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Abstract

Estimation noise is a well-known issue in empirical portfolio modelling. However, existing

models suffer from large forecasting errors which dominate the theoretical gain. In this

paper, we propose a direct weight estimator (DWE), which accounts for forecasting risk and

avoids the over-parametrization problem by forecasting a one-dimensional portfolio measure

directly. We define a forecasting error based on realized measures and optimize for a weight

vector which results in a more precise forecast and at the same time is not far from the

optimal portfolio solution. The DWE is shown to outperform commonly used approaches in

both simulation and empirical studies.
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1 Introduction

It has been long recognized in the literature that modelling underlying volatility of a

return process is one of the key elements of the investment decision. The fundamental

idea is based on the assumption that the investment problem can be formulated in terms

of the first two moments of the return process. When it comes to a portfolio allocation

problem, not only the latent volatility process of individual stock returns needs to be

estimated and forecasted, but also the covariance of the portfolio constituents.

The financial econometrics literature on multivariate volatility estimation and forecast-

ing is very rich (Bauwens et al., 2006). A commonly used class of Dynamic Conditional

Correlation (DCC) models by Tse and Tsui (2002) and Engle (2002) has been often

criticised for a curse of dimensionality. These models use a so-called DRD decomposition,

which splits the covariance matrix into a diagonal matrix of individual stock variances D

and a conditional correlation matrix R, whereby D and R are estimated and modelled

separately. Most of the DCC specifications require a highly parametric two-step likelihood

estimation subject to non-trivial stationarity and positive definiteness constraints, which

become intractable when the number of assets in the portfolio is large.

As the full parametric specification of the DCC is often infeasible, one of the most

common ways to approach the problem of over-parametrization is to simplify the parametric

specification of correlations and/or variances at the cost of model flexibility, e.g. a scalar

DCC model is not able to capture volatility spillover effects. Another direction of

volatility forecasting looks into the shrinkage approaches. Ledoit and Wolf (2004; 2014)

wrote a series of papers on different shrinkage approaches aiming at stabilizing the high

dimensional covariance estimation problem; among recent contributions Engle et al. (2019)

use eigenvalue shrinkage to stabilize the inverse of estimated covariance matrix inverse

for further use in the global minimum variance portfolio. Amongst other improvements
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in the modelling of multivariate volatility are the contributions of Hautsch et al. (2015);

Jin and Maheu (2013); Golosnoy et al. (2012); Hafner and Linton (2010), however the

curse of dimensionality prevents any of the multivariate models to significantly dominate

benchmark DCC models in a general set up.

Another direction in the portfolio optimization literature tackles the problem of over-

parametrization by regularizing the portfolio weight vector directly. An example among

many other contributions is Jagannathan and Ma (2003), who propose to impose a norm-

constraint on the portfolio optimization problem to account for no short sale constraints.

Similarly Brodie et al. (2009), Li (2015), Goto and Xu (2015) use the `1-penalization

(lasso) and Yen (2015) the `2-penalization (ridge) to constrain the portfolio weights.

The major drawback of both shrinkage approaches is the choice of tuning parameters,

which is often non-trivial and derived either under unrealistic assumptions on the data

generating process or relies on the estimates of the first and second moments of the

return process. As an alternative of the return-based estimation Bollerslev et al. (2018b)

recently proposed a HAR-DRD model, which became feasible due to the availability of

the high-frequency data. Intra-day returns allow for ex post nonparametric and consistent

estimation of the daily realized covariance matrices. With a simple HAR model of Corsi

(2009) one can reliably forecast univariate realized variances and correlations, which are

combined together in a DRD decomposition. The HAR-DRD model is extremely easy

to estimate, however, it is subject to the same critique as the DCC models, namely the

number of parameters to estimate grows with the portfolio’s dimension.

Therefore, in this paper, we propose a novel method of forecasting the portfolio weight

vector. In the first step, we utilize realized covariance matrices to construct the ex post

optimal univariate portfolio performance measure of interest. In the second step, this series

is forecasted with a simple univariate HAR model. We then use a constraint optimization

to obtain the forecast of the weight vector which is optimal with respect to the chosen
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portfolio performance measure. Our proposed direct weight estimation approach is easy

to implement, relies on the univariate forecast irrespectively of the portfolio dimension

and is flexible enough to adapt to a variety of portfolio performance criteria.

The remainder of the paper is organized as follows. Section 2 introduces the novel

direct weight estimation (DWE) approach. Section 3 illustrates the properties of DWE

in a simulation study. Section 4 examines its performance in an empirical study and

discusses the restricted DWE. Section 5 concludes.

2 Model

We are interested in the following dynamic portfolio choice problem. Starting with a

market with N distinct assets, we observe the N -dimensional asset prices Pt on a daily

basis, where t denotes the index of the trading days. The corresponding return of holding

the assets on day t is defined as rt = Pt/Pt−1− 1. We shall make the following assumption

on the return process:

Assumption 1

On a filtered probability space (Ω,F , (Ft)t≥0,P), define an N -dimensional vector-valued

daily return process {rt}t=1,2,.... For each interval [t− 1, t], rt is generated as follows:

rt = µt +

∫ t

t−1

ΘsdWs, (1)

where µt is a Ft−1-predictable bounded random variable, Θs is an Fs-adapted N -by-N

right-continuous spot covolatility process, and Ws is an N -dimensional Wiener process.

Denote Σt =
∫ t
t−1

ΘsΘ
′
sds as the quadratic covariation of rt on [t− 1, t], we assume that

for all ω ∈ RN and t, it holds almost surely that 0 < ω′Σtω <∞ and that Σt is weakly

stationary and ergodic.
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In essence, the above assumption states that rt is the endpoint of a continuous semi-

martingale with some drift µt and a positive-definite and stationary quadratic covariation

matrix Σt. The continuous assumption is only for notational convenience and should

not be viewed as a restriction here, as the quadratic covariation is also well-defined in

the presence of square-integrable finite-activity jumps (see, for example, Chapter 1 of

Äıt-Sahalia and Jacod (2014)), albeit with more cumbersome expressions. The assumption

implies that Et−1[rt] = µt and Vt−1[rt] = Et−1[Σt] by construction and the Ito isometry,

where Et−1[·] = E[·|Ft−1] is the Ft−1-conditional expectation operator. For notational

convenience we will denote Ωt = Et−1[Σt].

At time t, a representative investor would like to invest all her capital into the N

assets based on the information set Ft. She then waits till time t+ 1 and rebalances the

position according to Ft+1, and the procedure iterates indefinitely. Let us use the N -by-1

vector ωt to denote the weights assigned to each asset at time t based on Ft−1, which

satisfies ωt ∈ S, where S = {ω ∈ RN : ω′ι = 1} and ι is an N -by-1 vector of ones. The

classical von Neumann-Morgenstern theorem states that at time t, the investor should

maximize the conditional expectation of her utility of holding the portfolio ω′trt to solve

for the portfolio weights:

ω?t = arg max
ωt∈S

Et−1[U(ω′trt)], s.t. ω′tι = 1. (2)

where U(·) is the utility function of the investor. To simplify the analysis, we shall assume

that the investor has a simple mean-variance conditional utility function:

Et−1[Ut(ωt; γ)] = ω′tµt −
γ

2
ω′tΩtωt, (3)

where γ is the Arrow-Pratt risk-aversion coefficient. This can be considered as a second-
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order Taylor expansion around Et−1[ω
′
trt] that approximates a general utility function

(Bollerslev et al., 2018a).

In this paper, we mainly discuss the case with γ =∞, which suggests that the investor

is infinitely risk averse and cares only about the risk of the portfolio. Although the general

γ > 0 case can be dealt with in a similar manner using our method, setting γ =∞ allows

us to focus on optimizing the portfolio variance without the knowledge of µt, which is

known to be notoriously difficult to model precisely (Jagannathan and Ma, 2003). In this

case, we effectively have Ut(ωt) = −ω′tΩtωt, and the argument γ = ∞ is suppressed for

notational convenience. The optimal ex ante weight vector that solves maxωt∈S Ut(ωt) is

the well-known Global Minimum Variance Portfolio (GMVP) weights:

ω?t =
Ω−1
t ι

ι′Ω−1
t ι

, (4)

which requires the knowledge of Ωt. However, modelling Ωt based only on the daily return

process proves to be very challenging due to the curse of dimensionality.

