
Highlights

� We stress-test MTPs with the aim of finding their breaking point under

extreme data snooping efforts.

� MTP size distortions depend on methodological choices and data sam-

ple properties.

� MTPs fail to provide finite-sample control of aggregate error rates in

bearish-leaning, less volatile samples, irrespective of sample length.

� On average, a t-ratio of 3.85 is required to control for lucky trading

rules in bearish samples, representing a two-fold increase compared to

bullish samples; this may increase with poor methodological choices.

� When controlling for asymmetric data snooping bias, speculative trad-

ing rules earn next to no economic profits for traders in the cryptocur-

rency, stock, and foreign exchange markets.
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Abstract

We perform a large scale stress test of modern Multiple Testing Procedures

(MTPs) that are used to evaluate the superior predictive ability of many

forecasting models, documenting how their size depends on methodological

choices and data sample properties in environments plagued by data snoop-

ing. We specifically focus on the evaluation of technical trading rules, whose

number has been exponentially increasing in recent years. We find that

false discoveries (Type I errors) increase when the sample average return and

volatility decrease. Notably, MTPs fail to provide adequate finite-sample

control of aggregate error rates when tests are performed on bearish data

samples or when market frictions (trading fees, liquidity costs, short selling

restrictions) are ignored. To control for asymmetric data snooping bias, re-

searchers should increase the statistical significance threshold used to detect

superior forecasting performance in downward trending markets.
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1. Introduction

One of the common aspirations of academic researchers, investment pro-

fessionals, and individual traders is understanding and predicting financial

asset price movements. As computational resources have become increas-

ingly accessible, the number of models that claim superior predictive ability

and the associated number of trading rules that claim superior economic

profitability has considerably increased. In this context, it is crucial for

stakeholders to have at their disposal and to use adequate statistical tools,

Multiple Testing Procedures (MTPs) that weed out false discoveries and

help eliminate models who’s in-sample performance is simply due to luck

from truly economically superior models. Equally important is to under-

stand the empirical limitations of existing MTPs, given the current environ-

ment characterized by extreme data snooping pressure. However, despite the

long-running discussion on lucky trading performance (see, e.g., the seminal

work of Cowles 3rd, 1933) and data snooping (e.g. Brock, Lakonishok, and

LeBaron, 1992), many details regarding how and when false discoveries arise

or regarding their prevalence in empirical tests remain unclear. For example,

lucky trading performance is typically associated with the spurious ability of

models to make forecasts that correlate with future asset returns by chance,

but the actual correspondence between this property and the amount of false

discoveries (Type I errors) has not been specifically evaluated so far. Could

test results be influenced by other trading rule characteristics? Also, the

effect of ignoring trading costs on trading rule overperformance has been ex-

tensively discussed (Fama, 1965, provides an early example) but its influence

of the amount of false discoveries has not been precisely quantified, especially
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in the context of modern MTPs that claim to control for data snooping. More

generally, there is close to no evidence on the resilience of MTPs to extreme

data snooping pressure under different testing conditions1, and especially to

intentional or unintentional test misspecification.

In this paper, we fill this gap by extensively investigating the drivers of

false discoveries in empirical tests that use MTPs to evaluate the performance

of forecasting models and associated trading rules in financial markets, moti-

vated by the observation that this environment is plagued by data snooping

efforts. Specifically, we use a very large set of technical trading rules (TTRs)

to investigate the factors (data sample properties, methodological choices,

and rule characteristics) that bias MTP results, and estimate the relative

contribution of each factor to the aggregate bias. In essence, we conduct a

practically-inspired large-scale stress test of existing MTPs, which aims to

document how and when they might fail, and what are the remedies that

researchers can apply to assure robust inferences.

Overall, we show that seemingly minor changes that empirical researchers

explicitly or implicitly make when applying tests in practice provoke signifi-

cant differences in results and could lead to false discoveries. The main novel

finding is that a spurious bearish tendency of lucky trading rules in samples

exhibiting negative average returns is the main driver of false discoveries,

while spurious correlation is less important. In samples with strongly nega-

1We use testing conditions in reference to the combination of data sample properties
(sample length, sample average return, standard deviation of returns, etc.) and method-
ological choices that researchers make (accounting for trading costs and/or short trading
restrictions, standardizing the test statistic, handling for ”deep-in-the-null” trading rules
as in Hansen (2005) or Romano and Wolf (2018), etc.).
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tive average returns, false discoveries also increase when volatility decreases.

More generally, we show that size distortions of MTPs under extreme data

snooping pressure depend on the properties of sample returns. This holds for

a wide variety of methodological choices, and can be observed in both Monte

Carlo simulations and empirical tests conducted on the cryptocurrency, stock,

and foreign exchange markets, respectively. We further find that false dis-

coveries due to spurious correlation can be eliminated when accounting for

all data snooping efforts (i.e., when considering the entire trading rule set

from which lucky rules are extracted), while false discoveries due to spurious

bearish tendency are much more persistent and cannot be eliminated using

existing methodological approaches when relying on standard significance

thresholds.

On the one hand, the results imply that the sources of data snooping bias

are more diverse than previously recognized and that methodological precau-

tions are required to adequately control for lucky trading performance when

specific testing conditions are met. For example, when applying MTPs on

samples with bearish characteristics, a t-ratio of 3.85 is needed on average to

provide finite-sample control for aggregate error rates at the 5% level (3.21

for the 10% level and 5.33 for the 1% level), representing a two-fold increase

compared to samples with bullish characteristics. On the other hand, the key

implication for the literature examining TTR overperformance is that pre-

vious positive discoveries obtained on samples with negative average returns

may be false and should be reevaluated after controlling for asymmetric data

snooping bias. This would include short samples containing market crashes

or, more generally, bearish price movements, but also longer samples col-
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lected for financial assets that do not have a theoretical positive price drift,

such as derivatives, currencies, or cryptocurrencies. For example, a growing

body of evidence based on modern MTPs has shown that data snooping bias

is largely responsible for positive discoveries regarding TTR overperformance

in the stock market (see Anghel, 2021a, and references therein). However,

this is not the case in the foreign exchange or cryptocurrency markets, where

various recent contributions still support the superior forecasting ability of

TTRs (e.g., Zarrabi, Snaith, and Coakley, 2017; Corbet, Eraslan, Lucey, and

Sensoy, 2019; Grobys, Ahmed, and Sapkota, 2020). For the latter, researchers

also typically document a pattern of time-varying TTR performance, casting

doubt on the efficiency of short-term price movements in specific time pe-

riods. Even though not directly challenging previous findings, our analysis

hints that asymmetric data snooping bias may play a role in these and related

studies, and that the results should be reevaluated after explicitly taking it

into account.

Our paper is mainly related to the replication crisis in finance and the

discussion on lucky forecasting models that has recently gained significant

traction in the literature (see, e.g., the presidential address of Harvey, 2017).

Although the discussion is not new, evidence showing how much data snoop-

ing bias we could expect in empirical tests only recently emerged. For ex-

ample, Dichtl, Drobetz, Neuhierl, and Wendt (2021) find that almost all

strategies designed to forecast equity risk premiums fail to beat the simple

historical mean in out-of-sample tests after controlling for data snooping and

accounting for transaction costs. Similarly, Harvey, Liu, and Saretto (2020)

show that the vast majority of trading strategies based on fundamentals
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have no economically-significant forecasting ability for the cross section of

stock returns. McLean and Pontiff (2016), Linnainmaa and Roberts (2018)

or Chordia, Goyal, and Saretto (2020) go one step further and estimate that

the proportion of false discoveries published in the asset pricing literature

may range between 26% and 58%, implying that data snooping severely bi-

ases our perception about equity risk factors and fund managers skill. More

generally, Harvey, Liu, and Zhu (2016) argue that most positive findings in

financial economics are likely false and suggest that a newly discovered, non-

theory-based factor needs to clear a much higher statistical hurdle, i.e. a

t-ratio ≥ 3.

Regarding technical (speculative) trading rules, i.e. active trading strate-

gies that are based solely on historical asset prices, Anghel (2021a) estimates

that between 50% and 75% of results supporting superior forecasting (trad-

ing) performance may be false, as researchers usually ignore their combined

data snooping efforts. However, Anghel (2021a) also finds that false discov-

eries persist even after accounting for all data snooping, hinting that other

factors may also be involved, but does not investigate further. To the extent

of our knowledge, no paper focusing on the performance of trading rules has

analyzed why/when is data snooping bias persistent, or performed an in-

depth investigation into the exact contribution of each possible explanatory

factor to the total bias. Here, we perform such an investigation by analyzing

the testing conditions that make trading rules appear more profitable than

they truly are.

