We

consider three estimation approaches. First, we fix the VRP parameter to its true value πv = 1.

Second, we assume there is no VRP, although the true model is simulated with non-zero VRP,

that is, we fix πv = 0 in the estimation procedure. Finally, we estimate the VRP along with all

model parameters.

As the results suggests, it is hard to identify the VRP in this setting. Potentially, the Q-

information in the option prices largely dominates the P-information making the identification

of the VRP hardly possible. A similar issue arises in the term structure literature, where often

calibrated bond prices imply unrealistic P-dynamics. However, we also notice that in all three

estimation settings, the identification of the Q-parameters hardly changes. That is, even in the

model with VRP fixed to zero, the parameter estimates have good finite-sample properties.
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E.1.3 SVCEJ

In the SVCJ model above, the jump sizes are modeled using a Gaussian distribution. Alterna-

tively, we can consider an exponential distribution. Following Bardgett et al. (2019), we consider

two separate counting processes for negative and positive jumps N−
t and N+

t , respectively, and

modify the SVCJ specification as follows:

d logFt = (−1

2
vt − µ−λ+

t − µ−λ+
t )dt +

√
vtdW1,t + Z−

t dN−
t + Z+

t dN+
t , (E.7)

dvt = κ(v̄ − vt)dt + σ
√
vtdW2,t + Zv

t dN
−
t , (E.8)

where λ−
t and λ+

t are corresponding jump intensities for negative and positive jumps, and −Z−
t

and Z+
t are exponentially distributed negative and positive jump sizes in log returns with means

η− and η+, respectively. Note that the negative jump sizes have negative support, that is, Z−
t

is negative exponential. Given the jump size distributions, the expected relative jump sizes

in returns are µ− = E[eZ−−1] = 1
1+η−−1 and µ+ = E[eZ+−1] = 1

1−η+
−1. We further let

the intensities to be affine functions of the stochastic volatility, that is, λ−
t = δ−0 + δ−1 vt and

λ+
t = δ+0 + δ+1 vt. However, to keep a moderate number of parameters, we set δ+1 = 0 and

δ−0 = 0. This is in agreement with our empirical findings. Pan (2002), for instance, also finds

the intercept parameter to be close to zero and insignificant. Andersen et al. (2015) similarly

set these parameters to zero in their model with double-exponential jump sizes. Finally, we

allow the volatility to co-jump with negative jumps in returns with exponential jump sizes with

mean µv.

This specification is somewhat richer than the SVCDEJ considered in Section 4.1 since the

positive jumps are modeled by a separate counting process with its own positive jump intensity

λ+
t . Nevertheless, this specification also belongs to the AJD class and its CCF of the log forward

prices has semi-closed form.

The conditional mean and variance of the latent stochastic volatility process are given by

E[vt+1|Ft] = eg1∆tvt +
g0
g1

(
eg1∆t − 1

)
, (E.9)

Var(vt+1|Ft) = −σ2 + 2δ−1 µ
2
v

2g21

[
2g1
(
eg1∆t − e2g1∆t

)
vt − g0

(
1− eg1∆t

)2]
, (E.10)

with g0 = κv̄ and g1 = −κ + δ−1 µv. Equations (E.9) and (E.10) are used to define the state

updating equation:

vt+1 = c+ Tvt + ηt+1 (E.11)

where c = g0
g1

(
eg1∆t − 1

)
, T = eg1∆t and Var(ηt+1|Ft) = Var(vt+1|Ft). We also impose the

Feller condition 2κv̄ > σ2 and the covariance stationary condition κ > δ−1 µv.

The Monte Carlo simulation results for the SVCEJ model are provided in Table 10. We

notice that most of the parameters exhibit good finite sample performance. However, the

parameters related to the positive jumps are biased and have large standard deviation.
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Table 10: Monte Carlo experiment for the SVCEJ model, 300 iterations