The recent developments in econometric methods for high-frequency data bring a

new solution to this problem. With high-frequency data, we can construct a sequence of

daily realized covariances {Σ̂t}t=1,2,... that estimates the quadratic covariation matrices

{Σt}t=1,2,.... Under the assumption that these estimators are conditionally unbiased such

that Et−1[Σ̂t] = Et−1[Σt] = Ωt, Ωt can be interpreted as the linear predictor of Σ̂t. The

availability of {Σ̂t}t=1,2,... allows us to consider a slightly easier problem:

GMVP allocation with high-frequency data: Given observations of daily realized

covariances {Σt}t=1,2,... and let us denote FΣ
t = σ({Σs : 0 ≤ s ≤ t}) as the filtration

generated by the daily realized covariances up to time t. The GMVP allocation problem

is to find an FΣ
t -adapted weight vector ωt ∈ S which maximizes Et−1[RUt(ωt)], where
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RUt(ωt) is the realized utility1 (RU) defined as:

RUt(ωt) = −ω′tΣ̂tωt. (5)

Here one can also enlarge the filtration FΣ
t to include more information in determining

ωt. Under the assumption that Σ̂t is conditionally unbiased, one sees that Et−1[RUt(ωt)] =

Ut(ωt), which reconciles with the previous task in Eq. (2).

For a particular choice of ωt, its performance can be evaluated by the unconditional

RU:

E[RUt(ωt)] = E[−ω′tΣ̂tωt] = E[Ut(ωt)] ≤ E[Ut(ω
?
t )], (6)

where the second equality holds by the assumption of conditional unbiasedness of Σ̂t, and

the last equality is obtained iff ωt = ω?t . Importantly, since RUs are observed as long as

Σ̂t is available, the unconditional RU can be estimated consistently with a sufficiently

long out-of-sample period by the law of large numbers, similar to a standard forecasting

exercise. This allows us to obtain a more precise portfolio performance measure than the

portfolio variance based on daily returns, i.e. V[ω′trt].

The most popular solution to the GMVP problem with high-frequency data in the

literature is the so-called ‘plug-in’ method. The method consists of two steps. First,

construct an FΣ
t−1-adapted predictor Ω̂t of Σ̂t, usually using some least squares-based

models. Second, plug Ω̂t into Eq. (4) to obtain the estimated GMVP weights:

ω̂?t =
Ω̂−1
t ι

ι′Ω̂−1
t ι

. (7)

1Note that for the general case with γ > 0, the realized utility can be defined as RUt(ωt; γ) =
ω′trt −

γ
2ω
′
tΣ̂tωt.
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The rationale is straightforward: given the conditionally unbiasedness of Σ̂t, Ωt is the

mean-variance best linear predictor of Σ̂t, and Ω̂t is the sample counterpart of Ωt. Clearly,

as Ω̂t approaches Ωt, ω̂
?
t converges to ω?t , the optimal GMVP weight vector.

However, there are two major problems with the plug-in approach. First, to produce

the estimate Ω̂t, one needs to simultaneously model N(N + 1)/2 unique time series while

ensuring the positive-definiteness of Ω̂t in order to compute its inverse. The existing

literature typically employs some simplification or regularization in constructing the

forecasting model, which inevitably introduces a substantial amount of misspecification

risk for modelling Ωt. Second, ω̂?t is by design an indirect estimator of ω?t , as the prediction

model typically estimates Ω̂t by minimizing its distance to Σ̂t in a mean-squared sense,

which does not directly translate into a higher expected utility due to the highly nonlinear

functional form of ω̂?t in terms of Ω̂t.

The problems of the plug-in approach motivates us to propose a direct weight estimator

(DWE) of the portfolio weights. We utilize the fact that for any ω ∈ S, RUt(ω) is observed

given Σ̂t. Therefore, for a particular ω, we can compute an FΣ
t−1-adapted forecast of

RUt(ω), denoted as R̂U t(ω). The DWE approach attempts to find ω̂t that solves the

following maximization problem:

ω̂DWE
t = arg max

ω∈S
R̂U t(ω). (8)

Intuitively, ω̂DWE
t is the weight vector that produces the largest predicted RU. In practice,

the above problem can be solved easily by a gradient-based numerical optimization

algorithm.

The DWE approach is more appealing than the plug-in method in several aspects: (1)

instead of modelling the full realized covariance matrices, for each ω we only model a

univariate time series {RUs(ω)}s=1:t−1 without the need to predict the realized covariance
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matrix, which is a much simpler forecasting problem. One can thus fully exploit existing

univariate prediction models to reduce misspecification. (2) as opposed to the plug-in

approach whose forecasting target is Σ̂t which does not directly translate into a higher

utility, the DWE approach by construction directly maximizes the predicted RU, an

estimator of the expected utility. (3) the number of free parameters to estimate is only

N − 1 for the DWE approach, which grows linearly with N and is free from the curse of

dimensionality. (4) the DWE approach can be easily extended to account for constraints

or modifications to the target function, e.g. a short-selling constraint or a transaction

cost-adjusted certainty equivalent, as one can simply add parameter constraints and

modify the target function of the numerical optimization algorithm. On the contrary,

such an estimate may not always be possible for plug-in-type estimators as a closed-form

solution of the weight vector as a function of Ωt may not exist.

2.1 Implementation Details

We now explain how the optimization problem of Eq. (8) is solved in detail. Suppose we

construct the daily realized covariance measures {Σ̂s}s=1:t−1 from day 1 to day t− 1, and

we would like to estimate the GMVP weights ω?t . For any vector ω ∈ S, we can form the

time series of realized utility, {RUs(ω)}s=1:t−1. Note that given Σ̂t, the realized utility is

bounded above by RUs(ω) ≤ RUs(ω
∗
t ) = 1

ι′Σ̂−1
t ι

, where ω∗t = Σ̂−1ι

ι′Σ̂−1ι
is the ex post GMVP

weight vector that maximizes the realized utility. The upper bound allows us to construct

loss functions to measure the optimality of some ω relative to the ex post optimal choice

ω∗t . Among the many possible choices, we propose to use the log-distance loss function,

defined as:

ldt(ω) = ln
RUt(ω

∗
t )

RUt(ω)
= ln[(ω′Σ̂tω)(ιΣ̂−1

t ι)] ≥ 0, ∀ω ∈ S. (9)
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It is a loss function in the sense that ldt(ω) = 0 iff ω = ω∗t . We caution that ω̂∗t is different

from the ex ante optimal choice ω̂?t , as ω̂∗t requires the knowledge at time t which is not

available to the investor at time t− 1. However, since both RUt(ω
?
t ) and RUt(ω

∗
t ) are not

functions of ωt, using RUt(ω
∗
t ) instead of the unobserved RUt(ω

?
t ) as the benchmark of

the loss function does not alter the maximization problem.

For any fixed ω, we can construct the sequence of loss {lds(ω)}s=1:t−1 and predict the

loss at time t using a standard HAR model:

ldt(ω) = c+ β(1)ld
(1)
t−1(ω) + β(5)ld

(5)
t−1(ω) + β(22)ld

(22)
t−1 (ω) + ut, (10)

where ld
(k)
t−1(ω) = 1

k

∑k
s=1 ldt−s(ω). Fitting the above model with OLS, we obtain the

ω-dependent FΣ
t−1-adapted parameter estimates ĉ(ω), β̂(1)(ω), β̂(5)(ω), and β̂(22)(ω). Based

on the HAR model, the predicted one-day ahead loss at time t is then given by:

Ê[ldt(ω)|FΣ
t−1] = ĉ(ω) + β̂(1)(ω)ld

(1)
t−1(ω) + β̂(5)(ω)ld

(5)
t−1(ω) + β̂(22)ld

(22)
t−1 (ω). (11)

Setting R̂Ut(ω) ∝ exp(−E[ldt(ω)|FΣ
t−1]),2 the DWE approach solves the following problem

numerically:

ω̂DWE
t = arg max

ω∈S
R̂Ut(ω)⇔ arg min

ω∈S
Ê[ldt(ω)|FΣ

t−1], (12)

and the rightmost problem can be solved easily by standard gradient-based constraint

optimization algorithms, since Ê[ldt(ω)|FΣ
t−1] is a continuous function of ω by construction.

