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Abstract

The typical predictor in predictive regressions for stock returns exhibits high per-
sistence, which leads to nonstandard limiting distributions of the least-squares esti-
mator and the associated t statistic. While there are several methods to deal with
the issue of nonstandard distributions, the high predictor persistence also opens
the door to spurious regression findings induced by the use of imperfect predictors,
i.e. when the predictors do not perfectly span the conditional mean of the stock
returns. To deal with such imperfect predictors, we take here a technical approach.
Concretely, we robustify IVX predictive regression (Kostakis et al., 2015, Review
of Financial Studies 28, 1506–1553) to the presence of smoothly varying compo-
nents of the predictive system. This allows us to deal with situations where the
predictors are imperfect without requiring additional knowledge on the predictive
system, which is often unavailable in practice. In specific, we employ a filter which
effectively employs smoothness to identify the mean component of the stock returns
unaccounted for by the imperfect predictors. The limiting distribution of the re-
sulting modified IVX t statistic is derived under sequences of local alternatives, and
a wild bootstrap implementation improving the finite-sample behavior is provided.
Compared to standard IVX predictive regression, there is a price to pay for such ro-
bustness in terms of power; at the same time, the IVX statistic without adjustment
consistently rejects the false null of no predictability in the presence of imperfect
predictors.
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1 Introduction

If the literature on predictive regressions for stock returns has taught us something the

past decades, it is that predictability of stock returns is difficult to confirm empirically.

Although many putative predictors such as the dividend yield or the earnings/price ra-

tio are well rooted in economic theory, and are often found to be quite persistent in

practice (implying high convergence rates of the slope coefficient estimators), the signal-

to-noise ratio of the typical predictive regression is low, reducing chances of establishing

predictability. Furthermore, model instabilities cause additional complications in applied

work, and, finally, one also faces technical challenges, most prominently so-called predic-

tive regression endogeneity inducing 2nd order bias of the LS estimators and nonstandard

limiting null distributions of the associated t statistic. See Campbell (2008) and Phillips

(2015) for reviews of predictive regressions for stock returns.

Various ways to deal with the technical aspects of predictive regressions have been

put forward in the past years; see, among others, Campbell and Yogo (2006); Jansson

and Moreira (2006); Bauer and Maynard (2012); Elliott et al. (2015); Kostakis et al.

(2015); Breitung and Demetrescu (2015). In particular, the IV estimation procedures

proposed by Kostakis et al. (2015) and Breitung and Demetrescu (2015) have become

popular; see e.g. Phillips and Lee (2013), Lee (2016), Pavlidis et al. (2017), Gonzalo and

Pitarakis (2017), Yang et al. (2020), Demetrescu et al. (2022b), Demetrescu and Hillmann

(2022) or Demetrescu et al. (2022a), where Demetrescu et al. (2022b,a) specifically discuss

IV-based inference in the presence of instability of the slope coefficients. In particular,

these IV methods do not require additional variables to be observed since they rely on

self-generated instrumental variables.

However, even if predictability by certain variables is found, the high persistence of the

typical putative predictor may prevent a “clean” interpretation of the outcomes of predic-

tive regressions. In particular, Ferson et al. (2003) point out that persistent components

in the mean of stock returns are going to be detected by standard predictive regressions

solely by virtue of the high persistence of say financial ratios. In other words, the danger

of spurious regression with persistent variables looms in predictive regressions for stock

returns. Motivated by such concerns, Georgiev et al. (2019) provide a conditional boot-

strap test to check whether a predictive regression is spurious or not; in econometric

parlance, this is nothing else than a test for omitted (persistent) variables, or for omitted

variable bias. A further, related empirical problem involving persistence is the presence

of non-predictive components of the putative predictors. Just like the mean component

of stock returns may contain a persistent component not spanned by the putative predic-

tors, one may argue that predictors also contain components that are not present in the

predictable component of stock returns, if predictability is given. In technical terms, this
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translates to errors in variables. Under certain circumstances, such errors in variables are

not problematic, e.g. when the persitence of the non-informative component is lower than

that of the predictive signal. Yet it is rather the case that the mean-reverting component

of regressors rather than their highly persistent trend component has predictive power; see

Lettau and Nieuwerburgh (2008). And when the non-predictive component is at least as

persistent as the predictive signal, this would cause spurious regressions again. Andersen

and Varneskov (2021) provide a thorough discussion in a predictive regression setup with

fractionally integrated predictors.

Pástor and Stambaugh (2009) coin the term “imperfect predictors” for such predictive

systems, where imperfection stems, in a nutshell, from not observing the correct predic-

tors, either due to measurement error or by misssing a predictive component altogether. In

such situations, instrumental variable methods would normally be used as a workaround.

This luxury is however not available in forecasting practice, where typically all available

predictors are employed in the predictive regression and no instrument is available.

Here, the issue of imperfect regressors is tackled by means of a filtering approach. In

specific, we argue that the problem of imperfect regressors may be side-stepped if the

troublesome components vary smoothly enough. First, we show that, smoothness of the

troublesome components given, IVX based tests will by construction remove smooth com-

ponents of the putative predictors, leaving only the stochastic, possibly mean-reverting

component as predictor. Second, we introduce a demeaning scheme tailored for eliminat-

ing smoothly varying components of stock returns such that, in conjunction with IVX

based predictability testing, we obtain a robust inferential method for stock return pre-

dictability in the presence of imperfect persistent predictors with noninformative smooth

components.

The remainder of this paper is organized as follows. After introducing the model

and discussing the consequences of ignoring time-varying mean components in Section 2,

we introduce our method of mean adjustment in Section 3 and establish its asymptotic

validity, together with the validity of a bootstrap implementation. The finite-sample

properties of the proposed implementation if IVX predictive regression are analyzed via

Monte Carlo simulation in Section 4, and the final section concludes. Profs and additional

material have been gathered in the appendix.

2 Setup

Beginning in a univariate framework, let

yt = α + βxt−1 + ut, t = 2, . . . , T (1)
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where β = 0 under the null of no predictability. The distinctive feature here is that the

intercept possibly varies in time, α = αt, thus modelling the situation where the predictors

don’t perfectly span the conditional mean of the stock returns.

Assumption 1 Let αt = µ (t/T ) where µ(·) is smooth with Lipschitz-continuous deriva-

tive on [0, 1].

This time variation, unaccounted for, makes the regression imperfect. As we shall

see, the smooth variation assumption as captured by the Lipschitz-continuity condition

is essential for identification.

The usual component structure of the regressor is assumed,

xt = µx,t + ξt, ξt = ρξt−1 + Ψ(L)vt, (2)

(with Ψ a lag polynomial) where we allow for persistence (via suitable choice of ρ and short

run dynamics as captured by Ψ) and contemporaneous correlation between the errors ut

and vt (i.e. what is often called endogeneity in the predictive regression literature). More

precisely, we take the usual near-to-unity specification (cf. Campbell and Yogo, 2006),

but, following Demetrescu and Rodrigues (2022), allow the strength of mean reversion to

be time-varying as well:

Assumption 2 Let ρ = ρt = 1− ct/T where ct = c (t/T ) with c(·) a piecewise Lipschitz

continuous function.

Remark 2.1 A large part of the literature on predictive regressions assumes autoregres-

sive coefficients belonging to the stationarity region, i.e. |ρ| bounded below unity; see

e.g. Amihud and Hurvich (2004); Amihud et al. (2009). We posit however that stan-

dard asymptotics results in that case and we do not deal with this case.

