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Abstract

Based on large simulations study, this paper investigates which strategy to
adopt in order to choose the best forecasting model — in terms of accuracy
— for Mixed causal-noncausal AutoRegressions (MAR) data generating pro-
cesses: always differencing (D), never differencing (L) or unit root pretesting
(P). Relying on recent econometric developments regarding forecasting and
unit root testing in this MAR framework, the main results suggest that from
a practitioner’s point of view, the P strategy at the 1%-level is a good com-
promise. In fact, it never departs too much from the best model in terms
of forecast accuracy, unlike the L (respectively D) strategy when the DGP
becomes very persistent (respectively with little persistence).
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1 Introduction

Regarding time series forecasting, the question about using a model for the
series in levels or in first differences can be traced back to Box and Jenkins
[1976]. In their popular book, these authors recommend to use the model
in levels unless the root of the process to forecast is close to unity, in which
case the model in first differences would achieve the best forecast accuracy.
The introduction of unit root tests by Dickey and Fuller [1979] and their
application in an influential paper by Nelson and Plosser [1982] gave rise to
a renewed interest in this question. Indeed, from a large set of long historical
time series for the U.S. economy, Nelson and Plosser [1982] conclude that
the null hypothesis that these series contain a unit root cannot be rejected
for most of them. Yet, as emphasized in Dickey, Bell, and Miller [1986],
forecasts of a unit root process are very different from forecasts of a stationary
process, also when the latter is strongly persistent. Hence, beside “always
difference” or “never difference” (denoted respectively D and L hereafter)
forecasting strategies, a third option has emerged: unit-root pretesting (P)
and difference or not accordingly. From Monte-Carlo simulations, evidence in
favour of pretesting strategy was found for the linear autoregressive class of
models by e.g. Campbell and Perron [1991], Stock [1996], Stock and Watson
[1999] or Diebold and Kilian [2000], especially for roots close to unity.

In this paper, we answer the same question for the class of mixed causal-
noncausal autoregressive (MAR) models. These models, introduced decades
ago in statistics, have acquired growing popularity in economics and finance
over the past few years. Development of their econometric theory as well as
applications to macroeconomic or financial time series modelling and fore-
casting can be found in Lanne and Saikkonen [2011], Lanne, Luoma, and
Luoto [2012], Lanne and Saikkonen [2013], Hencic and Gouriéroux [2015],
Gouriéroux and Zakoian [2015], Gouriéroux and Jasiak [2016], Gouriéroux
and Zakoian [2017], Fries and Zakoian [2019], Hecq and Voisin [2020] or
Cavaliere, Nielsen, and Rahbek [2020], among others. The interest in MAR
models, which allow for dependence on both the past and the future — unlike
the well-known backward-looking autoregression which rules out dependence
on future observations — stems mainly from three of their characteristics.
First, they are able to capture epochs of bubble build-up and burst. Second,
they can account for non-fundamental shocks which can reflect, for instance,
the fact that the econometrician uses a smaller information set than economic
agents do. Third, as noticed in a previous paper [Bec, Nielsen, and Säıdi,
2020], mixed causal-noncausal autoregressive models could prove very useful
for forecasting as they can be viewed as very parsimonious representations
of more complex nonlinear DGPs (see also Gouriéroux and Zakoian [2017]
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on this point). Due to their dependence on future observations, specific fore-
casting methods have been developed for MAR models by Lanne, Luoto, and
Saikkonen [2012] and Gouriéroux and Jasiak [2016]. Similarly, a specific unit
root test has been proposed by Saikkonen and Sandberg [2016].

The goal of this paper is to evaluate the relevance of unit root pretesting
(P) for these MAR models’ forecasting performance, compared to the D and
L strategies. To this end, the recent developments cited above are used in a
large simulation study. Within this methodological framework, a variety of
degrees of persistence, of forecast horizons, of sample sizes as well as of levels
of the test are under scrutiny.

After a brief presentation of the MAR model in Section 2, Section 3
exposes the amended version of Saikkonen and Sandberg [2016] unit root
test proposed in a previous work [Bec, Nielsen, and Säıdi, 2020] in order
to circumvent likelihood bimodality issues involved by the estimation of the
MAR models. Then, Section 4 describes the forecasting methods of Lanne,
Luoto, and Saikkonen [2012] and Gouriéroux and Jasiak [2016]. Section 5
reports results of preliminary simulation exercises which are used to fine-tune
the settings of the main simulation study reported in Section 6. Section 7
concludes.

2 The MAR Setting

Consider the mixed causal non-causal autoregression, MAR(1,1), as given by

Φ(L)Ψ(L−1)yt = (1− φL)(1− ψL−1)yt = εt, (1)

where εt is assumed i.i.d. with p.d.f. given by g(·; θ) indexed by parameters
in θ. We consider the case −1 < φ ≤ 1 and −1 < ψ < 1, allowing a unit
root in the causal polynomial, Φ(L), see Saikkonen and Sandberg [2016] for
a discussion.