The choices of the loss function and the forecasting model require some discussion.

First, taking logarithms ensures the positivity of the predicted portfolio variance. Also,

we find that a linear prediction model is more appropriate for the log-difference loss than,

2Note that this is a naive forecast of RUt(ω)/RUt(ω
∗
t ) which is not mean-squared optimal due to the

log-transformation. B̊ardsen and Lütkepohl (2011) show that the naive forecast is preferable than the
mean-squared optimal one in the presence of specification and estimation uncertainty, which rationalizes
our choice here.

9



e.g., a linear difference loss or a ratio-based loss, generating much higher forecasting

power.3 The HAR model is not a requirement of our approach, and in principle any

univariate time series prediction model can be used here. The HAR model is chosen due

to its computational simplicity (as the predicted loss can be expressed in closed form) and

ability to capture long-range dependence commonly observed in empirical volatility time

series.

Figure 1: Time series and autocorrelation plots of distance measure for ω = 0.5
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The left panel represents the time series of the log distances to realized utility from Eq. (9). The right
panel plots the SACF of realized distances from Eq. (9). The considered portfolio is formed of N = 2
assets using the data introduced in Section 4. The distances are evaluated at the equally weighted
portfolio (ω1,t = 0.5, ω2,t = 0.5).

Figure 1 depicts the time series and the sample autocorrelation function (SACF) of

the log-distance from Eq. (9), which we chose as a loss function to measure the quality of

the portfolio weight vector. The underlying data is introduced in Section 4. The decay in

the sample ACF motivates the choice of the HAR model and the time series plot itself

motivates the choice of the log-transformation.

The DWE approach provides a very flexible framework to account for various features

in the portfolio allocation exercise. For example, one can consider a short-selling constraint

3For the GMVP problem, one can alternatively minimize the predicted log portfolio variance, which is
numerically identical to the log-difference approach.
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for the portfolio weights ω, in the spirit of Fan et al. (2012). Let b ∈ [0, 1] denote the

maximum allowed percentage of short selling for an individual stock, we can restrict

the parameter space S to Sb = {ω ∈ S : min(ω) ≥ −b}, which simply imposes an

additional lower bound to ω and is trivial to implement in practice. Multi-step portfolio

allocation can also be considered by increasing the forecasting horizon for the HAR model

in Eq. (11). Moreover, a penalized DWE approach can be designed to mitigate the impact

of transaction costs by adding a regularization term to Eq. (12). We elaborate the design

of the regularization and the effectiveness of transaction cost reduction using this feature in

Section 4.2. Lastly, the DWE estimator can be easily adapted to other portfolio allocation

settings, e.g. the general γ > 0 case with or without a risk-free asset. One simply needs

to construct an appropriate loss function for the corresponding realized utility given a

fixed ω, and the DWE estimator can be computed as the weight vector that minimizes

the predicted loss.
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3 Simulation study

In order to illustrate the advantages of the DWE approach over the plug-in type of weight

estimators, we simulate the following HAR-DRD return process rt with the covariance

matrix Σt and dynamic conditional correlations:

Σt = DtRtDt, Dt =


σ11,t . 0

0
. . . 0

0 . σNN,t

 , Rt =



1 ρ12,t . . . . ρ1N,t

ρ12,t 1 . . . . ρ2N,t

...
...

. . .
...

ρ1N,t . . ρ(N−1)N,t 1


,

(13)

lnσ2
jj,t = βj,0 + βj,1 lnσ2

jj,t−1 + βj,2
1

5

5∑
i=1

lnσ2
jj,t−i + βj,3

1

22

22∑
i=1

lnσ2
jj,t−i + εj,t, (14)

vech(Rt) = α0 + α1vech(Rt−1) + α2
1

5

5∑
i=1

vech(Rt−i) + α3
1

22

22∑
i=1

vech(Rt−i) + εt, (15)

rt ∼ N (µ,Σt), εj,t ∼ t(νj), εt ∼ t(ν), (16)

where j = 1, ..., N , the vech(·) operator denotes the vector-form of the lower triangular

part of a matrix, and t(ν) denotes a Student-t distributed random variable with ν degrees

of freedom.

We simulate 100 realizations of the HAR model with a maximum N of 93 using

Eq. (13) to Eq. (16), where the parameters of the data generating process are calibrated

on the S&P100 data described in Section 4 below. For each simulated path, we simulate a

series of 1763 observations in total, where the number of observations is chosen to match

the empirical analysis of this paper. We construct one-step-ahead forecasts of GMVP

portfolio weights based on our DWE approach and several competing estimators use a

rolling window approach with daily rebalancing, where the in-sample estimation window
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length is T = 1000 with an out-of-sample evaluation horizon of H = 63. The following

competing portfolio weight estimators are considered:

1. the plug-in approach with a correctly specified HAR-DRD model, estimated on the

history of observed Σ1:t, where a one-step ahead forecast of the covariance matrix

Ω̂t = D̂t+1|tR̂t+1|tD̂t+1|t is calculated based on the estimated correctly specified

HAR-DRD Eq. (14) - Eq. (15);

2. the plug-in approach with a misspecified HAR-DRD model where the HAR and

scalar HAR in Eq. (14) - Eq. (15) are replaced with an AR(1) model;

3. the plug-in approach with a “shrinkage to market” covariance matrix estimated on

returns by Ledoit and Wolf (2004), where the last available estimate Ω̂t−1 is used

for the weight forecast.

We consider several evaluation metrics to assess the quality of the GMVP portfolio

weight vector estimates. First, we compute the expected utility difference between the ex

post optimal portfolio against the portfolio formed by the estimated weight vector, which

is defined as:

E[d(ω̂t)] = Ê[RUt(ω
?
t )]− Ê[RUt(ω̂t)] = Ê

[
1

H

H∑
t=1

(
ω̂′tΣtω̂t −

1

ι′Σ−1
t ι

)]
, (17)

where Ê[·] stands for the Monte Carlo simulated expectation. Intuitively, a model with

smaller E[d(ω̂t)] on average generates GMVP portfolio with variance closer to the ex

post optimal one, hence it generates a higher expected utility on average and should be

preferred. Second, we compute the root mean squared error (RMSE) of the estimated

portfolio variance against the ex post optimal portfolio variance:

RMSE(ω̂t) = Ê

[√√√√ 1

H

H∑
t=1

(
ω̂′tΣtω̂t −

1

ι′Σ−1
t ι

)2
]
. (18)
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The RMSE accounts for both the accuracy and the stability of the estimated GMVP

portfolio variance. Although the variance of the estimated GMVP portfolio variance does

not enter into the investor’s utility function, from a forecasting perspective, it is frequently

used as a loss function to compare the performance of different predictive models. Third,

we evaluate the expected total transaction cost (TTC) of the estimated weight vectors,

which measures the practicality of the portfolio allocation methods. This measure is

defined as:

E[TTC(ω̂)] = Ê
[
c ·

H∑
t=2

N∑
j=1

|ω̂j,t − ω̂j,t+ |′ι
]
, (19)

where TTC denotes transaction costs at period t, ω̂j,t+ is the actual (after a price change

at t) portfolio weight for asset j before rebalancing at t and c the cost per transaction (50

basis points, DeMiguel et al. (2009)). We present the simulation results in Table 1.