The remainder of the paper is organized as follows. Section 2 discusses

the statistical properties of excess performance measures and possible sources
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of data snooping bias. Section 3 reports and discusses the stress test results,

i.e. the results of several Monte Carlo simulations that analyze the factors

that drive false discoveries in MTPs. It also includes robustness checks that

confirm the spurious bearish tendency effect as the main factor that biases

results. Section 4 shows that spurious bearish tendency can also be observed

in empirical tests conducted on the cryptocurrency, stock, and foreign ex-

change markets, respectively, regardless of the size of the data sample used.

The analysis also reveals that speculative trading rules have next to no eco-

nomically significant superior predictive ability after taking asymmetric data

snooping bias into account. Section 5 concludes.

2. Trading rule overperformance, statistical tests, and potential

sources of data snooping bias

Various testing procedures can be used to evaluate the economic perfor-

mance of speculative trading rules. However, because many rules are ex-

plicitly or implicitly evaluated together (Sullivan, Timmermann, and White,

1999), researchers should account for the possibility of lucky overperformance

by handling for the associated multiple hypotheses. Approaches that do this

include the False Discovery Rate (FDR) test (Benjamini and Hochberg, 1995)

and its extensions (e.g. Storey, 2002; Bajgrowicz and Scaillet, 2012), or the

Reality Check test (White, 2000) and its extensions (e.g. Hansen, 2005; Ro-

mano and Wolf, 2005; Hsu, Hsu, and Kuan, 2010; Hansen, Lunde, and Nason,

2011). Harvey et al. (2020) provide a comprehensive review of relevant MTPs

that are useful for finance applications.

Are modern testing procedures immune to data snooping bias? Surely
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not, as the way and context in which they are applied matters. Indeed,

Anghel (2021a) shows that false discoveries arise when researchers misspecify

the set of alternative trading rules against which they check for statistically

significant excess performance. Moreover, false discoveries persist even after

accounting for all data snooping efforts (Anghel, 2021a). Why is data snoop-

ing bias so persistent, and what are the conditions in which we can expect

it to rise up to non-negligible levels? Similarly, it is well known that classi-

cal test results can be biased when ignoring trading costs and other market

frictions, the literature on this going back at least to Fama (1965). However,

there is no evidence showing exactly how ignoring market frictions impacts

MTP results. To provide additional insights, we first analyze the way in

which the economic performance of speculative trading rules is evaluated.

At their core, MTPs evaluate the null hypothesis of no overperformance,

which can be stated as H0 : max
k=1..K

E[dk] ≤ 0, where dk is the excess perfor-

mance associated with the gain (negative loss) function of a trading rule or,

more generally, of a forecasting model k, and K is the number of models

being considered simultaneously. In the context of speculative rules used by

traders in financial markets, the gain function is typically linear, being de-

fined as the excess return over the buy-and-hold strategy (δ0,t = 1,∀t), which

is used as a benchmark because it represents the optimal alternative when

prices are not predictable, e.g. follow a random walk. Thus, and accounting

for transaction costs, the gain function can be defined as:

dk,t = [δk,t−1ξt − 1{δk,t−1 6=δk,t−2}(φ+ λt)]− δ0,t−1ξt (1)

where ξt denotes the market return, φ denotes the fixed broker fee, λt denotes
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the liquidity and/or price impact cost, and δk is the signal function associated

with trading rule k.2 The term in square brackets represents the absolute

performance (return), while subtracting the market return yields the relative,

excess performance (return). Taking expectations results in the following

decomposition of trading rule expected excess performance:

E[dk] = ρδ,ξσδσξ + (E[δk]− 1)E[ξ]− ϕ (2)

where σδ =
√
V ar(δk) > 0 denotes the volatility of trading signals, σξ =√

V ar(ξ) > 0 denotes the volatility of market returns, ρδ,ξ = Corr(δk, ξ) ∈

[0, 1] denotes the correlation between (lagged) trading signals3 and market

returns, i.e., the rule’s predictive accuracy, ϕ = θ(φ + E[λ]) + σδ,λ > 0,

denotes the total trading cost penalty, with θ = P(δk,t−1 6= δk,t−2) ∈ [0, 1]

being the probability of making a trade, i.e. the rule’s trading frequency,

and σδ,λ = Cov(1{δk,t−1 6=δk,t−2}, λt) > 0 being the covariance between trade

occurrences and liquidity costs, i.e. the rule’s illiquidity preference.

When trading in a market that explicitly disallows short positions or in

which short trades are effectively not functional, only long trades are possible

and the signal function can take either 1 (with probability pk ∈ [0, 1]) or

2Signal functions are step functions that use historical prices (or returns) to predict
the future direction of price movements and instruct traders about what positions they
should take in the market, i.e. -1 when prices are expected to decrease and traders should
go short, 0 when prices are expected to remain constant and traders should stay out of the
market, or 1 when prices are expected to increase and traders should go long. In practice,
unchanged prices are hardly predicted, meaning we can discard this possibility from the
analysis and model signals as Bernoulli random variables without a loss of generality.
However, as discussed below, 0 can still appear as a signal when prices are expected to
decrease but short trades are explicitly or implicitly not allowed.

3Lagged signals are used to avoid hindsight bias;
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0 (with probability 1 − pk ∈ [0, 1]). In this case, δk is a Bernoulli random

variable with mean E[δk] = P(δk = 1) = pk and variance V ar(δk) = pk(1−pk),

and the expected overperformance becomes:

E[dk] = ρδ,ξ
√
pk(1− pk)σξ + (pk − 1)E[ξ]− ϕ (3)

Conversely, when short trades are allowed and functional, δk can take

either 1 (with probability pk) or -1 (with probability 1 − pk).4 In this case,

δk is a Bernoulli -like random variable ((δk + 1)/2 is Bernoulli), now having

mean E[δk] = 2pk − 1 and variance V ar(δk) = 4pk(1 − pk); the expected

overperformance becomes:

E[dk] = 2ρδ,ξ
√
pk(1− pk)σξ + (2pk − 1)E[ξ]− ϕ (4)

At this point, several notes are in order. First, pk can be interpreted as the

bullish tendency of trading rule k, i.e. its inclination to trade with (to follow)

the market, while (1−pk) as the bearish tendency, i.e. its inclination to trade

against (to stay out of) the market. The buy-and-hold rule has p0 = 1 and

1− p0 = 0, while all active trading rules have pk < 1 and 1− pk > 0.

Second, and very important for our discussion, benchmarking against

the buy-and-hold strategy induces an asymmetry in the performance mea-

sure in asset return space: Positive excess returns can only be achieved

when correctly predicting price declines (negative returns), while negative

4We prefer this specification, which implicitly assumes that trading rules are always
active in the market, because it constitutes a limiting case that better highlights our point.
Additionally considering zero as a signal would dampen the volatility of trading signals
but would otherwise not change the conclusion of the analysis.
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excess returns can only be achieved when incorrectly predicting price in-

creases (positive returns). In other words, only the timing of predictions

that go against the market can change TTR performance. Going into the

details, from Eq. 3 we get (similar statements can be made based on Eq.

4) ρδ,ξ = 0 =⇒ E[dk] > 0 ⇐⇒ E[ξ] < − ϕ
(1−pk)

< 0, which shows

that even trading rules with zero predictive accuracy can benefit traders

when used on financial assets or in periods with a sufficiently low, negative

expected return, this being impossible when expected returns are positive.

Also, ∂E[dk]
∂E[ξ]

∣∣∣
ρδ,ξ=0

= −(1 − pk) < 0 and ∂E[dk]
∂(1−pk)

∣∣∣
ρδ,ξ=0

= −E[ξ], which addi-

tionally shows that the benefits of bearish-inclined trading rules increase as

their bearish tendency is stronger and/or as expected returns become more

negative. This property of speculative trading rules should not be relevant

for traders with long investment horizons interested in financial assets that

have positive expected returns, such as stocks or bonds. However, (assuming

time-varying expected returns) it should be important for traders with short

investment horizons during periods of market crashes or for traders inter-

ested in financial assets with negative expected returns. Nevertheless, given

limitations associated to applying MTPs in practice, it should be relevant

for all empirical researchers, as we will next discuss.