Assumption 3 Let µx,t =
√
Tµx (t/T ) where µx(·) is smooth with Lipschitz-continuous

derivative on [0, 1].

This assumption ensures that the mean component of the putative predictor is not

dominated in the limit by the stochastic component.

To allow for a more realistic modelling of the predictor, we allow for short-run dynamics

and heterogeneity as follows.

Assumption 4 The lag polynomial Ψ(L) has 1-summable coefficients,
∑

j≥0 j |ψj| <∞,

such that ψ = Ψ(1) 6= 0.

These are typical assumptions for models involving near-integrated variables. More-

over, the error variances and covariances are allowed to vary in time as well:
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Assumption 5 Let (ut, vt)
′ = H (t/T ) (at, et)

′ with H a matrix of piecewise Lipschitz

continuous functions and (at, et)
′ white noise as specified below.

Assumption 6 Let (at, et)
′ be a uniformly L4+δ bounded, zero-mean serially independent

heterogeneous sequence with unity covariance matrix, Cov
(
(at, et)

′) = I2.

The assumption allows for time-varying variances and covariances; cf. e.g. Demetrescu

et al. (2022b). The iid assumption may be relaxed at the cost of additional technical

details, like in Demetrescu et al. (2022a), but we omit the details to save space.

Under the above assumptions, we have (with W a vector of two independent standard

Wiener processes) that

1√
T

[sT ]∑
t=1

(
ut

vt

)
⇒
∫ s

0

H (s) dW (s) :=

(
Mu(s)

Mv(s)

)
,

(see e.g. Cavaliere et al., 2010) and consequently

1√
T
x[sT ] ⇒ µx(s) + ψ

∫ s

0

e−
∫ s
r c(t)dtdMv(r) := ψJc,H(s),

which is an Ornstein-Uhlenbeck type process driven by Mv(s) with a drift component.

We note the presence of the persistent component µx in this limit.

For convenience, let σ2
u(s) = d

ds
[Mu] (s) with [Mu] (·) denoting the quadratic variation

process of Mu. This plays the role of the instantaneous variance of the shocks, since

Var (ut) = σ2
u(t/T ) +O(T−1); define σ2

v(s) analogously.

Even without a time-varying intercept αt, inference in the case of near-integrated re-

gressors is not straightforward to conduct because of the endogeneity issue. To circumvent

this difficulty, we follow Kostakis et al. (2015) and confine ourselves to IVX estimation and

testing of the predictive regression in Eq. (1); see also Breitung and Demetrescu (2015).

IVX amounts to instrumenting the regressor by a filter thereof,

zt−1 = (1− %L)−1+ ∆xt−1 =
t−2∑
j=0

%j∆xt−j−1,

where % = 1− a
T η

with η ∈ (0, 1). This leads to the IVX-based t statistic

tvx =

∑T
t=2 (zt−1 − z̄) (yt − ȳ)√∑T
t=2 (zt−1 − z̄)2 (yt − ȳ)2

, (3)

where the heteroskedasticity-robust standard errors have been computed under the null

for simplicity. (This typically does not make a difference asymptotically under local
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alternatives; see e.g. the discussion in Demetrescu et al., 2022b.) In the constant-intercept

case, this has an asymptotically standard normal null distribution and has power against

local alternatives in T−1/2−η/2-neighbourhoods of the null.

Here, however, the time-varying mean component µ (s) spuriously correlates with

Jc,H(s) (even if the correlation is random), which leads to spurious rejections of the null

β = 0. While this holds more generally (see the discussion in Georgiev et al., 2019), we

confirm that IVX statistic will diverge in the presence of non-constant mean components

and consistently reject the true null:

Proposition 1 Under Assumptions 1–6 and the null β = 0, we have as T →∞ that

1

T η/2
tvx

p→
√

2

a

∫ 1

0
(µ (s)− µ̄) dMv (s)√∫ 1

0
σ2
v (s)σ2

u (s) ds+
∫ 1

0
σ2
v (s) (µ (s)− µ̄)2 ds

,

where µ̄ =
∫ 1

0
µ(r)dr.

Proof: See Appendix B.

Remark 2.2 The smoothly varying regressor component µxdoes not appear in the limit,

so IVX is successfully filtering it away, and one of the two issues with imperfect regressors

is solved. But the mean component of yt still causes problems. Clearly, this is because

the usual demeaning, yt − ȳ is only appropriate when αt = const. The following section

discusses suitable filtering procedures for the smooth component of the stock returns not

spanned by the predictors.

3 A suitable filter for the stock returns

3.1 Preliminaries

To prevent the danger of spurious regressions due to imperfect predictors as captured by a

time-varying intercept, one must remove αt before running the IVX predictive regression.

Should the mean function µ be piecewise constant, i.e. exhibit sudden breaks only, it

suggests itself to model the breaks explicitly. While this requires an estimation of the

number and the location of the breaks, this is well-understood. We find however that it

does not perform well, and therefore resort to adjustment methods that are less parametric

in nature.

The difficulty here is to find a procedure that removes the mean component but does

not completely eliminate the signal βxt−1, and, at the same time, does not essentially affect

the IVX methodology. This is indeed not trivial at all. For instance, take differencing,
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such that

∆yt = β∆xt−1 + ∆ut +O

(
1

T

)
.

In this transformed model, the errors have a MA(1) structure and, due to contempora-

neous correlation between ut and vt, they will correlate with ∆xt−1. While this could

be side-stepped by instrumenting ∆xt−1 by xt−2 or ∆xt−2, we note that IV estimation

using lagged levels or differences of xt−1 actually runs into the problem of weak instru-

ments since xt is near-integrated. And even if not, estimating in differences leads to
√
T -

consistency of the slope coefficient estimator since ∆xt−1 is not near integrated anymore.

Furthermore, local demeaning, where we subtract from yt the average of the previous τ

observations, leads to

yt −
1

τ

τ∑
j=1

yt−j = β

(
xt −

1

τ

τ∑
j=1

xt−1−j

)
+

(
ut −

1

τ

τ∑
j=1

ut−1−j

)
+O

( τ
T

)
.

For suitable choices of τ →∞ while τ/T → 0 , the implied errors are approximately white

noise, ut − 1
τ

∑τ
j=1 ut−j ≈ ut. This does side-step the issue of serial error correlation, but

again at the cost of weakening the signal: under near integration, 1
τ

∑τ
j=1 xt−1−j ≈ xt and

the locally demeaned xt is effectively overdifferenced again, thus reducing the regression

signal again; see the similar discussion in Section 2.3 of Demetrescu and Hosseinkouchack

(2021).

We therefore resort to a demeaning procedure that interacts with αt and xt−1 in a

different manner. This is where the the smoothness of µ(·) comes into play. Concretely,

we exploit it to distinguish between the time-varying mean and the signal βxt−1, which,

being near-integrated, is essentially more rough (the Wiener process for instance is only

Hölder continuous for any Hölder coefficient less than 1/2 compared to the Lipschitz

property of µ, i.e. a Hölder coefficient of unity).

3.2 Nonparametric adjustment

To this end, consider the exponentially smoothed estimate of αt given for t = 2, . . . , T by

ȳt = (1− π) yt−1 + πȳt−1 = α̂t,

with ȳ1 = y1. While one could explore alternative ways of adjusting for a time-varying

mean that do not imply over-differencing (e.g. splines regression), exponential smoothing

is a well-established method in time series analysis. It is a particualr case of the Kalman

filter, and has computational advantages in that it can be represented with the help of

autoregressive filters.
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The mean-adjusted dependent variable is then given by

ỹt = yt − ȳt = yt − (1− π)
t−2∑
j=0

πjyt−j−1 − πt−1y1.