Following Lanne and Saikkonen [2011] and Gouriéroux and Jasiak [2016],
define the unobserved causal and non-causal components as, respectively,

ut = (1− φL)yt and vt = (1− ψL−1)yt, (2)

such that (1− ψL−1)ut = εt and

ut = (1− ψL−1)−1εt =
∞∑
j=0

ψjεt+j. (3)
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For a specified innovation density g(·; θ), the parameters in (1) can be
estimated from a sample {yt}Tt=1 using approximate maximum likelihood,

(φ̂, ψ̂, θ̂) = arg max
φ,ψ,θ

T−1∑
t=2

log g
(
(1− φL)(1− ψL−1)yt; θ

)
,

conditional on initial and terminal values, y1 and yT , see e.g. Breidt et al.
[1991], and Lanne and Saikkonen [2011]. Below, we use a Student’s t(0,σ2,λ)
distribution, such that

g(εt;σ,λ) =
Γ(λ+1

2
)

Γ(λ
2
)

(
πλσ2

)− 1
2

(
1 +

ε2t
σ2λ

)−λ+1
2

, (4)

with θ = (λ,σ2) containing the degrees of freedom parameter, λ, and the
scale, σ2.

3 Unit Root Testing

The unit root test pertaining to the hypothesis H0 : φ = 1 in the MAR model
is considered in Saikkonen and Sandberg [2016]. They show that for g(·; θ)
symmetric, the usual one-sided unit-root test statistic,

τ =
(φ̂− 1)

se(φ̂)
, (5)

where se(φ̂) is the square root of the relevant entry in the inverse observed
information, has a limiting distribution, Dτ (ρ), that depends on the nuisance
parameter ρ. If g(·; θ) is the Student’s density in (4), with λ > 2, it holds
that ρ is a function of λ:

ρ(λ)2 =
λ(λ+ 1)

(λ− 2)(λ+ 3)
.

However, Bec et al. [2020] show that a bimodality issue occurs in the Stu-
dent’s t case and leads to interchanged roots. Indeed, the backward root can
be estimated as the forward root and vice versa. Since the unit root test is
based on the estimation of the backward root, this can pose a problem. As a
consequence, the estimation strategy proposed by Bec et al. [2020] relies on
a grid search procedure in order to characterize the entire likelihood surface
and list all local maxima. Then, if there are multiple maxima, the maximum
with the backward root higher than the forward root (φ̂ > ϕ̂) is selected even
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if there exists a maximum with a higher likelihood but with φ̂ < ϕ̂ ≈ 1. This
choice stems from the fact that a unit root in the forward component would
lack reasonable economic interpretation: It would mean that agents look into
the infinite future without discounting. Beside, the test statistic is similar to
Saikkonen and Sandberg [2016]’s. Critical values are given in Saikkonen and
Sandberg [2016] in terms of a response surface approximation.

4 Forecasting

To forecast {yT+h}Hh=1 based on the MAR model, we consider the approaches
suggested in Lanne, Luoto, and Saikkonen [2012] and Gouriéroux and Jasiak
[2016]. Lanne et al. [2012] start from (3) and simulate future paths {εT+k}Kk=1

to approximate the conditional expectation E(yT+h | yT ) and the c.d.f.
Gouriéroux and Jasiak [2016], on the other hand, derive the predictive den-
sity p(uT+1, ...,uT+H | yT ) and use importance sampling to draw from the
predictive distibution of {yT+h}Hh=1 given yT .

4.1 Lanne, Luoto, and Saikkonen [2012] (LLS)

To derive the point forecast, it is used that

E(yT+h | yT ) = φhyT + E(
h−1∑
i=0

φiuT+i+1 | yT ), h = 1, 2, ...,H.

The infinite sum in (3) is then approximated with a truncated version using

K terms, and based on N simulated paths, {ε(i)T+k}Kk=1 for i = 1, 2, ...,N ,
Lanne et al. [2012] suggests to estimate the conditional expectation as

E(yT+h | yT )

= φhyT + E(
∑h−1

i=0
φiuT+i+1 | yT )

≈ φhyT + E

(∑h−1

i=0
φi
∑K−h

k=0
ψkεt+h+i+k | yT

)

≈ φhyT +

1
N

∑N
i=1

(∑h−1
i=0 φ

i
∑K−h

k=0 ψ
kεt+h+i+k

)
g
(
εT (uT , ε

(i)
T+1, ..., ε

(i)
T+M);λ

)
1
N

∑N
i=1 g

(
εT (uT , ε

(i)
T+1, ..., ε

(i)
T+M);λ

) ,(6)

where εT is found as

εT (uT , ε
(i)
T+1, ..., ε

(i)
T+M) = ûT −

K∑
k=1

ψkε
(i)
T+k. (7)
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To get also interval forecasts, we evaluate the c.d.f. over a grid x ∈
(x1, ...,xG) using

1
N

∑N
i=1

(
I
(∑h−1

i=0 φ
i
∑K−h

k=0 ψ
kεt+h+i+k ≤ x

))
g
(
εT (uT , ε

(i)
T+1, ..., ε

(i)
T+M);λ

)
1
N

∑N
i=1 g

(
εT (uT , ε

(i)
T+1, ..., ε

(i)
T+M);λ

) ,

similar to (6) where I(·) is the indicator function.
In the implementation below we chooseK ∈ [Kmin,Kmax], such that ψK <

0.0001 with Kmin = H+5 and Kmax = 200. For the interval forecast, we use a
grid of 1024 equally spaced points in the interval between min(µu−12σu,uT−
σu) and max(µu+12σu,uT +σu), where µu and σ2

u denote the empirical mean
and variance of {ut}Tt=1. These choices ensure that the interval is wide enough
to include most probability mass of the forecast distributions for H = 10.
Specific quantiles are found using linear interpolation.

4.2 Gouriéroux and Jasiak [2016]

To obtain density forecasts for {yT+h}Hh=1 conditional on yT , Gouriéroux and
Jasiak [2016] suggest to forecast the non-causal component {uT+h}Hh=1 given
yT , and use (2) to construct density forecasts for {yT+h}Hh=1 from forecast
densities for {uT+h}Hh=1 and yT .