Third, empirical tests evaluate the maximum expected excess perfor-

mance obtained by any trading rule from a set of many candidates, but

can only rely on finite-sample estimates of excess performance, i.e. d̂k =

1
T

∑T
t=1 d̂k,t, where T < ∞ is the sample length. Thus, we can write the
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following decomposition of the observed maximum average excess return:

max
k=1..K

d̂k = max
k=1..K

cρ̂δ,ξ
√
p̂k(1− p̂k)σ̂ξ︸ ︷︷ ︸

predictive ability

+ (cp̂k − 1)ξ̂︸ ︷︷ ︸
directional tendency

− [θ̂(φ̂+ λ̂t) + σ̂δ,λ]︸ ︷︷ ︸
trading style/cost penalty

(5)

where c = 2 when short trades are allowed and c = 1 otherwise. Evidently,

increasing the size of the sample can reduce estimation error. However, our

analysis shows that other characteristics of the data sample may indepen-

dently impact MTP results, opening up the possibility to multiple forms of

data snooping bias. Eq. 5 shows how the estimated maximum excess per-

formance depends on testing conditions and gives us an intuition about how

data snooping bias can arise in empirical tests. In particular, Eq. 5 shows

that there are three independent sources of trading rule overperformance:

(1) (in-sample) predictive ability, (2) (in-sample) directional tendency, and

(3) (in-sample) trading style. Thus, lucky trading rule characteristics or test

misspecification could give rise to data snooping bias in three independent

ways:

1. Via a component that depends on the predictive accuracy (ability) of

the best trading rule. When the predictive accuracy is economically

significant, i.e. ρδ,ξ > 0, then the rule may help traders earn system-

atic excess returns. However, investment professionals and researchers

routinely mine financial prices in search of better alternatives, this in-

creasing the chances of finding and using rules that correlate with asset

returns purely by chance and not due to real, economically significant

ability. In the limit, max
k=1..K

ρ̂δ,ξ � max
k=1..K

ρδ,ξ as K → ∞. In turn, a

lucky predictive accuracy falsely inflates the estimated excess perfor-
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mance, thus creating a spurious correlation effect that can bias test

results. This effect is the major source of concern for the discussion on

data snooping in the literature, even if not always explicitly identified

as such, e.g., the seminal work of Brock et al. (1992) or the discussion

in Sullivan et al. (1999). Eq. 5 further shows that the spurious cor-

relation effect can be exacerbated when: (i) asset volatility increases,

(ii) trading signal volatility increases, or (iii) researchers allow short

trades when performing tests on assets (in markets) where they are not

functional.

2. Via a component that depends on the tendency of the best rule to

trade with or against the market. As previously noted, active trad-

ing rules benefit investors when asset prices tend to decrease, and are

disadvantageous otherwise. Moreover, the benefits associated with us-

ing active trading rules in downward trending markets increase with

their bearish tendency and/or with the negative magnitude of returns.

However, prices for many classes of assets do not typically trend down-

wards and could actually have a long-run positive price drift, making

bearish-inclined trading rules suboptimal in many cases. More impor-

tantly, and similar to spurious correlation, the increased performance

obtained in a sample exhibiting a negative average return could be the

result of luck and not skill, as extensive data snooping can uncover

trading rules with a spurious bearish tendency. In the limit, p̂m → p̂ξ

as K →∞, where m = arg max
k=1..K

d̂k and p̂ξ = 1
T

∑T
t=1 1{ξt>0}. This, in

turn, may contribute to the aggregate data snooping bias via a spurious

bearish tendency effect. Eq. 5 further shows that this effect can be ex-
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acerbated when researchers allow trading rules to take short positions

in markets where they are not functional.

3. Via a component that depends on a rule’s trading style, but also on

how rigorous are researchers when accounting for trading costs. In a

frictionless environment, aggressive trading rules (i.e. ones that can be

characterized by a high trading frequency) have a natural tendency to

overperform more passive alternatives because they can better adapt

to short-term trends. However, trading costs are important in real

markets, and ignoring or underestimating them would artificially inflate

the performance of trading rules5, especially for those that trade more

often. This, in turn, would lead to a trading style/costs effect that

can further bias results. Eq. 5 further shows that this effect can be

exacerbated when lucky trading rules have a preference for illiquidity,

i.e. trade more in less liquid, more volatile periods. Thus, misspecifying

trading costs especially overestimates the performance of lucky rules in

thinly traded markets.

In the end, MTPs that evaluate the performance of speculative trading

rules are defined using asymptotic considerations, but extensive data snoop-

ing efforts, the limitations associated with applying them in practice, and

researcher intentional or unintentional flawed implementation strategies can

lead to biased results. Here, we identify the sources of luck and false dis-

coveries that are important when many trading rules are tested on the same

historical data samples. How much does each factor contribute to the aggre-

5This is a well-known source of bias. For example, Fama (1965) provides an early
example in this direction when discussing the findings of Alexander (1961);
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gate data snooping bias? We investigate this question next.

3. Drivers of data snooping bias

3.1. Setup

We set out to find the breaking point of modern MTPs under extreme

data snooping pressure. For this, we design and perform a large scale stress

test, which relies on multiple Monte Carlo simulations that evaluate the in-

teraction between testing conditions, characteristics of lucky trading rules,

and data snooping bias. On the one hand, we account for extensive data

snooping efforts by selecting lucky rules from a very large set of 688,740

TTRs, which are largely defined following Anghel (2021a).6 On the other

hand, we take account of possible market conditions by constructing and us-

ing multiple data samples with varying properties. The baseline data consists

of 6x1,000=6,000 samples of randomly generated trading prices and volumes

spanning one month (approximately 22 observations each), which are ob-

tained from a discretized no-drift geometric Brownian Motion with volatility

parameters σ ∈ {0.15, 0.20, 0.25, 0.30, 0.35, 0.40}.7

Testing a very large trading rule universe on very short (one month) data

samples can be seen as going against MTP theory. While this is correct,

we emphasize that our focus here is not to evaluate trading rules with in-

appropriately applied tests, but rather to evaluate the resilience of MPTs

6We use the 686,304 trading rules defined by Anghel (2021a), to which we add 2,435
rules constructed from the Trading Range Breakouts (TRB) method, which has been
previously considered by Sullivan et al. (1999), and a passive rule that always stays out of
the market.

7The data construction also follows Anghel (2021a, Section 4.1).
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given empirical realities, which are substantially different compared to the

theoretical conditions. In particular, our approach is meant to capture the

spirit of current data snooping trends, with traders and researchers evaluating

millions or even billions of trading rules (admittedly using larger samples).

Working with short samples also comes with several benefits for the analysis.

First, it greatly eases computational demands, which in turn enables us to

significantly grow the number of test runs and better estimate MTP error

rates. Second, it exposes MTPs to additional sources of (estimation) error,

which in turn enables us to truly meet the stress test goal of finding their

limits in empirical applications. Third, it leads to a small sample evaluation

of modern MPTs, which covers a gap in the literature.8 Also, it is directly

relevant for papers that do consider shorter samples when evaluating time-

varying TTR performance, market efficiency. Note that, despite the many

advantages, we do not ignore possible concerns regarding small sample bias

and set out to validate all important findings in robustness tests that rely on

significantly larger samples.

Moving on, the evaluation procedure goes as follows. On each sample,

in Step 1 we estimate the performance of all trading rules and isolate the

one that earns the highest excess return, i.e. the luckiest rule. Then, in Step

2 we evaluate the statistical significance of the results using popular MTPs

that are designed to control for data snooping, namely the Reality Check test

of White (2000) and the Superior Predictive Ability test of Hansen (2005).

8The analysis of the small sample properties of econometric models and statistical tests
is a very important area of study in econometrics. However, there is close to no evidence
on the behavior of MTPs in small samples.
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Both tests control for the Family-wise Error Rate (FWER), making them

less powerful and more conservative compared to alternatives that control

for (variants of) the False Discovery Rate, FDR (see Barras, Scaillet, and

Wermers, 2010; Efron, 2012). However, they are also less prone to making

Type I errors, which is the metric that we are interested in. Thus, our

analysis can be interpreted as gauging the utmost conditions under which

MTPs are expected to fail, setting a minimum threshold for more liberal

testing approaches.

There are several differences in our analysis compared to similar endeav-

ors in the related asset pricing literature, such as the work of Chordia et al.

(2020). First, we focus on analyzing the luck of speculative trading rules

when applied on individual time-series (assets) and do not form or test port-

folios of assets. This bypasses the need to assume a factor model for the data

generating process and implies that our results can be generalized to a wide

set of financial asset classes. Second, we assume no dependence structure

of the time series that we simulate, thus making any test null rejection a

false discovery and enforcing the null hypothesis of no trading rule overper-

formance directly from the construction of the dataset. Third, because we

investigate trading rules based on technical analysis, we also simulate other

relevant market information besides Closing prices (returns), such as Open,

High, and Low prices, alongside trading volumes.