For π = 0, one recovers differencing, ỹt = yt − yt−1, while, for π = 1, we essentially

subtract the initial observation y1 – which is counterproductive, given that yt is (locally)

stationary. The trick is to use a coefficient π close, but not too close to, unity. Intuitively,

this places weight on enough observations to ensure a good estimation of the mean, while

still remaining local in nature.

Concretely, we pick

π = 1− p

T γ
, γ ∈ (0, 1) ,

where we will impose some additional restrictions on γ. This IVX analog reduces persis-

tence of both signal and time-varying mean, but in a different manner – such that one

may still distinguish between them reliably.

The modified IVX t-statistic is then

t̃vx =

∑T
t=2 zt−1ỹt√∑T
t=2 z

2
t−1ỹ

2
t

;

we only need to mean-adjust the dependent variable, since zt is invariant to µx by con-

struction. The statistic is asymptotically standard normal just like the usual IVX statistic

when the intercept is constant, as shown in

Proposition 2 Let Assumptions 1–6 hold. Under the sequence of local alternatives β =
b

T 1/2+η/2 , we have as T →∞ that

t̃vx
d→ Z + bψ

√
2

a

1 + p

p

J2
c,H (1)−

∫ 1

0
Jc,H (s) dJc,H (s)√∫ 1

0
σ2
v (s)σ2

u(s) ds
,

if 1/2 + η/2 < γ < 1− η, where Z is a standard normal variate.

Proof: See Appendix B.

Remark 3.1 If the conditional covariance of ut and vt is only deterministically varying

(as is the case with serial independence), it can be shown that Z is independent of Jc,H (s).

Remark 3.2 The modified IVX based test has power under the same kind of local alter-

natives as the original IVX statistic, i.e. in T−1/2−η/2 neighbourhoods of the null. We do

note a loss of local power, however: it can be seen that Proposition 2 requires η < 1/3 in

any case, whereas only η < 1 is needed for the original IVX. But the original IVX only

works for constant intercept, so the loss of some local power buys robustness.
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Remark 3.3 A natural question is hence whether these restrictions could be relaxed so

as to increase η could favor of some power gains. Note that, from the proof of proposition

2 we learn that
∑T

t=2 z
2
t−1ỹ

2
t = Op(T

1+η) which is the denominator of t̃vx, and this is

regardless of the restrictions placed on η and γ. Therefore, the numerator of the t̃vx must

necessarily be Op

(
T 1/2+η/2

)
. This can guaranteed only if γ > 1/2 + η/2 and γ < 1 − η,

otherwise t̃vx either vanishes or diverges as T →∞.

Remark 3.4 The procedure is applied without any essential modification in the multiple

regression case. Should there be K near-integrated regresssors of interest, each regres-

sor xkt−1 is instrumented using “its own” IVX instrument zkt−1 = (1− %L)−1+ ∆xkt−1,

k = 1, . . . , K, whereas the dependent variable is adjusted for a time-varying mean in the

exact same manner as discusssed above. The analogous result to Proposition 2 follows

imemdiately and we do not include the details.

3.3 A bootstrap implementation

Preliminary simulations (not reported here) show that the statistic is not close enough

to standard normality in finite samples; this is not surprising, given that the usual IVX

statistic is not behaving too well in finite samples either; see Kostakis et al. (2015),

Demetrescu and Hosseinkouchack (2021) and Demetrescu et al. (2022a). Demetrescu

et al. (2022a) propose a wild bootstrap implementation of IVX regressions which largely

eliminates such problems; adapted to our situation, the algorithm is as follows.

1. Get residuals v̂t from an autoregression of order k where k is chosen using AIC

with a maximum lag length of 4b(T/100)0.25c, i.e. v̂t = xt − µ̂x −
∑k

j=1 θ̂jxt−j with

back-ward demeaning of xt.

2. Get residuals ût = ỹt (i.e. under the null).

3. Get scalar bootstrap multipliers Rt.

4. Generate u∗t = Rtût and v∗t = Rtv̂t.

5. Recolor v∗t to obtain x∗t using the estimated coefficients from step 1 above.

6. Add estimated trend y∗t = u∗t + ȳt to obtain bootstrap data satisfying the null

hypothesis.

7. Define t̃∗vx the same way as t̃vx, but on the basis of the adjusted ỹ∗t and x∗t .

8. Use quantiles of t̃∗vx rather than those of the standard normal for inference.

This bootstrap is consistent in the sense that the bootstrapped t̃∗vx converges weakly in

probability to the same limit as t̃vx so the use of the bootstrap critical values is justified.

9



Proposition 3 Under the assumptions of Proposition 2, we have as T →∞ that

t̃∗vx
p⇒ Z.

Proof: See Appendix B.

This justifies the use of bootstrap critical values for t̃vx. The behavior of this test is

studied in the following section.

4 Finite-sample behavior

We generate the putative predictor, xt, based on equation (2) with ρ = 1 − c/T when

c ∈ {0, 1, 5, 10, 30, 50} and Ψ(L) = (1− φL)−1 with φ = 0 or 0.5. Furthermore, the

shocks are iid following (vt, ut)
′ ∼ N (0,Σ) where Σ = (1,−0.95;−0.95, 1). We generate

the regressand based on equation (1) where

αt = αµ

(
tanh

(
5

(
t

T
− 1

2

))
+

1

2

)
,

represents a smoothly varying mean for yt for which αµ ∈ {0, 14 ,
1
2
} controls the strength

of the deterministic component of yt. Alternatively, we have a sudden break,

αt = τI{t>bτT c},

for τ ∈ {0.3, 0.5, 0.7}.
The first set of results, given in Table 1, shows the size properties of the bootstrap

version of the proposed test statistic, t̃∗vx, compared to the original IVX test statistic, tWvx,

and an IVX test statistic computed using the series yt adjusted for breaks, tWBP
vx . To

adjust for breaks, we used Bai and Perron (1998) to fit the break times, which allows for

detecting multiple breaks in the model parameters, particularly for the mean of yt in our

specification. Since there is a shift in the mean of yt, the hope is that applying Bai and

Perron (1998) would potentially alleviate the adverse effect of leaving the mean change

unattended.

The results are generated using 5,000 replications with β = 0 and T = 250 or T = 500.

For the smoothing step we consider π = 1−1/T 0.75, i.e. p = 1 and γ = 0.75. We generate

the IVX instrument for t̃vx using % = 1 − 1/T 0.15, i.e. a = 1 and η = 0.15, to stay

conformable with the parameter restrictions required by Proposition 2, while to construct

the instrument for tWvx and tWBP
vx we set % = 1 − 1/T 0.95, as suggested by Kostakis et al.