To forecast {uT+h}Hh=1, Gouriéroux and Jasiak [2016] rewrite the joint
predictive density,

p(uT+1, ...,uT+H | yT ) = p(uT+1, ...,uT+H | uT )

=
p(uT ,uT+1, ...,uT+H)

p(uT )

=
p(uT ,uT+1, ...,uT+H−1 | uT+H)p(uT+H)

p(uT )
.

Using estimated versions for {ut}Tt=1, ψ, and θ and estimating the stationary
distributions by sample averages, an estimate of the predictive density is
given in closed form

p̂(uT+1,uT+2, ...,uT+H | ûT )

= g(uT − ψ̂uT+1; θ̂) · g(uT+1 − ψ̂uT+2; θ̂) · · · g(uT+H−1 − ψ̂uT+H ; θ̂)

×
∑T

t=1 g(uT+H − ψ̂ût; θ̂)∑T
t=1 g(uT − ψ̂ût; θ̂)

. (8)

The closed form for the joint predictive density in (8) can be used to
simulate paths for {uT+h}Hh=1 e.g. using Sampling-Importance-Resampling
(SIR), see Rubin [1988].
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4.2.1 Implementation

Below, we implement SIR based on an importance density, defined by a
causal AR(1) with Student’s t(0,σ2,λ∗) innovations.1 We generate candidate

forecast paths {u∗(i)T+h}Hh=1, for i = 1, 2, ...,M , conditional on ûT , using the
causal AR(1) model

u
∗(i)
T+h = γ∗u

∗(i)
T+h−1 + σ∗η

∗(i)
T+h, η

∗(i)
T+h ∼ t(0, 1,λ∗), (9)

with u
∗(i)
T = ûT , and use the importance density

q̂(u
∗(i)
T+1, ...,u

∗(i)
T+H | ûT ) = g∗(u

∗(i)
T+H | u

∗(i)
T+H−1) · · · g

∗(u
∗(i)
T+2 | u

∗(i)
T+1)g

∗(u
∗(i)
T+1 | ûT ),

where g∗(·) is the conditional density for the causal AR(1) model depending
on (γ∗,σ∗,λ∗).

For each candidate path, {u∗(i)T+h}Hh=1, we calculate the corresponding im-
portance weight

w(i) =
p̂(u

∗(i)
T+1, ...,u

∗(i)
T+H | ûT )

q̂(u
∗(i)
T+1, ...,u

∗(i)
T+H | ûT )

.

In the resampling step of the SIR algorithm, we draw N forecast paths from
the M candidate paths {u∗(i)T+h}Hh=1 i = 1, 2, ...,M , with probabilities given by
the normalized importance weights

p(i) =
w(i)∑M
i=1w

(i)
.

For M and N large, the final sample paths, {u(j)T+h}Hh=1 j = 1, ...,N , are draws
from the predictive distribution with p.d.f. given by (8).

For the one-step forecast, h = 1, the predictive density of yT+1|yT is based

on the empirical distribution of u
(j)
T+1 shifted by φyT , and the distribution of

the forecast is represented by y
(j)
T+1 for j = 1, ...,N , with y

(j)
T+1 = u

(j)
T+h + φ̂yT .

1We have also considered a recursive version of the SIR algorithm, where we resample

the pairs {y(j)T+h−1,u
(j)
T+h} at each forecast horizon, h = 1, 2, ...,H, but otherwise use the

same approach as below. Even though this is computationally more demanding, it could
have improved the precision because it does not rely on the fit of entire forecast paths.
Unfortunately, 10,000 Mote Carlo replications of a MAR(1,1) DGP with φ = 0.9, ψ = 0.6,
σ = 1, λ = 7 and T = 200 has revealed no improvement of the forecasts accuracy compared
to the SIR approach of Gouriéroux and Jasiak [2016] or the LLS method. These additional
results are available upon request.
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For longer forecasting horizons, h = 2, 3, ...,H, the forecast paths are updated
recursively

y
(j)
T+h = u

(j)
T+h + φy

(j)
T+h−1.

Point forecasts, denoted {ŷT+h}Hh=1, can be derived using a location mea-
sure for the simulated predictive distribution. Gouriéroux and Jasiak [2016]
suggest the pointwise mode as the most likely outcome; an alternative would
be the median or the mean.

The effectiveness of the SIR algorithm depends on the chosen importance
density, and before discussing the effect of unit root pretesting we consider
a small pilot simulation, where we vary (γ∗,σ2∗,λ∗) to ensure a sufficiently
large variation of the candidate paths.

5 Preliminary Simulations

This Section presents the pilot simulations study which aims to guide the
choice of (i) the importance density of the SIR algorithm, (ii) the location
measure for the simulated predictive distribution and (iii) the forecasting
approach2.

In the simulation below we useB simulated MAR(1,1) time series, {y(b)t }T+Ht=1

b = 1, 2, ...,B, with sample length T = 200, and parameters given by φ = 0.9
and ψ = 0.6.

To compare point forecasts, we use the mean absolute deviation from
the true value of different implementations for each forecast horizon h ∈
{1, 2, 5, 10}, defined as

MAD(h) =
1

B

B∑
b=1

∣∣∣ŷ(b)T+h − y(b)T+h∣∣∣ .
We also consider the 90 percent coverage of the density forecasts, i.e. the
proportion of cases where the actual value of the time series, yt+h, is included
in the 90 percent confidence interval of the forecast. For the pilot simula-
tions, we use M = N = 10000 and B = 10000 replications unless otherwise
mentioned.