There are also some important differences compared to the work of Anghel

(2021a), on which our analysis builds upon. On the one hand, we compute

and use data sample statistics to analyze the interaction between false dis-

coveries and sample characteristics, such as the average return, standard de-
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viation of returns, skewness, and kurtosis. Among others, this enables us to

isolate the contribution that spurious bearish tendency has on the aggregate

data snooping bias. On the other hand, we do not fix the testing condi-

tions, instead varying them based on methodological choices that applied

researchers would need to make. First, we run the tests with and without a

fixed broker fee.9 Second, we run the tests with and without liquidity/price

impact costs.10 Third, we run the tests with and without allowing short

trades. Fourth, we run the tests with and without standardizing the statis-

tic. When the statistic is not standardized, the test follows the procedure

described by White (2000). Conversely, when the statistic is standardized,

the test follows the procedure described by Hansen (2005), which additionally

makes an asymptotic adjustment for the impact of poor performing, irrele-

vant trading rules. The Bootstrap-Bonferroni adjustment of Romano and

Wolf (2018) (which is based on finite-sample considerations) is also exam-

ined, but similar to Anghel (2021a) we find no material differences compared

to the adjustment of Hansen (2005), thus opting not to discuss it further.

Overall, there are 16 different methodological combinations that we test

on all 6,000 samples, amounting to a total of 96,000 test runs. Comparing

the results enables us to estimate the impact of various testing conditions on

the characteristics of lucky trading rules and on the data snooping bias that

they would introduce in empirical tests.

9A fee of 1% per round trip is considered, which should be sufficient to account for
trading fees in most financial markets.

10When considering liquidity/price impact costs, we simulate trading at the least favor-
able daily prices, the High price for buy trades and the Low price for sell trades (otherwise,
trades are simulated at the average daily price).
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3.2. Results: Testing conditions and trading rule characteristics

We first analyze how the characteristics of lucky trading rules change

with testing conditions, i.e. the results following Step 1 of the evaluation

procedure. Figure 1 shows the conditional distribution of each characteristic

given possible methodological choices. We offer additional details on this

relationship in Appendix A, where Figures A.1 trough A.4 report scatter

plots showing how each characteristic relates to the first four moments of

the sample return distribution, given each methodological choice. Table 1

reports the results of four linear regression models that evaluate how testing

conditions drive the characteristics. Several results are worth noting.

[Fig. 1 about here.]

[Table 1 about here.]

First, we find that an inflated predictive accuracy (ρ̂δ,ξ) is the most sta-

ble characteristic of lucky trading rules, as shown by the highly significant

intercept (α = 0.4485, tα = 142.19) and low explanatory power of the regres-

sion model (R2 = 0.063). This result implies that spurious correlation−even

though it increases with the number of trading rules being considered−is

largely independent from other testing conditions. Nevertheless, we do find

that predictive accuracy increases with volatility, showing that spurious cor-

relation rises in more volatile markets. Also, considering trading fees, re-

stricting short trades, and standardizing the test statistic can help reduce

spurious correlation, but only marginally. Interestingly, we further find a

weak positive influence of market returns on predictive accuracy, hinting

that spurious correlation slightly increases in upward trending markets.
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Second, we find that trading frequency (θ̂) is slightly more dependent on

testing conditions (R2 = 0.364). In particular, adjusting for trading costs

significantly decreases the trading frequency of lucky rules (as expected),

while considering short trades and standardizing the test statistic have a

mostly positive, although weaker influence. In the latter cases, the impacts

depend on the properties of the data sample: For the most part, trading

frequency tends to decrease with average returns and increase with volatility.

Third, we find that the directional tendency (p̂) of lucky trading rules

is highly dependent on testing conditions (R2 = 0.573). Most notably, di-

rectional tendency is strongly determined by market returns: Lucky rules

have a bearish tendency when returns decrease (are negative) and a bullish

tendency when returns increase (are positive), this showing that spurious

directional tendency is an conspicuous factor that could potentially influence

test results. Adding trading fees and liquidity costs increase the impact of

average returns on directional tendency by about 20% each11, showing that

trading costs can potentially have an adverse impact on test results trough

this channel. We also find that restricting short trades and standardizing the

test statistic decrease the impact of average returns on directional tendency

by about -10% each, but that making these methodological choices generally

favors rules that trade with the market more often.

Fourth, we find that the average (annualized) excess return (d̂) of lucky

trading rules is to a very large extent explained by testing conditions (R2 =

0.846). On the one hand, sample volatility has a strong positive impact,

11This is estimated as the ratio between γfee or γliq, respectively, and γ (which is the
coefficient showing the base effect of market returns on market tendency).
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showing that the spurious correlation effect is exacerbated in more volatile

markets, just as expected. Nevertheless, this effect can be decreased by

restricting short trades (-31%), standardizing the test statistic (-14%), ad-

justing for liquidity costs (-9%), and adjusting for trading fees (-3%). On

the other hand, and more importantly, we find a strong negative correla-

tion with realized market returns, which shows that the spurious bearish

tendency effect is the main factor that inflates the overperformance of specu-

lative trading rules, especially when both long and short trades are considered

(restricting short trades decreases the effect by -41%) and the test statistic is

not standardized (standardizing the statistic decreases the effect by -12%).

Interestingly, while trading fees have a direct negative influence on excess

returns, they are not sufficient in eliminating the combined influence of spu-

rious directional tendency and correlation. Also, liquidity costs do not have

a direct impact on excess returns, instead only being useful in reducing the

impact of volatility.

Overall, the results show that the characteristics of lucky trading rules and

their estimated trading performance following extensive data snooping efforts

are influenced by testing conditions in complex, non-trivial ways. In general,

we find that spurious correlation is a pervasive characteristic that falsely

increases trading rule performance regardless of testing conditions. Never-

theless, a bearish tendency in samples with low (negative) average returns

seems to be the main factor that inflates average excess returns. Controlling

for trading costs and restrictions on short selling positions is important for

handling luck, but only to a limited extend. Interestingly, adding trading

costs favors trading rules with a bearish directional tendency and could thus
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have a negative influence on test results in some situations.

3.3. Results: Methodological choices and data snooping bias

We go on to Step 2 and estimate Type I error frequencies for the RC

(White, 2000) and SPA (Hansen, 2005) tests. These MTPs are designed

to control for data snooping, but the asymptotically-valid theory may fail

when faced with finite-sample limitations and/or unreasonable empirical im-

plementation strategies.

We start by performing single-hypothesis tests, i.e. testing the luckiest

trading rule in each sample, and then move on to multiple-hypothesis tests by

gradually adding the other rules. For each of the 96,000 test runs, we analyze

21 increasingly larger sets of trading rules, resulting in a total of 2,016,000

individual tests. For each test, we estimate the distribution of the statistic

as suggested by White (2000) and Hansen (2005), i.e. by bootstrapping

from trading rule excess returns using the Stationary Bootstrap of Politis

and Romano (1994) with 1,000 iterations. From this, we estimate critical

values and test p-values. Finally, we estimate the empirical FWER (i.e.,

the aggregate proportion of false discoveries) at the standard 5% significance

level, aggregating by the various testing conditions. A summary of the results

is reported in Table 2.

[Table 2 about here.]

Overall, we find that between 21% and 78% (48% on average) of single

hypothesis tests (i.e., tests that only evaluate the luckiest trading rule and

do not account for other rules) and between 1% and 12% (2.4% on aver-

age) of full-scale multiple hypothesis tests (i.e., tests that account for all
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trading rules) can falsely reject a true null hypothesis, depending on testing

conditions. The differences in error rates between the single and multiple

hypothesis tests, which range between 20.1 and 66.5 percentage points (43.1

on average), provide estimates for the amount of false discoveries due to fail-

ing to account for combined data snooping efforts. These results support the

findings of Anghel (2021a), but extends them by additionally showing that

data snooping bias from misspecifying trading rule universes significantly

varies with testing conditions. Table 3 shows exactly how by reporting the

average contribution of each methodological choice to the aggregate bias.

[Table 3 about here.]

First, ignoring trading fees and liquidity costs generates false discoveries

in 3.8%-18.8% and 3.2%-14.4% of tests, respectively. On average, this ac-

counts for 44.9% and 36.8% of the total bias. Also, ignoring trading costs

leads to significant size distortions, as error rates surpass the 5% threshold

in all associated tests, including after all 688,740 trading rules have been

accounted for. This shows that incorporating trading costs is a minimum

requirement for adequately controlling data snooping and assuring the con-

sistency of tests in finite data samples.