(2015).
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Table 1: Size properties of different tests under short-run dynamics and strong contemporaneous shock correlation

T = 250 T = 500

2-sided left-sided right-sided 2-sided left-sided right-sided

αµ c tWvx t
WBP
vx t̃∗vx tWvx t

WBP
vx t̃∗vx tWvx t

WBP
vx t̃∗vx tWvx t

WBP
vx t̃∗vx tWvx t

WBP
vx t̃∗vx tWvx t

WBP
vx t̃∗vx

0 0 4.44 4.68 4.98 0.04 0.04 1.04 8.66 9.38 7.82 4.34 4.58 4.18 0.10 0.04 1.74 8.98 8.92 6.24
1 4.96 5.14 4.40 0.14 0.26 1.70 9.68 9.92 7.30 4.16 4.72 4.58 0.20 0.14 2.58 8.72 9.40 5.82
5 5.66 5.54 5.58 0.90 1.18 3.98 10.02 9.72 6.70 5.38 4.80 5.40 0.86 0.90 4.16 10.02 9.74 6.66
10 5.92 6.10 5.56 1.66 2.08 4.44 9.70 10.00 6.04 5.64 5.98 5.82 1.52 1.80 4.78 9.34 9.64 6.14
30 6.24 6.08 5.80 3.40 3.14 4.92 8.40 8.58 5.68 5.76 6.32 6.64 2.86 2.96 5.60 7.96 8.26 5.90
50 5.86 5.64 5.78 3.14 3.06 5.16 7.96 7.68 5.68 4.74 5.44 5.82 2.62 2.84 5.50 7.42 7.60 5.32

0.25 0 10.26 10.34 4.76 0.62 0.66 1.24 16.46 17.04 7.38 13.80 15.64 4.20 1.90 2.32 1.90 20.26 21.38 6.24
1 10.82 10.86 5.38 1.50 1.72 2.22 17.34 17.34 7.80 15.64 16.06 4.90 2.84 3.62 2.26 21.76 22.54 7.24
5 10.32 10.26 5.76 3.38 4.12 3.96 14.84 14.64 6.64 16.44 16.14 4.46 6.82 6.88 3.92 19.96 18.54 5.56
10 10.48 10.32 5.64 4.22 4.00 4.38 13.74 13.98 6.12 13.02 12.96 5.56 5.92 5.92 4.68 15.36 16.02 6.06
30 7.94 7.06 5.64 3.72 4.06 4.90 10.06 9.30 5.72 8.58 8.88 5.36 4.36 5.06 5.00 10.38 10.22 5.22
50 6.36 7.32 5.60 3.36 4.16 5.08 8.08 8.84 5.50 7.70 8.10 5.48 5.04 4.62 4.98 9.64 9.50 5.68

0.5 0 25.80 27.68 4.98 5.30 6.34 1.30 29.84 31.74 7.34 38.60 40.32 4.80 11.62 12.36 2.00 36.32 37.00 6.94
1 29.32 30.78 4.82 6.82 8.82 1.92 31.60 32.40 7.42 39.58 42.94 4.38 13.68 14.46 2.40 34.72 37.36 6.20
5 27.16 28.76 5.46 10.64 11.08 3.56 26.84 27.28 6.90 41.26 42.74 5.02 16.02 16.46 3.74 34.02 35.44 6.12
10 21.10 22.92 5.58 9.02 10.30 4.50 22.12 22.94 6.18 32.46 33.60 5.06 14.26 14.86 4.34 27.36 28.96 5.94
30 12.42 13.88 6.00 6.54 7.20 5.32 12.86 13.96 5.88 18.00 18.18 5.20 9.28 9.52 5.12 17.14 16.68 5.38
50 10.24 11.28 5.90 5.76 6.88 5.32 10.86 11.34 5.90 13.92 13.64 5.56 8.64 8.00 4.76 12.46 12.92 6.18

τ

0.3 0 23.34 25.06 6.52 3.16 4.30 2.20 29.88 31.00 9.84 35.82 36.82 6.52 8.98 10.74 3.42 36.36 35.54 8.20
1 24.04 25.24 7.04 5.44 6.44 3.20 28.18 28.80 8.98 36.98 37.86 5.64 11.00 12.64 3.34 34.84 33.96 7.38
5 26.42 27.76 6.14 9.68 10.36 4.30 26.84 26.78 6.96 38.24 40.64 6.10 15.10 16.00 4.36 31.52 33.12 6.66
10 23.18 25.16 5.66 9.84 11.22 4.68 22.66 23.60 6.16 34.36 36.18 5.80 15.82 15.60 4.46 28.24 29.06 6.28
30 14.28 15.24 5.34 7.76 8.64 4.64 14.48 14.48 5.94 21.68 22.60 5.44 11.84 12.58 5.32 18.56 19.16 5.12
50 11.84 12.24 6.10 6.82 7.36 5.04 11.54 12.66 5.72 14.98 16.58 4.92 9.52 9.86 4.80 14.06 14.70 4.94

0.5 0 32.20 35.26 6.32 8.34 10.36 2.30 32.86 34.56 8.98 45.26 47.86 6.44 16.02 16.52 2.70 37.56 39.50 8.52
1 36.04 37.58 7.36 9.94 12.32 3.34 34.34 34.76 9.50 49.06 51.56 6.08 16.54 19.06 3.30 39.72 39.42 8.20
5 36.18 39.66 6.24 13.98 14.70 4.18 32.06 34.34 7.02 50.36 53.54 5.48 20.20 21.68 4.16 37.40 39.52 6.40
10 29.26 32.02 5.86 12.44 12.90 4.10 25.96 27.70 6.44 43.56 43.02 5.52 18.58 16.54 4.58 33.48 32.42 6.24
30 16.76 17.22 5.44 8.48 9.96 4.48 16.28 15.88 5.56 23.84 25.88 5.42 12.20 12.44 4.74 20.94 22.26 5.42
50 12.12 14.06 5.46 6.72 8.06 5.20 12.52 13.42 5.32 17.16 19.18 5.36 9.86 10.40 5.24 15.36 17.46 5.32

0.7 0 28.96 31.62 6.94 6.66 7.72 2.40 31.16 33.38 9.60 40.58 43.00 6.44 12.70 13.66 2.46 35.90 37.00 8.78
1 31.82 33.44 7.06 9.40 10.32 3.28 32.42 33.32 9.28 44.38 47.00 5.96 14.44 17.02 3.34 37.70 37.78 7.38
5 31.60 33.34 6.70 11.34 12.80 4.46 30.52 30.98 7.38 44.34 47.66 6.54 18.60 19.44 4.68 34.16 36.28 7.16
10 25.74 27.42 6.02 10.92 12.26 4.80 24.08 24.98 6.62 38.38 39.60 5.66 16.28 17.46 4.54 31.26 30.84 6.30
30 15.38 16.54 5.42 8.48 8.26 4.94 14.92 15.76 4.94 21.90 22.90 5.72 11.30 12.42 5.34 18.96 19.62 5.32
50 11.42 12.72 5.48 6.70 7.70 4.66 11.40 12.48 5.64 15.46 17.00 5.50 8.82 10.92 5.50 14.62 14.66 5.32

Note: Data generated with (1) and (2) with vt = φvt + νt for φ = 0.5, where (ut, νt) ∼ iiN(0,Σ) and Σ exhibits constant correlation δ = −0.95. We set
ρ = 1− c/T for various c. tWvx is defined as in equation (3) for which we use the small sample corrections proposed by Kostakis et al. (2015) and t̃∗vx is the
bootstrap implementation of the test with mean-adjusted yt. For tWvx and tWBP

vx we set % = 1− 1/T 0.95. For t̃∗vx we set % = 1− 1/T 0.15 and π = 1− 1/T 0.75.
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From Table 1 one may note that, as predicted by Proposition 1, tWvx diverges with an

increase in T when αu 6= 0, as does tWBP
vx . The table also shows that t̃∗vx exhibits a good

size control for almost all the parameter constellations considered here. This implies that

the test statistic proposed in this paper is capable of controlling the adverse effect of the

time varying component pestering the standard IVX procedure. As mentioned earlier,

the smoothing step comes with a loss in the power compared to the usual IVX statistic.