2We have also explored the influence of the number of iterations. To this end, we
have compared forecasts obtained for numbers of simulations, M and N , taking values
in {50000, 20000, 10000, 5000, 1000}. Point forecasts appear to be reliable for quite low
number of simulations. For the chosen setting, interval forecasts appear reliable with
values of N and M larger than 5000-10000. Accordingly, the subsequent simulation study
is conducted for M = N = 10000. These additional results are available upon request.

8



In order to choose the importance density of the SIR algorithm, we conduct
a simulation study for various values of (γ∗,σ2∗,λ∗). First, we consider γ∗ ∈
{γ̃, 1}, where γ̃ is the OLS estimate obtained from a causal AR(1) model for
{ût}Tt=1. For the scale we consider σ2∗ = cσ̃2, with σ̃2 is the OLS estimate
and where c ∈ {1, 4} potentially inflates the variance. Finally, we take λ∗ ∈
{λ̂, 3, 100}, where λ̂ is the MLE from the MAR model. The forecast accuracy
performances of these various calibrations, as measured by the MAD(h) and
the 90%-coverage, are reported in Table 1 in the appendix (columns (1) to
(8)), and the following preliminary conclusions emerge:

1. Regarding the location measure, it appears that the mode is always
dominated by the mean and the median, the last two ones giving very
similar MAD’s. This could be due to the well-known noise of the mode
estimates. We have considered different versions of mode estimates, and
for the present case the maximum of the estimated kernel density (using
a Gaussian kernel with 128 steps to 2 percent trimmed data) performs
better than the half-sample median, see e.g. Bickel and Frühwirth
[2006]. In the subsequent simulation study, we will focus on the median
because the mean does not exist if λ < 2.

2. The coverage rates, given in the last four lines of Table 1, are generally
excellent indicating that the density forecast may not be too sensitive
to the precise implementation.

3. The differences between MAD based on different importance densities
are generally small for the present case. Overall, the preferred is case
(5) based on a unit root in the candidate model given in Equation (9):
this is the one retained for the subsequent simulation study.

4. The last column of Table 1 reports the forecast performance based
on LLS approach. It is worth noticing that the differences between
the MAD’s and 90%-coverages obtained from LLS and Gouriéroux and
Jasiak [2016] methods are generally very small. Hence, for the purpose
followed in this paper, the latter is retained in the subsequent work.

6 Main simulation study

Tables 2 to 5 in the appendix compare the forecast accuracy reached for
T ∈ {100, 200, 400} by five different strategies for the choice of the forecast-
ing model: the one called L refers to the model in levels; the next three ones
correspond to the pretest P strategy at the 1%-, 5%- and 10%-levels respec-
tively; the last one, D, corresponds to the model in first differences. In this
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baseline MAR(1,1) DGP, the forward root parameter is fixed to ψ = 0.6 while
the degrees of freedom of the Student distribution is set to λ = 7. Finally,
the backward root takes value in {0.8, 0.9, 0.95, 0.975, 0.99, 1}, corresponding
to columns (1) to (6).

Table 2 gives the levels of the MADs measures for T = 100. Unsurpris-
ingly, the forecast accuracy decreases as the forecast horizon h increases3:
the MAD values obtained for h = 1 range from 0.935 to 0.962 whereas the
ones found for h = 10 lie between 4.48 and 4.61.

Tables 3 to 5 report the percent deviation of the MADs from the one
of the best model, for T = 100, 200 and 400 respectively. It can be seen
from Tables 2 and 3 that the best strategy to choose the forecasting model
depends heavily on the size of the backward root φ. Indeed, for values up to
0.95, the L strategy outperforms all other ones, all the more so as h increases.
For this range of φ values, the second best strategy is P at the 1%-level: the
percent deviation from the L strategy in terms of MAD ranges from 0.5% for
h = 1 to 6.9% for h = 10 when T = 100, from 0% (h = 1) to 2.4% (h = 10)
when T = 200 and from 0% (h = 1) to 0.6% (h = 10) when T = 400. For
backward root values up to 0.95, the worst strategy is D. For instance, Table
4 indicates that this strategy’s percent deviation from the L strategy in terms
of MAD ranges from 0.9% for h = 1 to 34.7% for h = 10 when T = 200.

By contrast, when φ approaches 1 from below, i.e. local alternatives for
the unit root pretest, the D strategy is the best one, the strategy P being
the second best again at the 1%-level. These conclusions hold for larger
sample size, see Tables 4 and 5, and provide support to Box and Jenkins
[1976]’s recommendation. Furthermore, a closer look at Tables 3 to 5 also
reveals that the forecast performance deterioration of the L strategy when
φ approaches 1 (first four lines of columns (4) to (6)) is much weaker than
the one of the D strategy when φ is well below unity (last four lines of
columns (1) to (3)), all the more so as the sample size increases. This finding
would support the L strategy. Nevertheless, from a practitioner’s point of
view, as values of φ > 0.95 are typically found for quarterly and monthly
macroeconomic data (see Diebold and Kilian [2000]), the P strategy at the
1%-level seems to be a good compromise. In fact, as stressed earlier, its
performance is similar to the one of the L strategy for backward root values
far from unity — especially for T > 100 — while it deteriorates in general
less than the one of the L strategy for backward root values as φ approaches
1 from below. Indeed, looking at columns (4) to (6) of e.g. Table 3, it can

3This finding is confirmed for T = 200 and 400. Moreover, the forecast accuracy
increases with the sample size T , as expected. The tables giving the levels of the MAD
for these sample sizes are not reported to save space, but are available upon request.
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be seen that the percent deviations of the L strategy from the best model lie
between 0% (h = 2) and 6.7% (h = 10) whereas the ones of the P1% range
from 0.2% (h = 1) to 2.1% (h = 10).