params σ κ v̄ ϱ δ+0 δ−1 η+ η− µv σκ

u=1,. . . ,15

trues 0.450 8.000 0.015 -0.95 2.000 100.000 0.01 0.05 0.05 0.02

mean 0.483 8.063 0.0159 -0.9242 0.512 99.475 0.0355 0.0527 0.0529 0.0626

std 0.069 1.506 0.0026 0.0796 1.690 21.104 0.0211 0.0196 0.0351 0.1820

q10 0.459 7.642 0.0150 -0.9577 0.028 90.701 0.0191 0.0485 0.0473 0.0170

q50 0.486 7.914 0.0157 -0.9261 0.125 99.718 0.0320 0.0495 0.0482 0.0229

q90 0.511 8.306 0.0168 -0.9049 0.578 106.121 0.0524 0.0505 0.0504 0.0302

u=1,. . . ,20

trues 0.450 8.000 0.015 -0.95 2.000 100.000 0.01 0.05 0.05 0.02

mean 0.462 8.178 0.0149 -0.9551 1.309 110.631 0.0166 0.0510 0.0464 0.0482

std 0.042 0.804 0.0020 0.0266 1.566 18.690 0.0130 0.0156 0.0056 0.1425

q10 0.443 7.849 0.0144 -0.9851 0.531 101.950 0.0121 0.0478 0.0452 0.0143

q50 0.454 8.099 0.0148 -0.9588 0.964 107.556 0.0155 0.0489 0.0468 0.0184

q90 0.488 8.410 0.0154 -0.9165 1.742 115.366 0.0190 0.0498 0.0484 0.0368

u=1,. . . ,25

trues 0.450 8.000 0.015 -0.95 2.000 100.000 0.01 0.05 0.05 0.02

mean 0.466 7.966 0.0154 -0.9417 1.526 104.783 0.0157 0.0515 0.0479 0.0381

std 0.048 0.615 0.0022 0.0321 1.322 17.732 0.0203 0.0140 0.0114 0.1101

q10 0.442 7.671 0.0146 -0.9726 0.602 97.221 0.0106 0.0488 0.0462 0.0129

q50 0.454 7.963 0.0150 -0.9484 1.394 103.412 0.0126 0.0496 0.0476 0.0152

q90 0.494 8.171 0.0159 -0.8935 2.130 109.523 0.0167 0.0505 0.0492 0.0417

Note: This table provides Monte Carlo simulation results for the SVCEJ model. We use T = 500 time points

with ∆t = 1/250. The initial values are set to F0 = 100 and v0 = 0.015.
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E.2 Additional empirical results

Table 11 provides additional empirical results for the same model specification as in Section

4.1. Next to the empirical results with fixed p− = 0.7 in Section 6, we provide the estimates

with unrestricted probability of negative jumps and with different fixed values p− = 0.65 and

p− = 0.75. Overall, the results indicate similar parameter estimates as in Table 5, suggesting

the robustness of our empirical results. We also note larger standard errors of the parameter

estimates in the unrestricted model, specifically of the parameter δ which enters the model

as a multiple of p−. This is in line with our simulation results for the unrestricted model

(not provided here), which shows the identification limits of the considered unrestricted model.

Therefore, in the main empirical results we focus on the restricted model, complementing it

with Table 11.

Table 11: SVCDEJ estimates

σ κ v̄ ϱ δ p− η+ η− µv σκ

θ̂ 0.505 8.368 0.0152 -1.000 167.68 0.6619 0.0195 0.0424 0.0516 0.253

s.e. 0.071 0.762 0.0018 0.054 17.04 0.0155 0.0014 0.0007 0.0039 0.004

θ̂ 0.503 8.259 0.0153 -1.000 148.01 =0.75 0.0218 0.0422 0.0517 0.253

s.e. 0.006 0.091 0.0004 0.011 2.66 0.0005 0.0006 0.0004 0.004

θ̂ 0.506 8.007 0.0160 -1.000 162.09 =0.65 0.0196 0.0432 0.0523 0.253

s.e. 0.006 0.178 0.0003 0.021 1.36 0.0003 0.0006 0.0009 0.004

Note: this table provides the parameter estimates for the SVCDEJ model. The model is estimated

based on u = 1, . . . , 20 and s̄ = 10−7.

Table 12 provides empirical results for the alternative model specification SVCEJ detailed

in subsection E.1.3. The SVCEJ specification is richer than the SVCDEJ considered in Section

4.1 since the positive jumps are modeled by a separate counting process with its own positive

jump intensity λ+
t . Nevertheless, we can observe a similar magnitude of most of the model

parameters, which is reassuring for the robustness of our empirical results.

Table 12: SVCEJ parameter estimates

σ κ v̄ ϱ δ+0 δ−1 η+ η− µv γ+ γ− q σκ

None 0.481 8.31 0.0139 -1.00 3.76 107.3 0.0100 0.0445 0.061 - - - 0.221

s.e. 0.007 0.26 0.0002 0.01 0.08 3.99 0.0002 0.0006 0.002 0.004

R0 0.547 11.28 0.0133 -1.00 0.999 83.11 0.0150 0.0439 0.079 0.036 1.587 0.016 0.213

s.e. 0.005 0.25 0.0003 0.01 0.045 2.97 0.0004 0.0006 0.002 0.300 0.142 0.015 0.004

EPU 0.489 8.40 0.0142 -1.00 2.74 102.5 0.0112 0.0448 0.063 0.0008 0.0001 0.0002 0.221

s.e. 0.010 0.41 0.0007 0.01 0.22 3.91 0.0004 0.0011 0.001 0.2903 0.0291 0.0300 0.004
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