To compare the power properties of t̃∗vx and tWvx, we consider a local alternative of the

form β = b
T 1/2+η/2 where b ∈ {−2,−1.9,−1.8, ..., 2} where, as mentioned before, for t̃∗vx

we set η = 0.15 and keep η = 0.95 for tWvx. To save on space, we focus on c ∈ {0, 10, 30}
for power illustrations. Figures (1)–(3) show, respectively, the left, right, and the 2-sided

power curves of t̃∗vx and tWvx where φ = 0.5 and T = 250. As these figures show, t̃∗vx is

outperformed in terms of power by tWvx when αµ = 0. This reflects the power loss that one

has to accept when one needs some insurance against a potentially present time varying

mean component. At the same time we observe overrejections by tWvx when αµ 6= 0.
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Figure 1: Left sided power curves for t̃vx (when γ = 0.75 and η = 0.15) and tWvx (when
η = 0.95) under a local alternative. See the text for more details.
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Figure 2: Right-sided power curves for t̃vx (when γ = 0.75 and η = 0.15) and tWvx (when
η = 0.95) under a local alternative. See the text for more details.
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Figure 3: Two sided power curves for t̃vx (when γ = 0.75 and η = 0.15) and tWvx (when
η = 0.95) under a local alternative. See the text for more details.
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Figure 4 addresses the size-power trade-off. We notice that the largest effect on power

is coming from the variation in η, which characterizes the instrument persistence. Varying

γ does not have a visible effect on the power curves. Selecting other combinations did

have a sizeable effect on size control, and we do not report them. The Appendix contains

additional simulation results.
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Figure 4: Two sided power curves for t̃vx and tWvx under a local alternative when c = 0
and αµ = 0.5. The power curves for tWvx are the same for all the three sub figures, while
power curves for t̃vx are calculated with different values for η and γ. See the text for more
details.

Summing up, the proposed filtering procedure leads to robust inference, but does come

at a price in terms of power loss. The power losses are minor compared to the gains in

size control preventing spurious findings of predictability.

5 Concluding remarks

The thorny issue of inference on stock return predictability was addressed, when regressors

are imperfect. To allow for inference without resorting to additional, often not available,

information, we assume here that the problematic components of the conditional mean of

the stock returns and of the predictors are smoothly varying in time. For such situations,

we propose a filtering scheme that has the property of not affecting the limiting behavior

of IVX test statistics.
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The proposed adjustment scheme affects the finite-sample behavior of the IVX based

test. Therefore, we employ a wild bootstrap implementation of the test, which performs

well in simulations.

The adjustment leads to some loss of power under the alternative, which is however

more than offset by the gain in size control under the null hypothesis. This prevents

spurious predictive regression findings.

Appendix

A Auxiliary results

Let C denote a generic constant and note that for t/T → s > 0, %kt =
(
1− a

T η

)kt
=((

1− a
T η

)−Tη
a

)−ka t
T
T 1−η

→ 0 so
∑t−1

j=0 %
kj ∼ 1

ka
T η as T → ∞. Clearly, this holds anal-

ogously for π = 1 − p
T γ

. Before moving on to the proofs, we state some preliminary

results.

Lemma A.1 Under the assumptions of Proposition 2, we have as T →∞ that

1. T−γ/2
∑t−3

j=0 π
jut−1−j is uniformly L4-bounded;

2. ỹt = ũt + βx̃t−1 + α̃t, where ũt = ut − 1
T γ

∑t−2
j=0 π

jut−1−j − πt−1u1, x̃t−1 = xt−1 −
1
T γ

∑t−2
j=0 π

jxt−2−j − πt−1x0 and α̃t = O (T γ−1) uniformly in t = 2, . . . , T .

Proof: See Appendix B.

Lemma A.2 Under Assumptions 1–6, we have for η, γ ∈ (0, 1) as T →∞ that

1.
∑T

t=2 α̃tzt−1 = Op

(
T−1/2+γ+η

)
and

∑T
t=2 π

t−1zt−1 = Op

(
T γ/2+min{η,γ}).

2. Let rt−1 =
∑t−2

j=0 π
jut−1−j, then we have

∑T
t=2 rt−1zt−1 = Op (T 1+η) whenever η < γ.

3. T−1−η
∑
zt−1x̃t−1 ⇒ ψ2 1+p

ap

(
J2
c,H (1)−

∫
Jc,H (s) dJc,H (s)

)
.

Proof: See Appendix B.

B Proofs

Proof of Lemma A.1

1. We have that

E

(T−γ/2 t−3∑
j=0

πjut−1−j

)4
 =

1

T 2γ

t−3∑
j1=0

t−3∑
j2=0

t−3∑
j3=0

t−3∑
j4=0

πj1πj2πj3πj4 E (ut−1−j1ut−1−j2ut−1−j3ut−1−j4)
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= O

(
1

T 2γ

t−3∑
j1=0

t−3∑
j2=0

π2j1π2j2 +
1

T 2γ

t−3∑
j1=0

π4j1

)

since ut is uniformly L4-bounded and the expectation is nonzero only for equal or

pairwise equal indices. Therefore,

E

(T−γ/2 t−3∑
j=0

πjut−1−j

)4
 = O

(
1

T 2γ

t−3∑
j1=0

t−3∑
j2=0

π2j1π2j2

)
= O

 1

T 2γ

(
t−3∑
j1=0

π2j1

)2
 = O(1).

2. Notice that

ỹt = ũt + βx̃t−1 + α̃t

with 1− π = T−γ, where, after re-arranging sum terms,

α̃t =
t−2∑
j=0

πj∆αt−j.

Note now that |µ (s2)− µ (s1)| =
∣∣∫ s2

0
µ′ (x) dx−

∫ s1
0
µ′ (x) dx

∣∣ 6 ∫ s2
s1
|µ′ (x)| dx 6

C |s2 − s1| hence |∆αt| = |µ (t/T )− µ ((t− 1)/T )| 6 C
T
. Therefore,∣∣∣∣∣

t−2∑
j=0

πj∆αt−j

∣∣∣∣∣ = O
(
T γ−1

)
,

as required.

Proof of Lemma A.2

1. We need to just bound the variance for each sum.

(a) For the first part note that zt−1 = ψžt−1 + δt where δt is uniformly L4-bounded

(see Demetrescu and Hosseinkouchack, 2021, proof of Lemma 2) and žt−1 =∑t−1
j=1 cj,t−1vj. Therefore we have

T∑
t=2

α̃tzt−1 = ψ

T∑
t=2

α̃tžt−1 +
T∑
t=2

α̃tδt.

For the first term we have

Var

(
T∑
t=2

α̃tžt−1

)
6 C

T∑
j=1

(
T∑

t=j+1

α̃tcj,t−1

)2
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= C
T∑
j=1

T∑
t=j+1

T∑
s=j+1

cj,t−1cj,s−1α̃tα̃s

6 C
T∑
j=1

T∑
t=j+1

T∑
s=j+1

|cj,t−1cj,s−1| |α̃tα̃s|

6 CT−2
T∑
j=1

T∑
t=j+1

T∑
s=j+1

|cj,t−1cj,s−1|
∣∣∣∣π2 − πt−2

π − π2

π2 − πs−2

π − π2

∣∣∣∣
6 CT−2+2γ

T∑
j=1

T∑
t=j+1

T∑
s=j+1

|cj,t−1cj,s−1|

= O
(
T−2+2γT 1+2η

)
.