To allow for better interpretation of the results, in Table 1 we use the correct HAR-DRD

model as the benchmark and present the evaluation metrics of the other three methods

relative to the benchmark. Specifically, any evaluation metric less than one indicates

that the method outperforms the benchmark. Concluding from the performance of the

benchmark, we see that the correctly specified HAR generates both smaller and more stable

GMVP variances as N increases, evidenced by the declining E[d(ω̂t)] and RMSE(ω̂t) as

a function of N . Unsurprisingly, increasing N also leads to higher transaction costs, as

more assets need to be traded to rebalance the portfolio.

Regarding the performance of the misspecified HAR method, we see that misspecifying

the original HAR structure by AR(1) leads to a 15-20% increase in E[d(ω̂t)] and RMSE(ω̂t)

and a more than 50% increase in the transaction cost for almost every N . This result

demonstrates the problem of a potentially misspecified forecasting model for the conditional

variance-covariance matrix—even a mild misspecification can deteriorate the performance

of the resulting GMVP portfolio and may greatly inflate the transaction cost required.
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Table 1: Simulation results of GMVP portfolio weight estimators.

N 3 13 23 33 43 53 63 73 83 93

Panel 1: E[d(ω̂t)]× 106

Correct HAR 3.964 1.656 0.902 0.650 0.557 0.461 0.430 0.380 0.350 0.320

Misspecified HAR 1.202 1.150 1.163 1.158 1.153 1.155 1.173 1.172 1.169 1.149

Ledoit Wolf (2004) 5.091 3.258 3.411 4.315 5.322 5.276 5.566 5.352 5.213 5.135

DWE 1.034 1.125 1.127 1.158 1.139 1.147 1.150 1.158 1.166 1.164

Panel 2: RMSE(ω̂t)× 106

Correct HAR 7.670 2.009 1.017 1.059 0.594 0.489 0.459 0.401 0.373 0.335

Misspecified HAR 1.295 1.145 1.163 1.143 1.157 1.159 1.199 1.194 1.191 1.164

Ledoit Wolf (2004) 3.991 3.018 3.200 3.476 5.273 5.197 5.481 5.281 5.075 5.014

DWE 0.987 1.111 1.138 1.159 1.147 1.153 1.151 1.159 1.163 1.161

Panel 3: E[TTC(ω̂)]

Correct HAR 0.043 0.063 0.065 0.065 0.069 0.069 0.071 0.072 0.074 0.077

Misspecified HAR 1.424 1.523 1.529 1.533 1.513 1.526 1.534 1.547 1.549 1.530

Ledoit Wolf (2004) 0.054 0.043 0.039 0.040 0.039 0.039 0.038 0.038 0.038 0.036

DWE 1.059 1.009 0.973 0.958 0.932 0.928 0.912 0.907 0.932 0.940

Numbers in the table correspond to the three simulated evaluation metrics as defined in Eq. (17) to Eq. (19) for the four
GMVP portfolio weight estimators averaged over 100 simulation draws with N ranging from 3 to 93. For each estimator
and N , the one-step ahead forecast of the portfolio weights is computed over an evaluation horizon of H = 63 observations
and an in-sample estimation window length T = 1000. The original values of the evaluation metrics are presented only for
the correct HAR model in blue, which serves as the benchmark for comparison. The evaluation metrics of the three other
methods are relative to the benchmark, i.e. they are divided by the corresponding values of the benchmark model.

Comparing the misspecified HAR method to our DWE method, we find that our

method almost uniformly dominates the misspecified HAR model for all three evaluation

metrics across different N . In terms of E[d(ω̂t)] and RMSE(ω̂t), the improvement over

the misspecified HAR method is perhaps numerically small and we cannot beat the correct

HAR model. However, we stress that for N ≥ 23, the DWE approach can significantly

reduce the transaction cost relative to the misspecified HAR model, and the transaction

costs are even smaller than those of the correct model specification. As the forecasting

model for the realized covariances is likely to be misspecified in empirical analysis, the

simulation provides strong evidence to support the advantage of the DWE method in

practice, since it provides both more accurate and more stable estimated GMVP portfolio
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variances and incurs less transaction costs compared to the misspecified model across

different choices of N . This finding is also confirmed in our empirical analysis in Section 4

below.

As to the Ledoit and Wolf (2004) approach, it is clear that this method fails to capture

the dynamics of the conditional covariances of the assets, leading to a substantially inflated

E[d(ω̂t)] and RMSE(ω̂t) relative to the correct model. Being a shrinkage-type estimator,

the Ledoit and Wolf (2004) approach enjoys much lower transaction costs than the other

three dynamic rebalancing methods as expected. However, we note that one can explicitly

include transaction costs as a regularization term in the objective function of the DWE

approach to further reduce the transaction cost of the DWE approach, which we discuss in

Section 4.2. In detail, we show that a restricted version of the DWE estimator can reduce

the transaction cost to a level that is comparable with a shrinkage-based approaches

without a substantially inflated portfolio variance.

4 Empirical Evidence

We now evaluate the DWE method and the plug-in competitors based on actual data.

We use the stocks contained in the S&P100 together with the SPY index and use daily

data from January 2014 until December 2020. We construct realized covariance matrices

following the flat-top realized kernel by Varneskov (2016) for the 93 stocks, including

SPY, which result in a time series of 1763 observations. Table 8 in the Appendix reports

descriptive statistics of all the stocks used in this paper. Daily returns exhibit the expected

properties of left skewness and over-kurtosis.

For the commonly used approaches for estimating GMVP weights we first estimate a

one-step ahead covariance matrix and then use it in a plug-in formula to calculate the

weights ω̂t. We consider:
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1. a sample covariance matrix estimator computed based on T in-sample returns, where

the last available estimate is used for the weight forecast;

2. the last available realized covariance matrix of the sample Σ̂t, where the last available

RC is used for the weight forecast;

3. HAR-DRD model with HAR variance estimates and a sample estimator for the

correlations;

4. HAR-DRD model with HAR variance estimates and a scalar HAR for the correlations

(Bollerslev et al., 2018b).

We adopt the standard assumption for the rolling window evaluation that the one-step

ahead forecast ω̂t is used to compute the out-of-sample return for the next period:

r̂pt+1 = ω̂′t+1|trt+1. The estimation window is shifted one period ahead H times resulting in

the H × 1 vector of the out-of-sample portfolio returns {r̂pt+1, . . . , r̂
p
t+H}.

4.1 DWE

4.1.1 Realized portfolio variance

The DWE approach is explicitly designed to minimize the portfolio variance realized on

the next day:

r̂vpt+1 = ω̂′t+1|tΣ̂t+1ω̂t+1|t, (20)

where ω̂t+1|t = Ê[ωt+1|Ft] denotes a one-step ahead forecast of portfolio weights and Σ̂t+1

denotes the realized covariance matrix at day t + 1. Therefore, we firstly compare the

estimators in terms of the mean realized portfolio variance over the out-of-sample period,
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which as H grows estimates the unconditional realized utility from Eq. (6):

¯̂rv
p

=
1

H

H∑
h=1

r̂vpt+h, (21)

where H denotes the number of out-of-sample periods considered.

To compare the performance of different weight estimators across the portfolio dimen-

sion we randomly select 100 unique subsets of size N from the pool of 93 assets. We

then report the average realized portfolio variance across 100 random portfolios. This

guarantees that for a given estimator the portfolio performance comparison is independent

of the initial asset selection.

Table 2: Realized portfolio variance for T = 1000.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.000156 0.000149 0.000153 0.000150 0.000148
13 0.000105 0.000099 0.000108 0.000099 0.000092
23 0.000098 0.000097 0.000107 0.000091 0.000082
33 0.000095 0.000105 0.000114 0.000086 0.000077
43 0.000094 0.000122 0.000129 0.000081 0.000074
53 0.000094 0.000158 0.000162 0.000078 0.000073
63 0.000093 0.000228 0.000224 0.000075 0.000074
73 0.000093 0.000326 0.000349 0.000074 0.000072
83 0.000094 0.000382 0.000511 0.000073 0.000070
93 0.000094 0.000358 0.000440 0.000073 0.000069

Numbers in the table correspond to the average realized GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole
available pool of assets. For each portfolio the realized variance is computed over an evaluation horizon of H = 763
observations and an in-sample estimation window length T = 1000. Numbers in bold correspond to the smallest realized
portfolio variance for a given portfolio size N .