As can be seen from Tables 6 to 7, the same conclusions hold for a smaller
value of the forward root, i.e. ψ = 0.3, or for fatter tails in the residuals
Student distribution, namely λ = 3.

Results obtained from demeaned and detrended data — reported in Ta-
bles 8 and 9 — are more mitigated. They also support the choice of the
P strategy at the 1%-level, for the same reasons as above, but for horizons
h = 1, 2 only. Indeed, for longer forecast horizons, the deterioration of its
performance is more sizeable than the one of the L strategy. Indeed, in pres-
ence of a deterministic component, the P strategy suffers from higher critical
values as well as from one or two more parameters to estimate before de-
meaning or detrending. This could explain why the power of this strategy
deteriorates for horizons longer than 2.

7 Concluding remarks

Our paper’s goal was to investigate which strategy to adopt in order to choose
the best forecasting model — in terms of accuracy — for MAR(1,1) DGPs:
always differencing (D), never differencing (L) or unit root pretesting (P).

As a by-product of our analysis, a preliminary simulations study has
revealed that for the MAR(1,1) models considered here, (i) the importance
density of the SIR algorithm should retain a unit root in the candidate model,
(ii) the median should be the location measure for the simulated predictive
distribution and (iii) the Lanne et al. [2012] and Gouriéroux and Jasiak
[2016] forecasting approaches produce very similar forecasts accuracy.

The main results obtained here from a large simulation study support
Box and Jenkins [1976]’s recommendation to use the model in levels unless
the root of the process to forecast is close to unity. Moreover, they confirm
the ones obtained in favour of the pretesting strategy by e.g. Campbell and
Perron [1991], Stock [1996], Stock and Watson [1999] or Diebold and Kilian
[2000] for the linear autoregressive class of models. Extending these works by
considering a mixed causal-noncausal autoregressive DGP as well as various
levels of the unit root pretest strategy, it turns out that from a practitioner’s
point of view, the P strategy at the 1%-level seems to be a good compromise
for MAR(1,1) models. Indeed, it never departs too much from the best
model, unlike the L (respectively D) strategy when the DGP becomes very
persistent (respectively with little persistence).
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Table 2: Forecasting results for T=100.

(1) (2) (3) (4) (5) (6)

φ 0.8 0.9 0.95 0.975 0.99 1

MAD(1) L 0.940 0.941 0.942 0.943 0.943 0.945
MAD(2) L 1.62 1.70 1.75 1.77 1.79 1.80
MAD(5) L 2.78 3.32 3.66 3.85 3.97 4.07
MAD(10) L 3.27 4.50 5.48 6.11 6.58 6.96

MAD(1) P1% 0.945 0.947 0.947 0.945 0.942 0.938
MAD(2) P1% 1.64 1.72 1.77 1.78 1.78 1.78
MAD(5) P1% 2.84 3.44 3.77 3.89 3.93 3.94
MAD(10) P1% 3.41 4.81 5.80 6.24 6.48 6.57

MAD(1) P5% 0.948 0.948 0.947 0.945 0.942 0.938
MAD(2) P5% 1.65 1.73 1.77 1.78 1.78 1.78
MAD(5) P5% 2.91 3.49 3.79 3.89 3.92 3.94
MAD(10) P5% 3.56 4.98 5.86 6.25 6.46 6.56

MAD(1) P10% 0.955 0.952 0.948 0.943 0.940 0.937
MAD(2) P10% 1.68 1.75 1.77 1.77 1.77 1.77
MAD(5) P10% 3.04 3.56 3.80 3.88 3.92 3.94
MAD(10) P10% 3.84 5.14 5.91 6.25 6.45 6.54

MAD(1) D 0.969 0.953 0.945 0.941 0.939 0.936
MAD(2) D 1.74 1.76 1.77 1.77 1.77 1.77
MAD(5) D 3.30 3.64 3.81 3.88 3.91 3.92
MAD(10) D 4.41 5.39 5.98 6.26 6.43 6.52

Unit root test ERF 1% 42.5 18.7 9.0 4.7 2.8 1.7
Unit root test ERF 5% 70.4 43.7 23.4 13.2 7.7 4.1
Unit root test ERF 10% 87.0 64.6 40.3 24.2 14.9 7.9

Local maximum chosen 9.2 14.8 20.4 25.0 29.5 35.9

Maximum with ψ̂ > φ̂ 24.8 14.7 8.4 4.7 2.7 1.9

Note: The data generating process has ψ = 0.6, λ = 7, and σ = 1. The
forecasts are based on M = N = 10000 draws and the results are based on
B = 10000 Monte Carlo replications.
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Table 3: Results for T=100. Deviation from best fore-
cast in percent.