Second, the contribution of restricting short trades on the aggregate bias

is low (2.6% on average), and also depends on other testing conditions. In

particular, restricting short trades increases false discoveries when few rules

are tested together, but decreases them after accounting for all trading rules.

This implies that full-scale multiple-hypothesis tests are better at controlling

data snooping in markets where short trades are functional.
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Third, standardizing the test statistic is generally detrimental to the anal-

ysis because it increases false discoveries by between 1.2 and 25.1 percentage

points, accounting for 4.3% to 60.3% of the total bias. Nevertheless, upon

closer inspection, we find that standardizing the test statistic is detrimental

only when short trades are restricted, but is beneficial (reduces false discov-

eries) otherwise. This implies that standardizing the test statistic is a better

testing strategy when the volatility of trading signals is expected to be high,

such as in markets where short trades are functional, but could otherwise

escalate the data snooping bias. This finding explains the results in Anghel

(2021a), which only considered long trades and found RC tests to be bet-

ter at controlling data snooping compared with SPA tests. Here, we show

that this is not necessarily the case and, instead, researchers should choose

between the two testing strategies depending on market conditions.

Fourth, we estimate that a t-ratio of 3.24 is required on average to ad-

equately control for data snooping in tests performed at a 5% significance

level (2.63 and 4.77 for the 10% and 1% levels, respectively). This may rise

to 4.17 with some inappropriate methodological choices, and even to 4.37

when trading costs are ignored.

3.4. Results: Data sample properties and data snooping bias

We continue the investigation by analyzing if data sample properties also

play a role in shaping data snooping bias. Indeed, our main novel finding

is that false discoveries are overwhelmingly concentrated on samples with

negative average returns, irrespective of methodological choices. The results

are reported in Table 4: Panel A shows aggregate error rates in tests per-

formed on samples with a positive average return; Panels B shows aggregate
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error rates in tests performed on samples with a negative average return; and

Panel C shows the proportion of false discoveries that arise in samples where

average returns are negative relative to the total number of false discoveries.12

[Table 4 about here.]

We find that between 41% and 97% (71% on average) of single hypothesis

tests performed on downward-trending samples can falsely reject a true null

hypothesis, representing 71% of the total. This result implies that the spu-

rious bearish tendency effect dominates the spurious correlation effect right

from the onset in terms of its potential to generate data snooping bias. More

importantly, as the number of trading rules that are considered increases (to

control for data snooping), so does the relative contribution of the former to

the aggregate bias. After controlling for all data snooping efforts in full-scale

multiple hypothesis tests, between 2% and 24% (4.7% on average) of tests

performed on downward-trending samples lead to false discoveries, represent-

ing almost 100% of the total. This holds for all methodological combinations

and implies that accounting for data snooping efforts is effective at control-

ling spurious correlation, but not spurious bearish tendency. In the end, this

finding shows that modern MTPs can be severely limited in specific empirical

applications.

The results also show a potential remedy for this limitation. Specifically,

12We also analyze if test results significantly differ in samples with: (1) high vs. low
Standard Deviation of returns; (2) positive vs. negative Skewness; and (3) positive vs.
negative Excess Kurtosis. We find no significant differences in these cases, except a slight
asymmetry by skewness (false discoveries occur at higher rates when sample Skewness is
positive) when a standardized test statistic is used. For the sake of brevity, we defer a
detailed analysis of this result to future work.
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a t-ratio of 3.85 can be used to control for data snooping bias at a 5%

significance level in bearish-leaning samples (3.21 and 5.33 for the 10% and

1% levels, respectively), this rising to 4.91 with some poor methodological

choices, and even to 5.10 when trading costs are ignored. Note that the higher

significance thresholds constitute a two-fold increase compared to the ones

that are required in bullish-leaning samples, a results that can be observed

both on average, as well as for each methodological combination. Recent

evidence from the asset pricing literature (e.g. Harvey et al., 2016) show

that considering the standard 1.96 threshold (1.64 and 2.57 for the 10%

and 1% levels, respectively) makes it highly likely that positive discoveries

with respect to the overperformance of trading strategies are false, and that

raising the statistical threshold to well above 3 is required to account for

luck. Here, we provide evidence that this is also true when examining TTR

overperformance. However, our results go one step further and provide novel

evidence showing that size distortions of MTPs are heterogeneous, as they

also depend on the empirical distribution of asset (market) returns. This

implies that sticking to the same (although higher) significance threshold and

ignoring market conditions is not the optimal testing approach in samples

where asset prices trend downward. Instead, the latter conditions demand

an asymmetric treatment of test significance thresholds, or improvements in

test design as to control for this asymmetry.

[Table 5 about here.]

We further check for possible interactions between different sample prop-

erties by analyzing error rates on bivariate sample sorts. Table 5 reports error

27



rates when the results are grouped by sample average return and standard

deviation of returns deciles, which turn out to present the most significant

variations. We find that a low volatility increases size distortions due to

the spurious bearish tendency effect. In particular, the proportion of false

discoveries even for full-scale multiple hypothesis tests always exceeds the

5% level when the average return is in the first decile (ξ̂ ≤ −123.48% per

year), and increases as volatility decreases. However, positive distortions are

also significant for the second average return decile (ξ̂ ≤ −76.26% per year)

when the standard deviation of returns is lower than 26.38%, and even for

the third return decile (ξ̂ ≤ −47.58% per year) when the standard deviation

of returns is lower than 15.05%.

3.5. Results: Testing conditions and data snooping bias

We complement the analysis by estimating several regression models that

show how methodological choices and sample properties interact to generate

false discoveries. The results are reported in Table 6. We note that the

combination of four methodological choices and two data sample properties

explains false discoveries to a statistically and economically significant extent,

in both single and multiple hypothesis tests.13 This is evident when observing

that: (i) almost all estimated coefficients are statistically significant, most

of the time at the 1% confidence level; and (ii) the R2 in all regressions

ranges between 0.512 and 0.702. We focus the analysis on the logit models,

which show how the probability of making false discoveries varies with testing

conditions. Several interesting findings are worth noting.

13Adding sample skewness and kurtosis to the regressions does not qualitatively change,
improve the results.

28



[Table 6 about here.]

First, methodological choices have a direct and significant impact on test

outcomes: Deducting trading costs always brings net benefits to the analysis,

as it has a consistent negative impact on false discoveries, while restricting

short trades and standardizing the test statistic are beneficial only in full-

scale multiple hypothesis tests, after accounting for all data snooping efforts.

Second, data sample properties also have a direct and significant im-

pact on test outcomes. On the one hand, average returns always have a

negative influence on the probability of falsely rejecting the null, support-

ing previous observations on the role of the spurious bearish tendency effect

in shaping data snooping bias. Moreover, the impact of average returns is

stronger in full-scale multiple hypothesis tests, complementing previous evi-

dence showing that the spurious bearish tendency effect is solely responsible

for any residual errors after accounting for data snooping efforts. On the

other hand, the sample standard deviation also plays a role in shaping test

outcomes, having a positive (negative) impact on the probability of rejecting

the null in single (multiple) hypothesis tests.14 The sign difference between

single and multiple hypothesis tests implies that the magnitude of the spuri-

ous correlation effect increases with volatility, but that accounting for data

14Our results seemingly contradict Anghel (2021a), which finds a positive relationship
between market volatility and false discoveries in multiple hypothesis tests. However, the
difference can be easily explained by how our results generalize. Indeed, we also find false
discoveries to increase with volatility when performing tests with trading costs enabled and
short trades disabled, such as in Anghel (2021a). However, we find that the overall sign
of the relationship is negative after considering the effects of other methodological choices
and sample properties. Overall, our results are broader and highlight that methodological
choices should be tailored to the expected market conditions.
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snooping efforts in multiple-hypothesis tests is efficient at eliminating its in-

fluence. Taken together, the results show that the risk of falsely rejecting the

null is highly persistent in downward trending, less volatile samples, even

after seemingly accounting for data snooping efforts.

Third, methodological choices also have an indirect impact on test out-

comes by shaping the way in which test results interact with sample char-

acteristics. In general, restricting short trades and standardizing the test

statistic weaken the effects of sample properties on test outcomes, while, in-

terestingly, subtracting trading costs strengthens them. This latter result

shows the complex inner working of data snooping. Although subtracting

trading costs has a net negative impact on false discoveries, it also favors

trading rule characteristics that increase data snooping bias, e.g. it has a

negative influence on the bullish tendency of lucky trading rules, which in

turn exacerbates the spurious bearish tendency effect.