Table 2 reports the average realized portfolio variance ¯̂rv
p

across 100 randomly formed

portfolios of size N for an in-sample estimation window of approximately 4 years and

the out-of-sample evaluation horizon H of 3 years. The last row corresponds to the

mean realized portfolio variance evaluated on the whole pool of 93 assets. For a given

portfolio size N there is a clear hierarchy between HAR-DRD models and the proposed

DWE approach: introducing dynamics into the conditional correlation matrix certainly
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facilitates the decrease in the out-of-sample portfolio variance as the HAR-DCC model

dominates the HAR-CCC with a constant conditional correlation matrix. Moreover, the

proposed DWE approach outperforms both HAR models. In fact, across all the considered

portfolio sizes N the proposed DWE approach results in the lowest mean realized daily

portfolio variance. Moreover, the realized portfolio variance decreases with the dimension

N , indicating the benefits of diversification. For the HAR-DRD with CCC model and

the plug-in strategy with the previous realized correlation RCt−1 the increase in the

portfolio size for N > 43 results in the increase of the portfolio variance, indicating that

diversification gains are suppressed by the increase in modelling errors.

The proposed DWE indirect weight estimation approach outperforms the competitors

not only in mean, but also across the 100 randomly drawn portfolios. Figure 2 depicts the

boxplots of average realized portfolio variances reflecting the distribution across randomly

formed portfolios. Each panel in the figure corresponds to a portfolio size N and each

boxplot corresponds to a weight estimation strategy and reflects the distribution of the out-

of-sample portfolio variance across 100 randomly selected portfolios. The improvements of

the DWE become more obvious with the increased portfolio dimension N , e.g. for N ≥ 43

the largest average realized portfolio variance of DWE is lower than the smallest one of all

the other approaches but the HAR-DRD with a DCC specification, which is outperformed

in mean.

4.1.2 Variance of out-of-sample returns

We now consider a commonly used portfolio performance measure, namely the out-of-

sample portfolio variance, which is computed in a rolling window of T = 1000 in-sample

observations. In the absence of realized covariances, different portfolio strategies are then
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Figure 2: Boxplots of the realized portfolio variance for T = 1000.
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Boxplots of the out-of-sample portfolio variances computed on net portfolio returns over a 100 randomly drawn portfolios
of size N . For each randomly drawn portfolio the realized portfolio variance is computed over an evaluation horizon of
H = 763 observations and an in-sample estimation window length T = 1000. X-axes denote different ways of computing
portfolio weights: Sample denotes the plug-in weight estimator as in Eq. (7) with a sample covariance matrix; RCt−1 for
plug-in approach with the last available realized correlation matrix; HAR C and HAR are the plug-in weights with HAR-
DRD approaches by Bollerslev et al. (2018b) with constant and dynamic correlations respectively; DWE for the proposed
approach. Note, the limits of the y-axes are fixed for comparison, thus for N ≥ 73 the boxplots for RCt−1 and HAR C are
no longer visible.

evaluated based on the out-of-sample variance σ̂2
os of portfolio returns given by:

σ̂2
os =

1

H − 1

H∑
h=1

(
r̂pt+h − µ̂os

)2
, (22)

where: µ̂os =
1

H

H∑
h=1

r̂pt+h =
1

H

H∑
h=1

ω̂′t+h|trt+h.

Table 3 reports the average out-of-sample variances of portfolios of different sizes N for

an estimation window of approximately 4 years and the out-of-sample evaluation horizon

H of 3 years. The last row corresponds to the out-of-sample portfolio return variance

evaluated on the whole pool of 93 assets. The proposed DWE approach results in the

smallest out-of-sample portfolio variance for all portfolio sizes N .

Figure 3 provides more insights into the differences in the performance of the considered

weight estimators. The visual comparison of the boxplots across the portfolio dimension
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Table 3: Variance of out-of-sample portfolio returns for T = 1000.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.000136 0.000131 0.000132 0.000130 0.000129
13 0.000090 0.000091 0.000095 0.000088 0.000083
23 0.000083 0.000093 0.000097 0.000082 0.000076
33 0.000079 0.000105 0.000106 0.000079 0.000074
43 0.000078 0.000123 0.000122 0.000076 0.000072
53 0.000076 0.000157 0.000150 0.000073 0.000072
63 0.000075 0.000215 0.000205 0.000072 0.000071
73 0.000075 0.000316 0.000308 0.000072 0.000070
83 0.000075 0.000369 0.000400 0.000070 0.000069
93 0.000075 0.000355 0.000426 0.000069 0.000067

Numbers in the table correspond to the average out-of-sample GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole available
pool of assets. For each portfolio the out-of-sample return is computed over an evaluation horizon of H = 763 observations
and an in-sample estimation window length T = 1000. Numbers in bold correspond to the smallest out-of-sample portfolio
variance for a given portfolio size N .

Figure 3: Boxplots of the variance of the out-of-sample portfolio returns for T = 1000.
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Boxplots of the portfolio variances computed on out-of-sample portfolio returns over a 100 randomly drawn portfolios of
size N . For each randomly drawn portfolio the out-of-sample portfolio variance is computed over an evaluation horizon of
H = 763 observations and an in-sample estimation window length T = 1000. X-axes denote different ways of computing
portfolio weights: Sample denotes the plug-in weight estimator as in Eq. (7) with a sample covariance matrix; RCt−1 for
plug-in approach with the last available realized correlation matrix; HAR C and HAR are the plug-in weights with HAR-
DRD approaches by Bollerslev et al. (2018b) with constant and dynamic correlations respectively; DWE for the proposed
approach. Note, the limits of the y-axes are fixed for comparison, thus for N ≥ 73 the boxplots for RCt−1 and HAR C are
no longer visible.

N reveals that the difference in the performance of the estimators becomes apparent for

larger portfolios N ≥ 33. Similarly to the distribution of the realized portfolio variance,
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in terms of the variance of the out-of-sample portfolio returns the closest competitor for

the DWE approach is the HAR-DRD model with dynamic structure on the conditional

correlation matrix. However, even for the larger portfolio dimensions N ≥ 63, when the

medians of DWE and HAR are close to each other, the distribution of portfolio variance

of the DWE has a lower interquartile range compared to HAR, which indicates that the

performance of the DWE is more robust to the assets selection compared to HAR.

4.1.3 Transaction costs

We now compare different weight estimation strategies in terms of another empirically

relevant metric, namely the transaction costs incurred by dynamically rebalancing the

portfolio, which is also used in our simulation. For each randomly drawn portfolio, we

compute the transaction cost (TC) as:

TCt = c ·
N∑
j=1

|ω̂j,t − ω̂j,t+|, (23)

where TCt denotes transaction costs at period t, ω̂j,t+ the actual (after a price change

at t) portfolio weight before rebalancing at t and c the cost per transaction (50 basis

points, DeMiguel et al. (2009)). For every randomly drawn portfolio we compute the total

transaction costs over the out-of-sample period as a sum
∑H

h=2 TCh:

Tables 4 reports the average TTC across 100 randomly formed portfolios of size N

for an in-sample estimation windows of T = 1000. The larger the asset space, the more

expensive is the daily rebalancing of the portfolio. Similarly to the comparisons of the out-

of-sample portfolio variance, there is a clear hierarchy between the models. Introducing

dynamics into the conditional correlation matrix for the plug-in approach leads to a

reduction in turnover costs. The indirect DWE weight estimation dominates both of

the HAR-DRD model specifications and produces lower transaction costs. However, a
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Table 4: Transaction costs for T = 1000.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.027 1.153 0.771 0.517 0.451
13 0.063 3.777 3.481 1.513 1.276
23 0.104 6.618 6.385 2.334 2.029
33 0.150 10.021 9.834 3.168 2.759
43 0.193 14.229 14.039 3.861 3.343
53 0.241 19.819 19.534 4.576 3.806
63 0.289 26.786 26.269 5.232 4.030
73 0.335 33.901 33.150 5.799 4.258
83 0.386 38.486 38.592 6.410 5.225
93 0.437 48.595 47.626 6.978 4.661

Numbers in the table correspond to the average total transaction costs computed according to Eq. (23) for portfolios of size
N across 100 unique subsets of 93 assets. The last row reports the results over the whole available pool of assets. For each
portfolio the TTC is computed over an evaluation horizon of H = 763 observations and an in-sample estimation window
length T = 1000.

simple sample covariance matrix estimator appears to result in more stable weights over

time reflected by low turnover costs. Even though the plug-in weight estimation with

a static forecast of sample covariance matrix results into a higher realized variance and

out-of-sample return variance, it might be beneficial for the investor to control the amount

of rebalancing.