For the second term, using the L4-boundedness of δt we obtain T−1/2−η/2
∑T

t=2 α̃tδt =

Op

(
T γ-1/2-η/2

)
. Therefore T−1/2−η/2

∑T
t=2 α̃tzt−1 = Op

(
T−1+γ+η/2

)
.

(b) For the second part again we may write
∑T

t=2 π
t−1zt−1 = ψ

∑T
t=2 π

t−1žt−1 +∑T
t=2 π

t−1δt. We have with cj,t−1 = %t−1−j(1−%)−ρt−1−j(1−ρ)
ρ−%

T∑
t=2

πt−1žt−1 =
T∑
t=2

t−1∑
j=1

πt−1cj,t−1vj =
T−1∑
j=1

T∑
t=j+1

πt−1cj,t−1vj,

hence

Var

(
T∑
t=2

πt−1žt−1

)
= C

T−1∑
j=1

(
T∑

t=j+1

πt−1cj,t−1

)2

= C

(
1− π

(1− π%) (1− πρ)

)2
π2 − π2T

1− π2

+ C

(
(1− %) πT

(1− π%) (%− ρ)

)2
%2 − %2T

1− %2

+ C

(
(1− ρ) πT

(1− πρ) (%− ρ)

)2
ρ2 − ρ2T

1− ρ2

+ C
2 (1− π) (1− %) πT

(1− π%)2 (1− πρ) (%− ρ)

πT%− π%T

π − %

− C
2 (1− π) (1− ρ) πT

(1− π%) (1− πρ)2 (%− ρ)

πTρ− πρT

π − ρ

− C
2 (1− %) (1− ρ) π2T

(1− π%) (1− πρ) (%− ρ)2
%ρ− %TρT

1− %ρ
,

= O
(
T γ+2min{η,γ}) .

Further, using the uniformly L4-boundedness of δt we have
∑T

t=2 π
t−1δt =

Op

(
T γ/2

)
. Therefore

∑T
t=2 π

t−1zt−1 = Op

(
T γ/2+min{η,γ}).
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2. Again note that
∑T

t=2 rt−1zt−1 = ψ
∑T

t=2 rt−1žt−1 +
∑T

t=2 rt−1δt. It is then straight-

forward to show E
(∣∣∣∑T

t=2 rt−1žt−1

∣∣∣) = O
(
T 1+min{γ,η}) as follows. Write

E

( T∑
t=2

rt−1žt−1

)2
 = E

(∑T

t=2

∑T

s=2
rt−1žt−1rs−1žs−1

)
= E

(∑T

t,s=2

∑t−1

k,j=1

∑s−1

l,m=1
πt−k−1πs−l−1cj,t−1cm,s−1vjukvmul

)
.

For the latter, letting S to denote the summations over s ≤ t, we have

S =
∑T

t=2

∑t

s=2

∑s−1

k=1

∑s−1

j=1,j 6=k
πt−k−1πs−k−1cj,t−1cj,s−1 E

(
v2ju

2
k

)
+

∑T

t=2

∑t

s=2

∑s−1

k=1

∑s−1

j=1,j 6=k
πt−k−1πs−k−1cj,t−1cj,s−1 E

(
v2ju

2
k

)
+

∑T

t=2

∑t

s=2

∑t−1

j=1

∑s−1

m=1
πt−j−1πs−m−1cj,t−1cm,s−1 E (vjujvmum)

+
∑T

t=2

∑t

s=2

∑s−1

k=1

∑s−1

j=1
πt−k−1πs−j−1cj,t−1ck,s−1 E (vjukvkuj) ,

= S1 + S2 + S3 + S4.

For S1 we have

S1 = C
∑T

t=2

∑t

s=2

∑s−1

k=1
πt−k−1πs−k−1ck,t−1ck,s−1,

=
∑T

t=2

∑t

s=2

∑s−1

k=1
πs+t−2k−2

(
(1− %)2

(ρ− %)3
%s+t−2−2k − (1− %) (1− ρ)

(ρ− %)2
%t−1−kρs−1−k

−(1− %) (1− ρ)

(ρ− %)2
ρt−1−k%s−1−k +

(1− ρ)2

(ρ− %)²
ρs+t−2−2k

)
,

= S1,1 + S1,2 + S1,3 + S1,4.

Using geometric summations we obtain S1,1 = O
(
T 1+2min{η,γ}) which dominates

S1,2, S1,3 and S1,4, therefore S1 = O
(
T 1+2min{η,γ}) . We now turn our attention to

S2 which is a bit more involved. We have

S2 = C
∑T

t=2

∑t

s=2

∑s−1

k=1
πs+t−2k−2

∑s−1

j=1
cj,t−1cj,s−1,

=
C

1− π2

∑T

t=2

∑t

s=2
(πt−s − πt+s−2)

∑s−1

j=1
cj,t−1cj,s−1.

For cj,t−1cj,s−1 we have

cj,t−1cj,s−1 =
(1− %)2

(ρ− %)2
%s+t−2−2j − (1− %) (1− ρ)

(ρ− %)2
ρs−1−j%t−1−j
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−(1− %) (1− ρ)

(ρ− %)2
ρt−1−j%s−1−j +

(1− ρ)2

(ρ− %)2
ρs+t−2−2j,

hence∑s−1

j=1
cj,t−1cj,s−1 =

(1− %)

(ρ− %)2 (1 + %)

(
%t−s − %s+t−1

)
− (1− %) (1− ρ)

(ρ− %)2 ρ (1− %ρ)

(
ρ%t−s − ρs%t−1

)
− (1− %) (1− ρ)

(ρ− %)2 % (1− ρ%)

(
ρ%t−s − ρt−1%s

)
+

(1− ρ)

(ρ− %)2 (1 + ρ)

(
ρt−s − ρt+s−2

)
.

Plugging the latter in the expression for S2 we obtain

S2 =
C

1− π2

(1− %)

(ρ− %)2 (1 + %)

∑T

t=2

∑t

s=2

(
πt−s − πt+s−2

) (
%t−s − %s+t−1

)
+

C

1− π2

(1− %) (1− ρ)

(ρ− %)2 ρ (1− %ρ)

∑T

t=2

∑t

s=2

(
πt−s − πt+s−2

) (
ρ%t−s−1 − ρs%t−1

)
+

C

1− π2

(1− %) (1− ρ)

(ρ− %)2 % (1− ρ%)

∑T

t=2

∑t

s=2

(
πt−s − πt+s−2

) (
ρ%t−s−1 − ρt−1%s

)
+

C

1− π2

(1− ρ)

(ρ− %)2 (1 + ρ)

∑T

t=2

∑t

s=2

(
πt−s − πt+s−2

) (
ρt−s − ρt+s−2

)
,

= S2,1 + S2,2 + S2,3 + S2,4.

S2,1, S2,2, S2,3 and S2,4 can be bounded using elementary arguments to obtain S2 =

O
(
T 1+γ+η+min{γ,η}). Further we obtain for S3 and S4

S3 = O
(
T 2+2min{γ,η}) ,

S4 = O
(
T 1+3min(γ,η)

)
+O

(
T η+2γ+min(γ,η)

)
+O

(
T−1+2η+3γ

)
.

Therefore S = O
(
T 2+2min{γ,η}), which in turn, with η < γ, implies that

∑T
t=2 rt−1žt−1 =

Op (T 1+η). Now, using Lemma A.1 we have that T−γ/2rt−1 is uniformly L2-bounded,

hence
∑T

t=2 rt−1δt is dominated by
∑T

t=2 rt−1žt−1 and hence the result follows.