3.6. Robustness check: Longer data samples

To alleviate potential concerns that our results are driven by large estima-

tion errors due to using small data samples, we repeat the analysis on 6,000

longer samples, which span for 1 year (approximately 261 observations) or 4

years (approximately 1044 observations). For brevity, we fix the methodolog-

ical choices and only perform tests in which both trading fees and liquidity

costs are considered, short trades are disabled, and a simple performance

measure (the RC test) is used. The results are reported in Tables 7 (1 year

samples) and 8 (4 year samples), showing the previous conclusions hold when

longer samples are used: Size distortions remain significantly positive for the

first average return decile, i.e. when ξ̂ ≤ −35.9% per year for 1 year samples
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and ξ̂ ≤ −17.8% per year for 4 year samples; while negatively correlating

with volatility.

[Table 7 about here.]

[Table 8 about here.]

We do notice a slight decrease in overall error rates compared to the

baseline results, potentially showing that using larger samples better con-

trols for spurious bearish tendency and improves the size of multiple testing

procedures. However, a closer look shows that the improvement is not due

to lower estimation errors, but rather to a beneficial but unintended conver-

gence in sample average returns to their population value (which is µ = 0),

thus decreasing the potential benefit of and indirectly hindering the spurious

bearish tendency effect. We specifically check this hypothesis by running

additional tests on 6x100 even longer, 10 year samples (containing approxi-

mately 2,610 observations each) that are drawn from a Geometric Brownian

Motion (GBM) with the same volatility parameters as before, but now having

a drift of µ = −0.2.

[Table 9 about here.]

Table 9 reports the results, confirming that false discoveries abound even

in very long data samples when average (expected) returns are negative,

and that increasing the sample length does not directly benefit the analysis.

Overall, the results in this Section show that data snooping bias from spurious

bearish tendency is very persistent when sample average returns are negative,

irrespective of sample length. We do note, however, that the interaction
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between sample average return and sample length does have an influence on

test results: For the same average return, false discoveries increase on longer

samples. This implies that spurious bearish tendency has a higher impact

when the sample length increases, and that data snooping bias can persist in

tests conducted on financial assets that have experienced minor price declines

over long periods of time.

3.7. Robustness check 2: Other testing procedures

Up to now, our analysis has centered on tests that control for the Family-

wise Error Rate, which can be traced back to the seminal contribution of

White (2000). Nevertheless, FDR tests can also be subject to limitations as,

e.g., Andrikogiannopoulou and Papakonstantinou (2019) and Barras, Scail-

let, and Wermers (2021) recently discuss. To verify if this is indeed true

in our case, we further analyze the robustness of results to changes in the

testing procedure, i.e. to using the more powerful but less stringent FDR

control, which has become fairly popular in the financial economics litera-

ture (see Harvey et al., 2020, and references therein). Here, we consider the

pFDR test of Storey (2002). The testing conditions follow the ones defined

in Section 3.6, except that we focus on 1 year samples.

[Table 10 about here.]

The results, which are reported in Table 10, show that a similar negative

relationship between data snooping bias and sample average return exists

when controlling for pFDR, with size distortions being especially significant

for the first two return deciles. The difference in this case is that the distor-

tions are generally larger, and do not monotonically decrease with volatility,

32



instead having an U shape in volatility space for low return deciles and an

inverted-U shape for middle and higher return deciles. Also, size distortions

in pFDR tests remain significant for all return deciles when volatility falls in

the middle deciles. Overall, the results imply that data snooping bias from

the spurious bearish tendency of lucky trading rules is even more significant

when more liberal MTPs are used, in particular (p)FDR-based ones. This is

expected, as the analysis centered on tests that control for FWER is the most

conservative and basically provides minimum conditions for when MTPs fail

under extreme data snooping pressure.

4. An empirical analysis of trading rule overperformance

4.1. The cryptocurrency market

We build on the Monte Carlo simulation and perform an empirical inves-

tigation of possible spurious effects and the luck-adjusted overperformance of

TTRs in real financial markets. First, we focus on the cryptocurrency mar-

ket. Besides the recent surge in academic interest towards it (Jiang, Li, and

Wang, 2021), the study of cryptocurrencies is relevant in our context because

they are seemingly “less efficient” compared to more traditional financial as-

sets. In particular, existing evidence shows that cryptocurrency returns are

more predictable compared to returns in other markets (Zhang, Wang, Li,

and Shen, 2018; Al-Yahyaee, Mensi, and Yoon, 2018; Sensoy, 2019), while

TTRs seem to help investors earn statistically and economically significant

“abnormal” returns (Corbet et al., 2019; Grobys et al., 2020; Fischer, Krauss,

and Deinert, 2019; Hudson and Urquhart, 2021).

However, the recent surge in interest toward this market and the general
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lack of control for luck may lead to results that are plagued by data snooping

bias. Of particular interest to our discussion are papers such as Gerritsen,

Bouri, Ramezanifar, and Roubaud (2020), who observe that the added value

of trading rules depends on market conditions (periods of overperformance

are related to strongly trending markets), but implicitly attribute this finding

to a superior ability of trading rules without considering possible spurious

effects. Are trading rules really profitable in the cryptocurrency market after

adjusting for luck?

Recently, Anghel (2021b) used 67,480 trading rules based on technical

analysis and 5 rules based on machine learning algorithms to show that sta-

tistically and economically significant excess returns can be hardly achieved

after controlling for market frictions and data snooping. Here, we greatly

expand the analysis by testing our set of 688,740 trading rules, while also

decomposing null rejections by data sample properties to evaluate the role

played by spurious bearish tendency in shaping the results. More impor-

tantly, we not only test for statistical significance, but also evaluate economic

significance by comparing test results with the results obtained in the Monte

Carlo simulations (reported in Section 3), which we consider as a benchmark.

If the rates of positive discoveries (test null rejections) would exceed what

we expect at the bounds of randomness, than trading rules can be deemed

as having a superior forecasting ability.

In the empirical exercise we fix the methodological choices, tailoring them

to the specific conditions encountered by traders. First, trading fees for cryp-

tocurrencies vary by market/broker but can reach as low as 0%, so we de-

cide not to consider them. Instead, liquidity and price impact costs should
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be important in a relatively young and thinly traded market, so we decide

to incorporate them. Second, short trades are possible, but only on some

exchanges and mostly for top-tier pairs. In general, we assess that short

trades cannot currently be considered as fully operational in the cryptocur-

rency market, so we decide to ignore them.15 Finally, we choose to employ

both a simple and a standardized performance measure (test statistic). The

cryptocurrency market is on average more volatile compared to its competi-

tors, which suggests that a standardized statistic should be used in principle.

However, because we only consider long positions, we expect that a simple

statistic would better control for false discoveries.

The data sample is obtained from Anghel (2021b) and consists of all avail-

able trading histories for 861 cryptocurrencies collected on February 10, 2020

from www.coinmarketcap.com. For each cryptoasset we measure the excess

performance obtained by all trading rules in the extended set. Then, we split

the data by calendar month and perform RC and SPA tests on monthly sub-

samples of at least 22 observations. As before, 21 different statistical tests

are performed on each subsample by estimating the distribution of excess re-

turns using 21 increasingly larger sets of trading rules. In total, we base our

analysis on 1,344,588 individual test results obtained on 32,014 subsamples.

[Table 11 about here.]

[Table 12 about here.]

15Some papers go in the opposite direction. For example, Fischer et al. (2019) consider
short trades but explicitly acknowledged that short-selling constraints may constitute a
limit of their analysis.
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Table 11 reports a decomposition of average RC and SPA null rejections

by average sample return and standard deviation of returns deciles16, while a

summary of the results obtained in this empirical exercise and a comparison

with the benchmark results are reported in Table 12. One the one hand, we

find that null rejections are concentrated in the first return decile and also

increase with lower volatility, including for multiple hypothesis tests that

control for all trading rules from which best-performing ones are extracted

(see Panel B in Table 11). This constitutes evidence that the spurious bearish

tendency effect is important for shaping the results and implies that we

should be more conservative when inferring economic significance.

On the other hand, we find that the tests performed in the cryptocur-

rency market reject their null hypotheses 50%-90% less often compared to

the benchmark. A similar result is obtained on the subset of samples ex-

hibiting negative average returns, implying that TTRs have no economic

relevance in periods of declining cryptocurrency prices. Interestingly, testing

few rules–including using single hypothesis tests–results in more null rejec-

tions on bearish samples compared with bullish samples, which is consistent

with our simulation results. However, increasing the number of tested rules

inverses the asymmetry and results in more null rejections on bullish samples.