4.2 Restricted DWE

To showcase the flexibility of the proposed direct weight estimation approach we introduce

a restricted DWE estimator, which imposes an `2-norm on the difference between the

current and the previous portfolio weight:

ω̂t,k = arg min
ω̂·,k

Êt−1[ld(ω̂t,k)] + λ

N∑
i=1

(ω̂t,k − ω̂t−1,k)
2, (24)

where λ is a tuning parameter which controls the stability of the weights over time:

the larger λ, the more stable the weight forecasts across time, which results in lower

transaction costs. Êt−1[ld(ω̂t,k)] for this example denotes a one-step ahead HAR-forecast
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of the log-distance: α̂0 + α̂1ld(ω̂t−1,k) + α̂2
1
5

∑5
j=1 ld(ω̂t−j,k) + α̂3

1
21

∑21
j=1 ld(ω̂t−j,k). We

utilise the same dataset and as above for a given portfolio size N we form 100 unique

portfolios out of the whole pool of the assets. The reported results are averages over the

100 randomly drawn portfolios.

Figure 4: Time series plots of HAR-DCC weight estimates and DWE with λ = 0, 1, 50.

Different panels on the plot correspond to the time series of estimated weights over the 3 years of the
out-of-sample period for N = 93. The upper left panel corresponds to the unrestricted HAR DCC weight
estimator and other panels correspond to the DWE with different values of the the tuning parameter λ.

Figure 4 plots the time series of the estimated weights for unrestricted estimators (the

upper panels) and restricted DWE estimators (lower panels). As reported in Table 4 the

estimated weights of unrestricted DWE estimator with λ = 0 are more stable over time

compared to HAR DCC weights which corresponds to the lower amount of transaction

costs. With the increase in the tuning parameter λ, the estimated weights become more

stable over time resulting in the reduction of turnover costs. The trade-off the investor

faces is between the out-of-sample portfolio risk and the turnover costs of daily rebalancing,

which for the restricted DWE estimator is controlled by the tuning parameter λ.

We now compare our restricted estimator to the standard methods, which aim at the
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intertemporal weight stabilization:

1. Plug-in estimator with a shrinkage to market covariance matrix estimated on T

in-sample returns by Ledoit and Wolf (2004), where the last available estimate Σ̂t is

used for the weight forecast;

2. Plug-in estimator with non-linear eigenvalue shrinkage of the covariance matrix

estimated on T in-sample returns by Ledoit and Wolf (2020), where the last available

estimate Σ̂t is used for the weight forecast;

3. Equally weighted portfolio, which is rebalanced daily.

Table 5 reports the mean realized portfolio variance and Table 6 reports the mean

out-of-sample return variance for the restricted estimators.

Table 5: Realized portfolio variance for T = 1000.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.000156 0.000156 0.000149 0.000149 0.000150 0.000153 0.000155 0.000166
13 0.000103 0.000104 0.000093 0.000093 0.000094 0.000097 0.000099 0.000116
23 0.000095 0.000097 0.000082 0.000082 0.000082 0.000086 0.000089 0.000109
33 0.000091 0.000094 0.000077 0.000076 0.000076 0.000080 0.000084 0.000107
43 0.000089 0.000092 0.000074 0.000073 0.000073 0.000078 0.000082 0.000105
53 0.000088 0.000092 0.000073 0.000072 0.000072 0.000078 0.000080 0.000104
63 0.000087 0.000090 0.000074 0.000074 0.000075 0.000077 0.000078 0.000104
73 0.000086 0.000091 0.000072 0.000072 0.000072 0.000073 0.000075 0.000103
83 0.000085 0.000089 0.000070 0.000070 0.000070 0.000071 0.000072 0.000103
93 0.000085 0.000089 0.000069 0.000069 0.000069 0.000070 0.000071 0.000103

Numbers in the table correspond to the average realized GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole
available pool of assets. For each portfolio the realized variance is computed over an evaluation horizon of H = 763
observations and an in-sample estimation window length T = 1000. Numbers in bold correspond to the smallest realized
portfolio variance for a given portfolio size N .

We consider several values of the tuning parameter λ to determine how much would

the realized portfolio variance and the variance of the out-of-sample portfolio returns

change with the increase in the tuning parameter. For both tables the numbers in bold

indicate the smallest portfolio risk for a given size N across the models. For the realized

portfolio variance the extremely large penalties λ of the DWE estimator increase the
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portfolio risk, whereas for the out-of-sample portfolio variance the increase in λ seems

to be even rewarding for larger portfolio sizes. Notably, the restricted DWE estimator

outperforms both shrinkage approaches and the equally weighted portfolio independently

of the tuning parameter choice.

Table 6: Variance of out-of-sample portfolio returns for T = 1000.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.000136 0.000136 0.000130 0.000130 0.000131 0.000133 0.000136 0.000147
13 0.000089 0.000090 0.000084 0.000084 0.000084 0.000085 0.000087 0.000104
23 0.000083 0.000083 0.000077 0.000076 0.000076 0.000077 0.000078 0.000098
33 0.000078 0.000079 0.000074 0.000074 0.000073 0.000072 0.000074 0.000096
43 0.000077 0.000077 0.000072 0.000071 0.000071 0.000071 0.000072 0.000094
53 0.000075 0.000075 0.000072 0.000071 0.000070 0.000070 0.000071 0.000093
63 0.000074 0.000075 0.000072 0.000072 0.000072 0.000070 0.000070 0.000093
73 0.000073 0.000074 0.000071 0.000071 0.000070 0.000068 0.000068 0.000093
83 0.000072 0.000073 0.000069 0.000068 0.000068 0.000064 0.000066 0.000092
93 0.000072 0.000073 0.000067 0.000066 0.000065 0.000064 0.000066 0.000092

Numbers in the table correspond to the average out-of-sample GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole available
pool of assets. For each portfolio the out-of-sample return is computed over an evaluation horizon of H = 763 observations
and an in-sample estimation window length T = 1000. Numbers in bold correspond to the smallest out-of-sample portfolio
variance for a given portfolio size N .

Table 7 reports the average total transaction costs for the restricted estimator. The

penalisation of `2-norm on the intertemporal difference of the portfolio weights reduces

the amount of transaction costs to the level of the shrinkage estimators without paying a

huge price in terms of the out-of-sample portfolio risk. The exact choice of λ depends

however on the individual preferences and the utility function of the investor.

Tables in Appendix A.2 and A.3 provide robustness checks of the same analysis as

above but for a shorter sample size T = 250. We find that the proposed direct weight

estimation approach performs similarly well for smaller sample sizes. The restricted version

still outperforms its shrinkage competitors in terms of the out-of-sample investment risk,

keeping the transaction cost level low at the same time.
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Table 7: Transaction costs for T = 1000.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.027 0.027 0.386 0.276 0.212 0.060 0.030 0.029
13 0.056 0.061 1.159 0.906 0.740 0.235 0.079 0.033
23 0.088 0.099 1.851 1.452 1.192 0.391 0.129 0.034
33 0.121 0.140 2.492 1.939 1.588 0.523 0.174 0.034
43 0.153 0.177 3.045 2.353 1.920 0.634 0.213 0.034
53 0.186 0.216 3.430 2.648 2.162 0.728 0.249 0.034
63 0.219 0.253 3.669 2.888 2.387 0.835 0.287 0.034
73 0.251 0.294 3.977 3.244 2.746 1.008 0.345 0.034
83 0.282 0.327 4.948 4.137 3.544 1.306 0.443 0.034
93 0.314 0.364 4.402 3.717 3.202 1.221 0.427 0.034

Numbers in the table correspond to the average total transaction costs computed according to Eq. (23) for portfolios of size
N across 100 unique subsets of 93 assets. The last row reports the results over the whole available pool of assets. For each
portfolio the TTC is computed over an evaluation horizon of H = 763 observations and an in-sample estimation window
length T = 1000.