(1) (2) (3) (4) (5) (6)

φ 0.8 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.2 0.4 1.0
MAD(2) L 0.0 0.0 0.0 0.0 1.1 1.7
MAD(5) L 0.0 0.0 0.0 0.0 1.5 3.8
MAD(10) L 0.0 0.0 0.0 0.0 2.3 6.7

MAD(1) P1% 0.5 0.6 0.5 0.4 0.3 0.2
MAD(2) P1% 1.2 1.2 1.1 0.6 0.6 0.6
MAD(5) P1% 2.2 3.6 3.0 1.0 0.5 0.5
MAD(10) P1% 4.3 6.9 5.8 2.1 0.8 0.8

MAD(1) P5% 0.9 0.7 0.5 0.4 0.3 0.2
MAD(2) P5% 1.9 1.8 1.1 0.6 0.6 0.6
MAD(5) P5% 4.7 5.1 3.6 1.0 0.3 0.5
MAD(10) P5% 8.9 10.7 6.9 2.3 0.5 0.6

MAD(1) P10% 1.6 1.2 0.6 0.2 0.1 0.1
MAD(2) P10% 3.7 2.9 1.1 0.0 0.0 0.0
MAD(5) P10% 9.4 7.2 3.8 0.8 0.3 0.5
MAD(10) P10% 17.4 14.2 7.8 2.3 0.3 0.3

MAD(1) D 3.1 1.3 0.3 0.0 0.0 0.0
MAD(2) D 7.4 3.5 1.1 0.0 0.0 0.0
MAD(5) D 18.7 9.6 4.1 0.8 0.0 0.0
MAD(10) D 34.9 19.8 9.1 2.5 0.0 0.0

Unit root test ERF 1% 42.5 18.8 9.0 4.7 2.8 1.7
Unit root test ERF 5% 70.4 43.7 23.4 13.2 7.7 4.1
Unit root test ERF 10% 87.0 64.6 40.3 24.2 14.9 7.9

Local maximum chosen 9.2 14.8 20.4 25.0 29.5 35.9

Maximum with ψ̂ > φ̂ 24.8 14.7 8.4 4.7 2.7 1.9

Note: The data generating process has ψ = 0.6, λ = 7, and σ = 1. The
forecasts are based on M = N = 10000 draws and the results are based on
B = 10000 Monte Carlo replications.
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Table 4: Results for T=200. Deviation from best fore-
cast in percent.

(1) (2) (3) (4) (5) (6)

φ 0.8 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.0 0.3 0.5
MAD(2) L 0.0 0.0 0.0 0.0 0.0 1.1
MAD(5) L 0.0 0.0 0.0 0.0 0.5 2.0
MAD(10) L 0.0 0.0 0.0 0.0 0.0 3.5

MAD(1) P1% 0.0 0.1 0.2 0.3 0.3 0.1
MAD(2) P1% 0.6 0.6 0.6 1.1 0.0 0.6
MAD(5) P1% 0.0 0.6 1.1 1.3 0.8 0.2
MAD(10) P1% 0.9 1.1 2.4 3.0 0.9 0.5

MAD(1) P5% 0.1 0.4 0.5 0.4 0.2 0.1
MAD(2) P5% 0.6 1.2 1.1 1.1 0.0 0.6
MAD(5) P5% 0.7 1.8 2.2 1.6 0.3 0.2
MAD(10) P5% 1.8 3.6 5.3 4.1 0.6 0.2

MAD(1) P10% 1.0 1.2 1.0 0.5 0.1 0.0
MAD(2) P10% 1.9 2.4 1.7 1.1 0.0 0.6
MAD(5) P10% 4.3 5.4 3.8 1.6 0.0 0.0
MAD(10) P10% 8.6 11.4 9.0 4.6 0.3 0.0

MAD(1) D 3.6 1.8 0.9 0.3 0.0 0.0
MAD(2) D 6.8 3.5 2.3 1.1 0.0 0.0
MAD(5) D 17.7 9.2 4.1 1.3 0.0 0.0
MAD(10) D 34.7 20.3 10.3 4.5 0.2 0.0

Unit root test ERF 1% 73.9 42.6 14.0 4.5 1.4 0.5
Unit root test ERF 5% 94.3 87.2 57.3 26.2 10.1 3.4
Unit root test ERF 10% 97.7 96.4 84.4 51.8 23.2 8.0

Local maximum chosen 6.6 10.8 14.6 16.9 19.1 24.9

Maximum with ψ̂ > φ̂ 17.8 6.7 2.3 0.8 0.3 0.2

Note: The data generating process has ψ = 0.6, λ = 7, and σ = 1. The
forecasts are based on M = N = 10000 draws and the results are based on
B = 10000 Monte Carlo replications.
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Table 5: Results for T=400. Deviation from best fore-
cast in percent.

(1) (2) (3) (4) (5) (6)

φ 0.8 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.0 0.2 0.3
MAD(2) L 0.0 0.0 0.0 0.0 0.0 0.6
MAD(5) L 0.0 0.0 0.0 0.0 0.0 1.0
MAD(10) L 0.0 0.0 0.0 0.0 0.0 2.0

MAD(1) P1% 0.0 0.0 0.0 0.1 0.3 0.1
MAD(2) P1% 0.0 0.0 0.0 0.0 0.6 0.0
MAD(5) P1% 0.0 0.0 0.0 0.3 0.8 0.3
MAD(10) P1% 0.6 0.0 0.0 1.0 1.4 0.3

MAD(1) P5% 0.0 0.0 0.0 0.3 0.2 0.0
MAD(2) P5% 0.0 0.0 0.0 0.0 0.6 0.0
MAD(5) P5% 0.4 0.0 0.3 0.8 0.8 0.0
MAD(10) P5% 0.6 0.2 0.2 2.4 1.6 0.2