This implies that false discoveries arising from the spurious bearish reference

effect are eliminated after adjusting for data snooping in the cryptocurrency

market, while remaining null rejections could plausibly be linked with a sta-

tistically significant superior predictive accuracy of some trading rules when

the market is trending upward.

16Analyzing the RC and SPA test separately points toward exactly the same conclusions.
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A detailed analysis reveals 97 instances when the RC null hypothesis is

rejected on samples with positive average returns, which constitutes 0.7% of

all bullish samples (0.3% of all samples). This is higher than the proportion

estimated in the simulation exercise using randomly generated data, which

was 0%. Similarly, there are 146 instances when the SPA null is rejected on

samples with positive average returns, which constitutes 1.1% of all bullish

samples (0.4% of all samples), again being higher than the 0.2% baseline

result. Null rejections decline when testing more rules, implying that a sub-

stantial amount of false discoveries due to the spurious correlation effect can

be eliminated when controlling for data snooping efforts. However, the differ-

ences of 0.3% for the RC test and 0.9% for the SPA test constitute evidence in

favor of TTRs being capable of successfully timing cryptocurrency prices and

earning statistically significant excess returns in some periods of increasing

prices. Nevertheless, we consider a 0.3%-0.9% success rate in bullish periods

(representing less than 0.37% of all analyzed periods) not to be economically

significant, as it would not encourage investors to use such trading rules to

make real investment decisions. As a result, and taking into account the

complete set of results, we conclude that TTRs cannot be considered as hav-

ing an economically significant superior predictive ability, and that the the

cryptocurrency market is very close to informationally efficient in the sense

proposed by Timmermann and Granger (2004). This conclusion contradicts

many of the previous findings reported in the literature, implying that data

snooping is the main factor driving earlier result.
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4.2. The stock market

We perform a complementary empirical exercise using data collected from

the stock market, which enables us to apply tests on longer data samples

with completely different characteristics. The literature on the profitability

of trading rules in this market goes back for a longer period, but is generally

subject to the same limitations (see Anghel, 2021a, and references therein).

Again, of particular interest for our discussion are papers such as Fernandez-

Rodrıguez, Gonzalez-Martel, and Sosvilla-Rivero (2000), who conclude that

TTRs are superior to the buy-and-hold strategy in bear markets (being in-

ferior in bull markets), but do not investigate further.

For this analysis, the data is obtained from Anghel (2021a) and consists

of trading histories for 2,426 stocks listed in 77 markets (representing 84

countries) around the world. The testing procedure is similar to what was

previously used for the cryptocurrency market, except that: (i) we perform

statistical tests on 1 year subsamples averaging 231 observations (we exclude

subsamples with less than 65 data points), or on full samples averaging 3,310

observations; (ii) we adjust excess returns with a fixed broker fee of 0.5%

per transaction; (iii) we only use a simple test statistic (the RC test); and

(iv) we only test the complete set of trading rules, thus always handling for

combined data snooping efforts.

[Table 13 about here.]

Table 13 reports the decomposition of RC null rejections by average sam-

ple return and standard deviation of returns deciles. When testing 1 year

subsamples, we find that 0.37% (96/34,887) of tests reject their null hypoth-

esis, but that null rejections are concentrated in the first return decile and
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largely increase with lower volatility. As before, this points to data snooping

bias from spurious bearish tendency as being the main factor that drives the

results, and that TTRs have no economically significant predictive ability

when used on the stock market over short prediction horizons. However, the

results obtained on the extended samples are qualitatively different: Now,

1.73% (42/2,426) of tests reject their null hypothesis, and there is no clear

connection between sample characteristics and null rejection rates. This

points towards the idea that data snooping is not an issue and that TTRs

may some merit in timing stock returns when used over very long investment

horizons.

On the one hand, the two results validate our previously stated hypoth-

esis, i.e. spurious bearish tendency is not a problem for traders with long

investment horizons interested in financial assets that have positive expected

returns but should be important for traders with short investment horizons

during periods of downward trending prices, or for researchers that study

market efficiency using samples that have a bearish tendency. On the other

hand, regarding the ability of TTRs for timing the stock market, the re-

sults points that they are still not economically superior to the buy and hold

strategy. The first problem is that traders and investment professionals only

use TTRs over short investment horizons, of up to 6 months (see Menkhoff,

2010, and related evidence). The second problem, similar to the analysis on

cryptocurrencies, is that the proportion of null rejection can hardly be con-

sidered as economically significant, especially since (when looking in more

detail) they are overwhelmingly concentrated on stocks listed in very small

markets, which can be associated with greater market frictions compared

39



to what we have considered in this analysis. Overall, we can conclude that

speculative trading rules have next to no economic relevance for traders in

the stock market after adjusting for asymmetric luck, thus adding to the

growing body of evidence in this direction (e.g. Sullivan et al., 1999; Taylor,

2014; Anghel, 2021a).

4.3. The FX market

Finally, we take a quick look at the foreign exchange market, in which

assets (exchange rates) do not have a clear positive price drift. Instead,

as predicted by the Uncovered Interest Rate Parity (UIP) condition, they

may have a positive or a negative drift, depending on the interest rate dif-

ferential between the two quoted currencies. For this analysis, we collect

from Bloomberg all available trading histories for 9 major, minor and exotic

currency pairs, i.e. AUDCAD, CADSEK, DKKZAR, EURAUD, GBPCHF,

JPYSGD, JPYZAR, NZDZAR, and SGDHKD. The data series range from

as early as January 4, 1971 to October 28, 2021. The testing procedure is

identical to what was previously used for the stock market, except that (i)

we adjust excess returns with a lower broker fee of 0.2% per transaction; (ii)

we consider subsamples that span 4 years; (iii) we enable short trades, as

they are functional in this market; and (iv) we also consider a standardized

test statistic (the SPA test) to evaluate results, as it should be more reliable

given the previous adjustment.

[Table 14 about here.]

Table 14 reports the results, clearly showing that null rejections are con-

centrated on bearish-leaning data samples. This result offers additional val-
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idation to our earlier conclusions. First, a lucky bearish tendency of TTRs

causes data snooping bias when tests are performed on bearish-leaning sam-

ples, irrespective of sample length. Third, TTRs do not have an economically

significant superior forecasting ability when applied in the FX market. Be-

cause this conclusion disagrees with many of the previous findings reported

in the literature, it implies that data snooping is a very important factor

that drives earlier result. Third, when evaluating the superior predictive

ability of forecasting models and associated trading rules using MTPs, re-

searchers should account for the characteristics of the data sample that they

use and, more generally, for the characteristics of the financial assets that

they investigate.

5. Conclusions

While some guidelines exist on how to design and conduct a relevant

empirical exercise when examining the profitability of speculative trading

strategies, especially in the era of machine learning (see Arnott, Harvey, and

Markowitz, 2019), applied researchers often go their own subjective way. The

lack of evidence regarding how/when each testing condition can lead to false

discoveries does not encourage a homogeneous approach. This increases the

risk that positive findings reported in the literature may be biased due to data

snooping. In this paper, we provide novel evidence that can help alleviate

this problem.

First, we show that incorporating trading costs into the analysis is a

must in order to assure finite sample control of MTP aggregate error rates.

Second, short trading restrictions should be adequately enforced, otherwise
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they might falsely inflate trading rule overperformance and might lead to

false discoveries. When short trades are used, or when the signal volatility of

trading rules is expected to be high, standardizing the performance measure

(test statistic) would result in fewer Type I errors. Third, researchers must

control as best as possible for all data snooping efforts, regardless of other

testing conditions, in order to eliminate/reduce the bias induced by spurious

correlation (which is a function of data snooping efforts but otherwise arises

independently from other testing conditions) and bearish tendency (which

arises in downward trending markets).

Nevertheless, our main novel finding is that spurious correlation has a

small contribution to the aggregate data snooping bias, while the spurious

bearish tendency of lucky trading rules is the main driver of false discoveries

by a significant margin, irrespective of other testing conditions. Moreover,

the spurious bearish tendency effect cannot be eliminated in multiple hy-

pothesis tests and is solely responsible for the bias remaining after all of the

necessary, previously stated methodological precautions have been taken.