5 Conclusions

This paper introduces a novel direct portfolio weight estimation approach (DWE), which

is particularly beneficial for higher dimensional portfolios. The main contribution of the

proposed weight estimation is the reduction of the multidimensional forecasting into a

one-dimensional problem using realized utility.

Realized covariance matrices are used to construct a time series of previously optimal

portfolio variances and the optimal weight vector forecast is recovered directly from the

series of realized portfolio variances through a constrained optimization. This guarantees

that the DWE maximises the predicted realized utility, an estimator of expected utility.

The main advantage of the proposed direct weight estimation approach is the mitigation

of the curse of the dimensionality problem. For the method to function we only require

a univariate time series forecasting model, and thus the number of parameters to be

estimated does not depend on the number of assets in the portfolio. In the empirical

application we have illustrated that a simple HAR model is a good enough forecasting

tool for the proposed estimator to outperform the main competitors which are based on
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both realized covariance forecasting and shrinkage of the covariance matrices.

The proposed method is extremely flexible and can be adapted to any portfolio

performance measure of interest which can be constructed ex-post using realized returns.

We have demonstrated that the DWE can be easily extended to control for the amount of

portfolio rebalancing, which leads to a reduction of transaction costs. And as a potential

improvement of the method one could investigate whether the univariate forecasting model

used in the proposed method can be improved upon with machine learning techniques.
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A Appendix

A.1 Descriptive statistic

Table 8: Descriptive statistic

Returns Realized Covariance

Ticker Mean Skewness Kurtosis Average variance Average correlation

AAPL 0.0005 -0.1497 6.4232 0.0002 0.2702
ABBV 0.0000 -0.4049 7.0031 0.0003 0.1944
ABT 0.0003 -0.4526 8.9318 0.0002 0.2904
ACN 0.0006 0.4866 12.9030 0.0002 0.3233
ADBE 0.0005 -0.3117 6.5015 0.0002 0.2304
AIG -0.0002 -0.5365 14.6920 0.0003 0.2718
ALL 0.0002 0.0173 11.0979 0.0002 0.3294
AMGN 0.0000 0.1813 6.6015 0.0002 0.2114
AMT 0.0002 0.2202 11.4673 0.0002 0.2007
AMZN -0.0002 -0.3121 5.8850 0.0002 0.2433
AXP -0.0002 0.4598 15.1984 0.0002 0.3295
BA -0.0005 -0.9317 14.6866 0.0003 0.2414
BAC -0.0002 -0.0912 7.4706 0.0002 0.2859
BK 0.0000 -0.2275 6.3893 0.0002 0.2954
BLK -0.0002 -0.2301 12.3504 0.0002 0.2738
BMY -0.0002 -0.4521 6.3678 0.0002 0.2166
BRK B -0.0004 -0.2212 7.8560 0.0001 0.4127
C -0.0003 -0.1221 8.5162 0.0003 0.2720
CAT 0.0002 -0.2360 7.1445 0.0002 0.2476
CHTR 0.0005 -0.0459 5.9367 0.0003 0.1569
CL 0.0003 0.2390 11.8459 0.0001 0.2715
CMCS A 0.0002 0.1483 8.0642 0.0002 0.2461
COF -0.0002 -0.3628 10.3964 0.0003 0.2749
COP -0.0004 0.3319 8.3627 0.0004 0.1729
COST 0.0003 -0.0652 8.0229 0.0001 0.2763
CRM 0.0001 -0.0603 6.9354 0.0003 0.1965
CSCO 0.0003 0.0397 10.2466 0.0002 0.3086
CVS -0.0003 -0.0705 6.5906 0.0002 0.2458
CVX -0.0004 -1.0226 23.3743 0.0002 0.2430
DHR 0.0001 -0.6288 11.8489 0.0001 0.3196
DIS -0.0003 -0.3321 11.0017 0.0002 0.2985
DUK 0.0002 -0.1082 13.7510 0.0001 0.1564
EMR -0.0001 -0.0596 14.1665 0.0002 0.2931
EXC 0.0003 0.3519 14.1422 0.0002 0.1590
F -0.0012 -0.0253 7.2240 0.0003 0.2412
FB 0.0003 -0.1495 5.4549 0.0003 0.2130
FDX -0.0001 0.1376 9.8415 0.0002 0.2506
GD 0.0000 -0.0323 7.3266 0.0002 0.2782
GE -0.0009 -0.0106 8.2354 0.0003 0.2557
GILD -0.0008 0.0066 6.3041 0.0003 0.1896
GM -0.0009 -0.0418 6.8607 0.0003 0.2176
GOOG 0.0001 -0.5207 5.6488 0.0002 0.2812
GS 0.0000 0.0049 7.7132 0.0002 0.2786
HD 0.0003 -0.3000 10.0399 0.0002 0.2997
HON 0.0000 0.0485 9.9954 0.0002 0.3560
IBM -0.0001 -0.1310 7.4394 0.0001 0.3340
INTC 0.0007 0.5830 9.8934 0.0002 0.2546
JNJ 0.0000 -0.9633 11.6151 0.0001 0.3004
JPM 0.0000 0.0840 6.7562 0.0002 0.3257
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KMI -0.0009 -0.5889 12.7430 0.0003 0.1861
KO 0.0001 -0.7802 13.3800 0.0001 0.2868
LLY 0.0004 0.2805 8.6657 0.0002 0.2204
LMT -0.0001 0.1999 14.5327 0.0002 0.2625
LOW 0.0002 -1.2937 18.4849 0.0002 0.2557
MA 0.0000 -0.5586 11.0735 0.0002 0.2944
MCD 0.0003 0.7493 15.5476 0.0001 0.2714
MDLZ 0.0001 0.1956 6.3841 0.0002 0.2613
MDT -0.0002 -0.3879 6.5070 0.0002 0.2857
MET -0.0002 -0.3230 9.9861 0.0002 0.2721
MMM -0.0001 -0.6260 12.7065 0.0001 0.3403
MO 0.0001 -0.8173 13.3655 0.0002 0.2160
MRK -0.0003 -0.1954 7.7219 0.0002 0.2658
MS -0.0001 0.1162 7.0550 0.0003 0.2649
MSFT 0.0004 -0.2448 6.6762 0.0002 0.2858
NEE 0.0005 0.3198 11.8549 0.0002 0.1541
NFLX 0.0003 0.1275 5.4112 0.0004 0.1444
NKE 0.0001 -0.0303 7.1928 0.0002 0.2527
NVDA 0.0006 -0.2058 6.5883 0.0004 0.1682
ORCL 0.0004 0.3310 9.7702 0.0002 0.3085
PEP 0.0003 -0.7301 26.4735 0.0001 0.2796
PFE -0.0004 -0.4543 7.7439 0.0002 0.2667
PG 0.0003 -0.0283 12.3701 0.0001 0.2641
PM 0.0002 -0.2862 9.5891 0.0002 0.2205
QCOM 0.0002 1.1946 23.3548 0.0002 0.2357
SBUX 0.0002 -0.1219 7.5749 0.0002 0.2678
SLB -0.0007 0.0977 8.1619 0.0004 0.1684
SO 0.0005 0.7008 23.5597 0.0001 0.1550
SPG -0.0009 -2.0751 36.4763 0.0003 0.1552
T -0.0003 -0.2502 7.3867 0.0001 0.2741
TGT 0.0000 0.0721 7.3790 0.0002 0.2114
TMO 0.0002 -0.4640 7.0247 0.0002 0.2597
TSLA 0.0003 0.3980 6.0261 0.0007 0.1170
TXN 0.0005 0.0199 6.9090 0.0002 0.2678
UNH 0.0002 -0.0329 8.4897 0.0002 0.2192
UNP 0.0003 0.0722 6.3295 0.0002 0.2471
UPS 0.0001 0.5287 10.3149 0.0002 0.3016
USB 0.0000 0.0795 12.3455 0.0002 0.3282
V 0.0000 -0.1663 7.5423 0.0002 0.3068
VZ 0.0000 0.2728 7.2173 0.0001 0.2516
WFC -0.0003 -0.3321 10.1079 0.0002 0.3039
WMT 0.0003 -0.0624 13.9357 0.0001 0.2544
XOM -0.0005 -0.1676 7.7057 0.0002 0.2665
SPY 0.0001 -0.5152 9.9201 0.0001 0.7513