MAD(1) P10% 0.2 0.1 0.3 0.3 0.0 0.0
MAD(2) P10% 0.0 0.0 0.6 1.2 0.0 0.0
MAD(5) P10% 0.7 0.6 1.7 2.4 0.8 0.0
MAD(10) P10% 1.5 0.9 3.8 5.4 1.7 0.0

MAD(1) D 3.6 1.7 0.8 0.2 0.0 0.0
MAD(2) D 7.6 4.2 1.8 0.6 0.0 0.0
MAD(5) D 19.8 10.8 5.4 2.4 0.5 0.0
MAD(10) D 35.9 22.1 12.0 5.9 1.6 0.0

Unit root test ERF 1% 96.3 96.9 78.4 27.5 5.0 0.5
Unit root test ERF 5% 98.8 99.3 98.9 75.4 27.2 4.4
Unit root test ERF 10% 99.5 99.8 99.8 91.3 47.7 9.4

Local maximum chosen 3.0 4.9 6.0 6.6 7.4 10.4

Maximum with ψ̂ > φ̂ 9.9 1.9 0.2 0.0 0.1 0.0

Note: The data generating process has ψ = 0.6, λ = 7, and σ = 1. The
forecasts are based on M = N = 10000 draws and the results are based on
B = 10000 Monte Carlo replications.

19



Table 6: Results for T=200 and ψ = 0.3. Deviation from
best forecast in percent.

(1) (2) (3) (4) (5) (6)

φ 0.8 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.0 0.1 0.6
MAD(2) L 0.0 0.0 0.0 0.0 0.0 1.3
MAD(5) L 0.0 0.0 0.0 0.0 0.0 2.2
MAD(10) L 0.0 0.0 0.0 0.0 0.0 3.6

MAD(1) P1% 0.0 0.0 0.2 0.2 0.1 0.1
MAD(2) P1% 0.0 0.7 0.7 0.7 0.0 0.0
MAD(5) P1% 0.0 0.4 0.8 1.5 0.7 0.7
MAD(10) P1% 0.0 0.4 1.8 2.6 1.0 0.5

MAD(1) P5% 0.1 0.1 0.5 0.4 0.1 0.1
MAD(2) P5% 0.0 0.7 1.4 0.7 0.0 0.0
MAD(5) P5% 0.0 0.4 2.0 1.9 0.4 0.4
MAD(10) P5% 0.5 0.7 4.1 3.9 1.0 0.2

MAD(1) P10% 0.2 0.9 1.0 0.4 0.0 0.1
MAD(2) P10% 0.7 2.1 2.0 1.3 0.0 0.0
MAD(5) P10% 1.0 3.9 4.3 2.2 0.0 0.4
MAD(10) P10% 2.4 6.7 8.8 4.5 0.5 0.0

MAD(1) D 5.5 2.6 1.0 0.2 0.0 0.0
MAD(2) D 10.2 4.9 2.7 1.3 0.0 0.0
MAD(5) D 20.5 10.8 5.1 1.9 0.0 0.0
MAD(10) D 35.2 21.6 10.8 4.5 0.5 0.0

Unit root test ERF 1% 95.4 78.3 29.0 8.2 2.4 0.8
Unit root test ERF 5% 98.9 98.8 75.5 36.7 13.7 4.6
Unit root test ERF 10% 99.5 99.9 91.5 59.6 27.0 9.3

Local maximum chosen 12.4 17.2 20.8 23.8 27.8 36.7

Maximum with ψ̂ > φ̂ 3.4 0.6 0.2 0.1 0.2 0.2

Note: The data generating process has ψ = 0.3, λ = 7, and σ = 1. The
forecasts are based on M = N = 10000 draws and the results are based on
B = 10000 Monte Carlo replications.
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Table 7: Results for T=200 and λ = 3. Deviation from
best forecast in percent.

(1) (2) (3) (4) (5) (6)

φ 0.8 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.0 0.8 0.0
MAD(2) L 0.0 0.0 0.0 0.0 0.4 0.4
MAD(5) L 0.0 0.0 0.0 0.0 0.0 1.9
MAD(10) L 0.0 0.0 0.0 0.0 0.0 2.9

MAD(1) P1% 0.0 0.0 0.0 0.8 0.8 0.0
MAD(2) P1% 0.0 0.0 0.4 0.4 0.4 0.0
MAD(5) P1% 0.8 0.5 0.4 0.8 0.2 0.4
MAD(10) P1% 1.6 1.0 0.5 1.2 0.5 0.6

MAD(1) P5% 0.0 0.0 0.0 0.0 0.8 0.0
MAD(2) P5% 0.0 0.0 0.4 0.4 0.0 0.0
MAD(5) P5% 0.8 0.5 0.8 1.0 0.2 0.2
MAD(10) P5% 1.6 1.0 1.2 1.9 0.7 0.2

MAD(1) P10% 0.0 0.0 0.0 0.8 0.0 0.0
MAD(2) P10% 0.0 0.5 0.9 0.4 0.0 0.0
MAD(5) P10% 0.8 1.1 2.1 2.0 0.2 0.0
MAD(10) P10% 1.8 2.1 3.5 3.4 0.8 0.0

MAD(1) D 4.2 1.7 0.8 0.8 0.0 0.0
MAD(2) D 9.1 4.6 2.2 0.9 0.0 0.0
MAD(5) D 22.8 12.2 5.6 2.8 0.2 0.0
MAD(10) D 39.2 21.9 10.4 4.9 0.7 0.0

Unit root test ERF 1% 97.0 92.0 63.7 28.8 7.9 0.8
Unit root test ERF 5% 97.9 97.5 89.0 61.3 25.9 4.8
Unit root test ERF 10% 98.0 98.0 95.2 77.4 42.3 9.9

Local maximum chosen 0.2 0.4 0.6 0.6 0.7 1.0

Maximum with ψ̂ > φ̂ 2.6 0.5 0.1 0.0 0.0 0.0

Note: The data generating process has ψ = 0.6, λ = 3, and σ = 1.
The forecasts are based on M = N = 10000 draws and the results are
based on B = 10000 Monte Carlo replications.
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Table 8: Results for T=200. Demeaned data. Deviation
from best forecast in percent.