3. We have x̃t−1 = xt−1 − 1
T γ

∑t−2
j=0 π

jxt−2−j − πt−1x0 where for
∑t−2

j=0 π
jxt−2−j we may

write

T−1/2−γ
t−2∑
j=0

πjxt−2−j = T−1/2−γ
t−2∑
j=0

(
j∑

k=0

ρj−kπk

)
vt−2−j

= T−1/2−γ
t−2∑
j=0

πj+1 − ρj+1

π − ρ
vt−2−j

= −p−1 (1 + op (1))T−1/2
t−2∑
j=0

ρj+1vt−2−j +O
(
T−1/2+γ/2

)
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where T−1/2
∑[sT ]

j=0 ρ
j+1vt−2−j ⇒ Jc,H (s), which in turn implies T−1/2x̃[sT ] ⇒ ψ

(
1 + 1

p

)
Jc,H (s).

Therefore using the arguments in the proof of Lemma A.4 in Demetrescu and Ro-

drigues (2022) we obtain

1

T 1+η

T∑
t=2

zt−1x̃t−1 ⇒
1 + p

ap
ψ2

(
J2
c,H (1)−

∫
Jc,H (s) dJc,H (s)

)
.

Proof of Proposition 1

Under the null β = 0, we have for 1
T 1+η

∑T
t=2 (zt−1 − z̄)2 (yt − ȳ)2 that

1

T 1+η

T∑
t=2

(zt−1 − z̄)2 (yt − ȳ)2 =
1

T 1+η

T∑
t=2

(zt−1 − z̄)2 (ut − ū+ αt − ᾱ)2

=
1

T 1+η

T∑
t=2

(zt−1 − z̄)2 (ut − ū)2

+
1

T 1+η

T∑
t=2

(zt−1 − z̄)2 (αt − ᾱ)2

+
2

T 1+η

T∑
t=2

(zt−1 − z̄)2 (ut − ū) (αt − ᾱ)

d→ ψ2

2a

∫
σ2
v (s)σ2

u (s) ds+
ψ2

2a

∫
σ2
v (s) (µ (s)− µ̄)2 ds

where the first term comes from Demetrescu and Rodrigues (2022, Lemma A.4), the 2nd

follows analogously to the first, and the third is easily seen to have vanishing variance

since it can be reduced to a sum of martingale differences.

Proof of Proposition 2

Examining the numerator of the t statistic, we have

1

T 1/2+η/2

T∑
t=2

zt−1ỹt =
1

T 1/2+η/2

T∑
t=2

zt−1ũt +
β

T 1/2+η/2

T∑
t=2

zt−1x̃t−1 +
1

T 1/2+η/2

T∑
t=2

zt−1α̃t,

where the third term on the r.h.s. is negligible (Lemma A.2). Then, with rt−1 =
∑t−2

j=0 π
jut−1−j,

1

T 1/2+η/2

T∑
t=2

zt−1ũt =
1

T 1/2+η/2

T∑
t=2

zt−1ut−
1

T 1/2+γ+η/2

T∑
t=2

rt−1zt−1−
u1

T 1/2+η/2

T∑
t=2

πt−1zt−1

where Lemma A.2 indicates that the second summand is negligible since γ > 1/2 + η/2

implies γ > η; also, by the same Lemma, the third summand vanishes too since 1
2

+ η
2
>
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γ
2

+ η by assumption.

Then, we learn from Lemma A.2 that, under the considered local alternative,

β

T 1/2+η/2

∑
zt−1x̃t−1 ⇒ b · 1 + p

ap
ψ2

(
J2
c,H (1)−

∫
Jc,H (s) dJc,H (s)

)
.

Finally, it is easily shown that

1

T 1+η

T∑
t=2

z2t−1ỹ
2
t =

1

T 1+η

T∑
t=2

z2t−1u
2
t + op(1)

p→ ψ2

2a

∫
σ2
v (s)σ2

u (s) ds

(where the probability limit follows from Lemma A.4 in Demetrescu and Rodrigues, 2022).

Since
∑T
t=2 zt−1ut√∑T
t=2 z

2
t−1u

2
t

→ Z, see Demetrescu and Rodrigues (2022, Lemma A.3), the desired

result follows.

Proof of Proposition 3

It is not difficult to show that, conditional on the data,

t̃∗vx =

∑T
t=2 z

∗
t−1utRt√∑T

t=2 z
∗2
t−1u

2
tR

2
t

+ o∗p (1) .

The desired result then follows with the results provided by Demetrescu et al. (2022a).
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Table 2: Size properties of different tests under short-run dynamics and strong contemporaneous shock correlation

T = 250 T = 500
2-sided left-sided right-sided 2-sided left-sided right-sided

αµ c tWvx t
WBP
vx t̃∗vx t̃∗∗vx tWvx t

WBP
vx t̃∗vx t̃∗∗vx tWvx t

WBP
vx t̃∗vx t̃∗∗vx tWvx t

WBP
vx t̃∗vx t̃∗∗vx tWvx t

WBP
vx t̃∗vx t̃∗∗vx tWvx t

WBP
vx t̃∗vx t̃∗∗vx

0 0 4.66 4.88 6.12 6.28 0.10 0.00 3.00 3.24 9.56 9.94 8.36 7.96 4.08 4.28 6.28 5.50 0.06 0.02 3.02 3.04 8.52 9.02 7.90 7.56

1 4.46 4.58 6.76 6.56 0.12 0.00 3.38 3.90 9.18 9.90 8.30 7.54 4.46 4.66 6.66 6.22 0.16 0.00 3.76 3.86 9.18 9.66 8.26 7.74
5 5.70 5.56 5.58 5.06 1.04 0.06 4.38 4.60 9.64 10.38 6.18 5.60 5.38 5.20 5.64 4.94 0.94 0.12 4.36 4.30 9.94 10.40 6.62 6.10
10 6.24 5.96 5.30 4.88 1.94 0.48 4.30 4.44 9.52 10.18 6.20 5.46 5.42 4.92 5.44 4.78 1.74 0.52 4.38 4.34 9.34 9.96 6.02 5.70
30 5.96 5.82 6.06 5.18 2.88 1.72 5.12 5.10 8.52 9.46 5.70 5.16 5.20 5.14 5.76 5.20 2.06 1.30 5.18 5.00 7.46 8.14 5.94 5.56
50 5.92 5.84 5.66 5.20 3.38 2.44 5.18 4.96 7.82 8.62 5.84 5.48 5.32 5.24 5.70 5.12 2.96 2.04 5.24 5.10 7.50 8.26 5.70 5.12

0.25 0 9.90 10.36 6.34 6.42 0.78 0.00 2.82 3.40 16.14 18.24 8.54 7.98 14.00 12.46 5.70 5.62 1.94 0.00 3.12 3.42 20.58 21.10 7.64 7.20
1 10.40 11.14 7.04 6.88 1.54 0.00 3.52 3.72 16.54 19.52 9.06 8.32 15.16 15.34 6.08 5.66 2.72 0.00 3.66 3.44 21.52 26.54 7.84 7.12
5 11.24 12.02 6.54 6.02 3.36 0.10 3.88 4.16 15.44 21.26 7.22 6.74 15.28 16.02 5.80 5.34 6.06 0.00 4.30 4.32 18.42 28.32 6.30 6.12
10 10.06 10.76 5.80 5.54 4.04 0.20 4.94 5.06 13.34 19.02 5.98 5.66 13.90 15.44 5.88 5.30 6.40 0.16 4.88 4.68 15.74 26.56 5.74 5.14
30 7.52 9.22 5.64 5.18 3.40 0.58 5.08 5.20 9.88 15.72 5.62 5.24 8.60 11.14 5.26 4.92 4.90 0.52 5.34 5.12 11.04 19.70 4.92 4.50
50 6.48 8.02 6.08 5.84 3.46 1.08 5.20 5.20 8.38 12.86 5.58 5.30 7.72 9.64 6.40 5.62 4.54 0.70 5.36 5.16 8.82 16.02 6.16 6.02