The table reports the sample moments of the returns used in Section 4 and time series average realized variances and
correlations with the other assets.
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A.2 Unrestricted estimators, T = 250

Table 9: Realized portfolio variance for T = 250.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.0000662 0.0000648 0.0000656 0.0000643 0.0000641
13 0.0000392 0.0000382 0.0000408 0.0000360 0.0000357
23 0.0000366 0.0000369 0.0000403 0.0000321 0.0000316
33 0.0000370 0.0000391 0.0000427 0.0000300 0.0000298
43 0.0000382 0.0000443 0.0000484 0.0000288 0.0000285
53 0.0000406 0.0000541 0.0000579 0.0000282 0.0000281
63 0.0000422 0.0000676 0.0000705 0.0000276 0.0000275
73 0.0000471 0.0000769 0.0000798 0.0000273 0.0000272
83 0.0000504 0.0000775 0.0000828 0.0000269 0.0000274
93 0.0000556 0.0001350 0.0001309 0.0000266 0.0000269

Numbers in the table correspond to the average realized GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole
available pool of assets. For each portfolio the realized variance is computed over an evaluation horizon of H = 763
observations and an in-sample estimation window length T = 250. Numbers in bold correspond to the smallest realized
portfolio variance for a given portfolio size N .

Table 10: Variance of out-of-sample portfolio returns for T = 250.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.000058 0.000058 0.000058 0.000058 0.000058
13 0.000036 0.000036 0.000038 0.000035 0.000036
23 0.000034 0.000034 0.000037 0.000033 0.000033
33 0.000033 0.000036 0.000039 0.000031 0.000031
43 0.000033 0.000040 0.000043 0.000031 0.000031
53 0.000034 0.000046 0.000048 0.000030 0.000030
63 0.000034 0.000054 0.000055 0.000030 0.000029
73 0.000035 0.000061 0.000060 0.000030 0.000029
83 0.000036 0.000064 0.000062 0.000029 0.000030
93 0.000037 0.000119 0.000114 0.000029 0.000027

Numbers in the table correspond to the average out-of-sample GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole available
pool of assets. For each portfolio the out-of-sample return is computed over an evaluation horizon of H = 763 observations
and an in-sample estimation window length T = 250. Numbers in bold correspond to the smallest out-of-sample portfolio
variance for a given portfolio size N .
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Table 11: Transaction costs for T = 250.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.040 1.204 0.723 0.490 0.471
13 0.155 3.617 3.218 1.335 1.446
23 0.284 6.140 5.784 2.030 2.227
33 0.434 9.006 8.662 2.714 2.841
43 0.592 12.310 11.925 3.274 3.311
53 0.771 16.251 15.756 3.842 3.649
63 0.966 20.565 19.907 4.337 3.815
73 1.190 24.479 23.690 4.869 4.304
83 1.427 27.266 26.424 5.295 5.533
93 1.691 41.147 40.055 5.731 4.941

Numbers in the table correspond to the average total transaction costs computed according to Eq. (23) for portfolios of size
N across 100 unique subsets of 93 assets. The last row reports the results over the whole available pool of assets. For each
portfolio the TTC is computed over an evaluation horizon of H = 763 observations and an in-sample estimation window
length T = 250.

A.3 Restricted estimators, T = 250

Table 12: Realized portfolio variance for T = 250.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.000066 0.000066 0.000065 0.000065 0.000065 0.000065 0.000065 0.000071
13 0.000038 0.000038 0.000036 0.000036 0.000036 0.000036 0.000035 0.000043
23 0.000035 0.000035 0.000031 0.000031 0.000031 0.000032 0.000031 0.000040
33 0.000033 0.000033 0.000029 0.000029 0.000029 0.000031 0.000029 0.000038
43 0.000032 0.000033 0.000028 0.000028 0.000028 0.000034 0.000029 0.000037
53 0.000031 0.000033 0.000028 0.000028 0.000028 0.000034 0.000030 0.000037
63 0.000031 0.000032 0.000027 0.000027 0.000027 0.000036 0.000029 0.000036
73 0.000030 0.000033 0.000027 0.000027 0.000027 0.000034 0.000027 0.000036
83 0.000030 0.000032 0.000027 0.000027 0.000027 0.000033 0.000026 0.000036
93 0.000030 0.000032 0.000027 0.000026 0.000026 0.000031 0.000026 0.000036

Numbers in the table correspond to the average realized GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole
available pool of assets. For each portfolio the realized variance is computed over an evaluation horizon of H = 763
observations and an in-sample estimation window length T = 250. Numbers in bold correspond to the smallest realized
portfolio variance for a given portfolio size N .
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Table 13: Variance of out-of-sample portfolio returns for T = 250.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.000058 0.000058 0.000060 0.000060 0.000060 0.000060 0.000060 0.000067
13 0.000036 0.000036 0.000036 0.000036 0.000036 0.000036 0.000035 0.000044
23 0.000033 0.000033 0.000032 0.000032 0.000032 0.000034 0.000032 0.000041
33 0.000032 0.000032 0.000031 0.000031 0.000031 0.000034 0.000031 0.000040
43 0.000031 0.000031 0.000030 0.000030 0.000031 0.000037 0.000032 0.000039
53 0.000031 0.000030 0.000030 0.000030 0.000030 0.000038 0.000033 0.000039
63 0.000031 0.000030 0.000029 0.000029 0.000029 0.000040 0.000032 0.000038
73 0.000030 0.000029 0.000029 0.000028 0.000028 0.000038 0.000029 0.000038
83 0.000030 0.000029 0.000030 0.000029 0.000028 0.000037 0.000028 0.000038
93 0.000030 0.000029 0.000027 0.000026 0.000026 0.000035 0.000028 0.000038

Numbers in the table correspond to the average out-of-sample GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole available
pool of assets. For each portfolio the out-of-sample return is computed over an evaluation horizon of H = 763 observations
and an in-sample estimation window length T = 250. Numbers in bold correspond to the smallest out-of-sample portfolio
variance for a given portfolio size N .

Table 14: Transaction costs for T = 250.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.038 0.039 0.418 0.299 0.228 0.060 0.025 0.022
13 0.113 0.138 1.341 1.092 0.915 0.302 0.091 0.025
23 0.184 0.231 2.041 1.697 1.441 0.546 0.166 0.025
33 0.252 0.325 2.647 2.210 1.890 0.792 0.243 0.025
43 0.318 0.405 3.099 2.621 2.270 1.049 0.322 0.025
53 0.383 0.488 3.386 2.886 2.510 1.264 0.391 0.025
63 0.451 0.561 3.600 3.104 2.727 1.457 0.454 0.025
73 0.512 0.641 4.119 3.568 3.144 1.649 0.528 0.025
83 0.574 0.707 5.353 4.603 4.005 1.917 0.625 0.025
93 0.634 0.776 4.709 4.064 3.533 1.804 0.616 0.025

Numbers in the table correspond to the average total transaction costs computed according to Eq. (23) for portfolios of size
N across 100 unique subsets of 93 assets. The last row reports the results over the whole available pool of assets. For each
portfolio the TTC is computed over an evaluation horizon of H = 763 observations and an in-sample estimation window
length T = 250.
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