(1) (2) (3) (4) (5) (6)

φ 0.8 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.0 0.5 1.1
MAD(2) L 0.0 0.0 0.0 0.0 0.6 1.7
MAD(5) L 0.0 0.0 0.0 0.0 1.8 4.0
MAD(10) L 0.0 0.0 0.0 0.0 2.3 5.9

MAD(1) P1% 0.8 1.2 0.6 0.3 0.2 0.1
MAD(2) P1% 1.2 1.8 1.1 0.6 0.0 0.6
MAD(5) P1% 3.9 4.8 3.0 0.5 0.5 0.8
MAD(10) P1% 6.7 9.1 6.3 2.3 0.6 0.8

MAD(1) P5% 1.3 1.5 0.9 0.2 0.1 0.0
MAD(2) P5% 1.9 2.4 1.1 0.6 0.0 0.6
MAD(5) P5% 5.7 5.7 3.2 0.3 0.3 0.5
MAD(10) P5% 10.4 11.7 7.4 2.3 0.3 0.5

MAD(1) P10% 2.3 1.7 0.7 0.1 0.1 0.0
MAD(2) P10% 3.7 2.9 1.1 0.6 0.0 0.0
MAD(5) P10% 10.0 7.4 3.5 0.3 0.0 0.3
MAD(10) P10% 18.0 15.2 7.8 2.1 0.2 0.2

MAD(1) D 3.8 2.0 0.7 0.1 0.0 0.0
MAD(2) D 6.8 3.5 1.7 0.6 0.0 0.0
MAD(5) D 18.2 8.9 3.5 0.0 0.0 0.0
MAD(10) D 33.8 18.8 8.3 1.9 0.0 0.0

Unit root test ERF 1% 40.7 12.9 3.5 1.5 1.0 0.9
Unit root test ERF 5% 65.1 34.3 12.1 5.1 3.0 2.7
Unit root test ERF 10% 77.7 51.6 23.9 10.9 6.5 5.7

Local maximum chosen 5.5 9.0 13.0 15.6 17.4 17.3

Maximum with ψ̂ > φ̂ 18.8 8.5 3.7 1.8 1.1 0.8

Note: The data generating process has ψ = 0.6, λ = 7, and σ = 1. The
forecasts are based on M = N = 10000 draws and the results are based on
B = 10000 Monte Carlo replications.
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Table 9: Results for T=200. Detrended data. Deviation
from best forecast in percent.

(1) (2) (3) (4) (5) (6)

φ 0.8 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.0 0.6 0.9
MAD(2) L 0.0 0.0 0.0 0.0 1.1 1.7
MAD(5) L 0.0 0.0 0.0 0.5 3.0 3.7
MAD(10) L 0.0 0.0 0.0 1.4 5.4 7.1

MAD(1) P1% 1.9 1.8 1.0 0.2 0.1 0.1
MAD(2) P1% 3.1 3.0 1.7 0.0 0.6 0.0
MAD(5) P1% 7.7 6.6 3.2 0.3 0.2 0.2
MAD(10) P1% 12.3 11.4 4.7 0.5 0.5 0.3

MAD(1) P5% 2.6 2.0 1.0 0.2 0.1 0.1
MAD(2) P5% 3.7 3.6 2.3 0.0 0.6 0.0
MAD(5) P5% 10.2 7.5 3.5 0.3 0.0 0.0
MAD(10) P5% 16.0 13.0 5.0 0.2 0.2 0.1

MAD(1) P10% 3.5 2.3 1.1 0.1 0.0 0.0
MAD(2) P10% 5.6 4.1 2.3 0.0 0.0 0.0
MAD(5) P10% 14.2 9.0 3.5 0.0 0.0 0.0
MAD(10) P10% 22.3 15.3 5.2 0.0 0.0 0.1

MAD(1) D 4.8 2.6 1.1 0.1 0.0 0.1
MAD(2) D 8.1 4.7 2.3 0.0 0.6 0.0
MAD(5) D 20.8 10.2 3.8 0.0 0.0 0.0
MAD(10) D 32.5 17.1 5.4 0.0 0.0 0.0

Unit root test ERF 1% 27.2 7.1 2.3 1.4 1.1 1.1
Unit root test ERF 5% 46.4 18.0 6.4 3.3 2.4 2.3
Unit root test ERF 10% 57.7 28.5 11.5 6.2 4.4 4.0

Local maximum chosen 4.3 7.3 10.8 12.5 13.9 14.0

Maximum with ψ̂ > φ̂ 19.5 9.6 5.0 3.3 2.6 2.5

Note: The data generating process has ψ = 0.6, λ = 7, and σ = 1. The
forecasts are based on M = N = 10000 draws and the results are based on
B = 10000 Monte Carlo replications.
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