0.5 0 26.12 13.44 6.82 6.58 5.10 0.00 2.68 3.36 30.88 21.56 9.24 8.38 39.20 10.18 5.92 5.92 11.52 0.00 3.02 3.30 36.62 17.78 7.46 7.20
1 27.88 17.24 6.96 6.70 7.40 0.00 3.24 3.60 30.40 27.88 8.76 7.74 40.68 12.92 6.14 5.72 13.78 0.00 3.94 3.88 35.62 21.82 7.60 7.26
5 27.54 21.92 5.14 4.26 10.22 0.06 3.40 3.66 27.42 35.08 6.26 5.78 41.54 19.52 5.66 5.10 15.70 0.00 4.40 4.34 34.62 31.96 6.28 5.80
10 20.40 21.90 6.40 5.78 8.80 0.02 4.66 4.94 20.54 33.72 6.32 5.82 31.34 20.26 5.48 4.98 13.96 0.00 4.52 4.32 26.82 33.70 5.90 5.44
30 12.62 15.84 5.58 4.88 6.48 0.14 4.64 4.66 13.66 25.44 5.72 5.62 18.12 16.76 5.18 4.70 9.80 0.06 4.62 4.38 16.76 26.34 5.38 5.06
50 9.70 13.14 5.40 4.58 6.02 0.44 5.08 4.82 10.64 21.22 5.96 5.30 12.98 13.68 5.78 5.30 7.78 0.30 5.04 4.86 12.28 22.36 5.62 5.22

τ

0.25 0 13.16 12.50 6.80 6.60 1.28 0.00 2.70 3.28 19.22 21.30 9.08 8.26 19.66 13.64 5.76 5.44 3.10 0.00 3.00 3.08 25.24 22.28 7.70 7.18
1 12.70 12.98 6.94 6.62 1.98 0.02 3.64 3.78 20.04 23.76 8.00 7.94 21.14 16.76 6.58 5.84 4.42 0.00 3.50 3.44 25.68 26.50 7.88 7.38
5 14.44 14.60 5.80 5.80 5.14 0.06 4.00 4.36 18.18 24.74 6.80 6.26 21.30 18.70 5.30 5.24 8.98 0.04 4.50 4.52 22.86 30.56 5.64 5.28
10 12.42 13.46 5.46 5.10 5.24 0.28 4.80 4.80 15.06 23.10 6.14 5.74 16.78 17.98 5.92 5.40 7.48 0.06 4.88 5.10 18.50 29.20 6.00 5.52
30 8.22 9.90 6.42 5.84 4.56 0.60 5.52 5.66 10.18 16.42 5.56 5.10 10.10 13.16 5.92 5.48 5.82 0.28 5.46 5.32 11.98 21.74 5.40 5.06
50 7.28 9.48 5.76 4.84 3.98 0.92 4.84 4.56 8.88 15.68 5.56 4.88 8.74 11.18 5.54 5.20 4.92 0.68 5.54 5.38 9.78 18.20 5.38 5.00

0.5 0 33.70 10.58 7.28 7.22 8.48 0.00 3.00 3.70 34.70 18.38 9.68 8.82 45.66 6.70 6.72 6.36 14.58 0.00 3.74 3.88 38.84 13.58 8.54 7.74
1 35.82 11.60 7.34 6.78 9.80 0.00 3.72 3.90 34.84 20.04 9.44 8.56 49.98 7.70 7.72 7.28 18.00 0.00 4.14 4.12 39.44 15.42 8.16 7.88
5 36.94 16.48 6.98 6.52 13.56 0.04 4.94 5.20 32.90 27.30 7.74 7.10 50.32 9.52 6.20 5.50 20.36 0.00 4.14 4.04 37.52 18.18 6.88 6.70
10 28.44 15.68 6.02 5.72 12.66 0.00 4.98 4.98 25.02 24.86 6.28 5.66 42.54 10.72 5.92 5.38 18.78 0.02 4.28 4.20 32.02 19.18 6.10 5.64
30 16.82 13.24 5.88 5.20 8.70 0.34 5.06 4.98 16.52 21.78 5.64 5.24 25.92 10.26 6.00 5.28 13.58 0.44 5.18 4.84 21.44 17.94 5.80 5.32
50 13.40 11.98 6.18 5.74 7.60 0.72 5.32 5.34 12.44 19.28 5.96 5.46 18.26 9.34 5.70 5.00 9.86 0.54 4.82 4.64 15.96 15.52 5.64 5.14

1 0 57.72 6.96 9.12 8.46 22.40 0.00 4.14 4.66 41.72 13.84 11.38 10.46 68.76 5.80 7.98 7.76 31.18 0.00 5.00 5.02 42.62 11.82 9.08 8.72
1 60.92 8.06 9.14 8.64 24.38 0.00 4.60 5.00 42.12 15.58 10.96 10.24 70.56 6.06 7.98 7.16 30.06 0.00 4.56 4.74 44.84 13.18 8.94 8.38
5 61.94 9.20 7.36 6.66 26.74 0.04 5.42 5.48 40.60 17.26 7.96 7.40 71.70 7.94 7.64 6.94 31.68 0.02 5.66 5.38 44.30 15.34 7.96 7.74
10 53.68 8.78 7.08 6.82 24.22 0.12 5.68 5.98 36.00 16.14 6.84 6.44 64.34 8.36 7.12 6.56 29.92 0.12 5.44 5.12 40.08 15.94 6.92 6.32
30 34.92 8.68 5.78 5.34 16.58 0.66 4.82 4.84 26.12 14.86 5.76 5.34 46.22 7.66 5.80 5.12 23.24 0.58 5.72 5.50 30.10 12.62 5.60 4.90
50 26.48 8.08 5.40 4.70 13.92 0.98 5.02 4.82 21.14 13.76 5.60 5.14 38.22 6.92 5.60 5.30 21.02 1.10 5.18 5.02 25.68 11.80 5.16 4.90

Note: Data generated with (1) and (2) with vt = φvt + νt for φ = 0.5, where (ut, νt) ∼ iiN(0,Σ) and Σ exhibits constant correlation δ = −0.95. We set ρ = 1− c/T for
various c. tWvx is defined as in equation (3) for which we use the small sample corrections proposed by Kostakis et al. (2015) and t̃∗vx is the bootstrap implementation
of the test with mean-adjusted yt. For tWvx and tWBP

vx we set % = 1− 1/T 0.95. For t̃∗vx we set % = 1− 1/T 0.20 and π = 1− 1/T 0.75.
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Figure 5: Power curves for t̃∗vx and tWvx under a local alternative when c = 0 and αµ = 0.5.
The power curves for tWvx are the same for all the three sub figures, while power curves for
t̃vx are calculated with different values for η and γ. See the text for more details.
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Figure 6: Power curves for t̃∗vx and t̃∗∗vx under a local alternative when c = 0 and αµ = 0.5.
See the text for more details.
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