Even increasing the sample length does not make a difference when the av-

erage sample return remains negative. In the end, the probability of making

false discoveries is non-negligible and MTPs fail under extreme data snooping

efforts in downward trending, less volatile markets. In such cases, applied

researchers must increase the statistical significance threshold and should be

more prudent when interpreting results. Our findings thus support and ex-

tend recent evidence in the asset pricing literature (e.g. Harvey et al., 2020;

Chordia et al., 2020) showing that false discoveries may abound, and add to

the conclusion that accounting for lucky trading strategies requires raising
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the statistical significance threshold to well above t = 3. Overall, our results

show that a two-fold increase in statistical significance is required for tests

conducted on bearish samples, compared to bullish samples. In particular,

we estimate that a t = 3.85 is required (on average) to assure finite-sample

control of MTP error rates at the 5% level in bearish-leaning samples, com-

pared to t = 3.24 that is needed in all samples and t = 1.96 that is needed in

bullish-leaning samples. Note that these baseline thresholds should increase

with poor methodological choices and unfavorable sample conditions.

We also perform an empirical exercise to demonstrate how our results can

be applied in tests examining the profitability of speculative trading rules in

real financial markets. We focus on the emerging cryptocurrency market

and the more mature stock and foreign exchange markets, and tune our

methodological choices to adequately account for data snooping efforts. The

results show that the spurious bearish preference effect is a factor that can

influence test results in a wide array of practical circumstances, such as choice

of statistical test, financial asset, and sample length. Taking asymmetric

data snooping bias into account, we find almost no evidence in favor of TTR

economically significant overperformance: “Abnormal” profit opportunities

are insignificant and likely unattainable to investors that use TTRs to time

these markets, which can be regarded as being informationally efficient with

respect to a very large class of speculative trading strategies.

Finally, we note that our analysis shows that the asymmetry in MTP error

rates is induced by the way we typically measure the performance of trading

rules, i.e. as the excess return over a benchmark strategy that is always

engaged in the market (the buy-and-hold rule). As a result, we would expect
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our analysis to be relevant not only to evaluating speculative trading rules

in financial markets, but to all forecasting exercises where and equivalent

relative performance metric is employed. Currently, no MTP is designed to

handle for asymmetrically lucky forecasting performance and data snooping

bias, which implies the need to develop such procedures in the future.
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Figure 1: Methodological choices and simulated distributions of lucky trading rule characteristics
Notes: This figure reports how the simulated distributions of lucky trading rule characteristics change with methodological choices (considering
trading fees, considering liquidity costs, restricting short trades/only considering long trades, or standardizing the test statistic). The histograms
are overlaid, with orange bars denoting the frequency when the choice is true and blue bars denoting the frequency when the choice is false. Each
distribution is plotted from 48,000 data points.
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Table 1: The influence of methodological choices and sample properties on the character-
istics of lucky trading rules

Coefficient Dependent variable (X̂)

ρ̂ θ̂ p̂ d̂
α 0.4485*** 0.2575*** 0.5036*** 0.0389***

[142.19] [137.80] [171.15] [4.10]

β̂fee -0.0079*** -0.1404*** -0.0018 -0.1635***
[-2.81] [-84.00] [-0.71] [-19.27]

β̂liq 0.0009 -0.0621*** -0.0026 0.0022
[0.31] [-37.19] [-1.02] [0.25]

β̂long -0.0412*** -0.0006 0.0435*** -0.0388***
[-14.61] [-0.36] [16.54] [-4.58]

β̂std -0.0522*** 0.0164*** 0.1389*** 0.0017
[-18.51] [9.82] [52.78] [0.21]

γ̂ 0.0024** -0.0184*** 0.1245*** -0.9733***
[2.37] [-30.69] [131.64] [-319.21]

γ̂fee -0.0043*** 0.0137*** 0.0260*** -0.0013
[-4.74] [25.50] [30.77] [-0.49]

γ̂liq -0.0047*** 0.0120*** 0.0221*** -0.0036
[-5.24] [22.40] [26.17] [-1.33]

γ̂long -0.0003 -0.0077*** -0.0100*** 0.4019***
[-0.35] [-14.37] [-11.92] [147.37]

γ̂std 0.0017* -0.0315*** -0.0160*** 0.1155***
[1.95] [-58.78] [-18.99] [42.36]

δ̂ 0.0644*** 0.0197*** 0.0314*** 7.8321***
[5.86] [3.03] [3.06] [236.87]

δ̂fee 0.0248** 0.2093*** 0.0091 -0.2251***
[2.52] [35.92] [0.99] [-7.61]

δ̂liq -0.0049 -0.0116** 0.0097 -0.6962***
[-0.50] [-1.99] [1.06] [-23.54]

δ̂long 0.0103 0.0154*** -0.0057 -2.4589***
[1.05] [2.65] [-0.62] [-83.14]

δ̂std -0.0385*** 0.0101* -0.0386*** -1.1275***
[-3.91] [1.74] [-4.20] [-38.12]

Adjusted R2 0.0630 0.3648 0.5734 0.8468
F-statistic 460.63*** 3939.93*** 9218.56*** 37921.15***

Notes: This table reports the coefficients (β, γ and δ) esti-
mated for four multivariate linear regression models of the form:

X̂ = α+ γξ̂ + δσ̂ +
∑

(βDD + γDDξ̂ + δDDσ̂) + ε

where X̂ is a characteristic of lucky trading rules (either predictive accuracy−ρ̂, trading frequency−θ̂,
bullish tendency−p̂, or (annualized) average excess return−d̂); D is a vector of dummy explanatory
variables representing possible methodological choices (considering trading fees−fee; considering
liquidity costs−liq; restricting short trades/only considering long trades−long; or standardizing the test

statistic−std) taking the value of 1 if used and 0 otherwise; ξ̂ is the sample average return; σ̂ is the
sample standard deviation of returns; α is the intercept; and ε is the error term. Each regression is
estimated using 96,000 observations, which are obtained by running the simulation exercise described in
Section (3.1) on 6,000 data samples with 16 possible methodological choices. T-statistics are reported in
square parenthesis, while ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels,
respectively.
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Table 2: Methodological choices and false discoveries–all samples

fee No No No No No No No No Yes Yes Yes Yes Yes Yes Yes Yes Both
liq No No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes Both

long No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes Both
std No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes Both

N
u

m
b

er
o
f

tr
a
d

in
g

ru
le

s

1 0.522 0.755 0.602 0.787 0.385 0.581 0.386 0.615 0.353 0.524 0.336 0.568 0.268 0.387 0.211 0.481 0.418
2 0.437 0.714 0.533 0.751 0.317 0.535 0.323 0.575 0.294 0.481 0.276 0.522 0.221 0.344 0.170 0.429 0.374
4 0.361 0.671 0.454 0.706 0.260 0.484 0.263 0.528 0.238 0.435 0.225 0.477 0.177 0.303 0.130 0.378 0.335
8 0.326 0.636 0.390 0.677 0.233 0.445 0.219 0.492 0.211 0.398 0.186 0.442 0.159 0.275 0.111 0.344 0.305
16 0.311 0.622 0.368 0.662 0.224 0.429 0.199 0.475 0.203 0.378 0.169 0.424 0.153 0.258 0.100 0.329 0.290
32 0.300 0.612 0.365 0.656 0.217 0.421 0.195 0.466 0.196 0.369 0.165 0.415 0.149 0.248 0.098 0.322 0.281
64 0.212 0.594 0.340 0.647 0.158 0.401 0.171 0.454 0.145 0.349 0.145 0.401 0.108 0.231 0.081 0.294 0.268
128 0.212 0.594 0.340 0.647 0.158 0.401 0.171 0.454 0.145 0.349 0.145 0.401 0.108 0.231 0.081 0.294 0.268
256 0.212 0.553 0.335 0.603 0.158 0.359 0.168 0.416 0.144 0.306 0.142 0.363 0.107 0.203 0.078 0.274 0.241
512 0.158 0.363 0.263 0.419 0.114 0.214 0.120 0.268 0.103 0.184 0.099 0.231 0.077 0.116 0.052 0.183 0.142
1024 0.131 0.308 0.207 0.365 0.087 0.174 0.087 0.227 0.081 0.147 0.070 0.193 0.057 0.089 0.033 0.148 0.116
2048 0.128 0.307 0.206 0.365 0.086 0.174 0.086 0.227 0.080 0.146 0.070 0.192 0.056 0.088 0.033 0.147 0.116
4096 0.122 0.294 0.201 0.351 0.083 0.164 0.083 0.216 0.077 0.138 0.068 0.182 0.054 0.083 0.032 0.141 0.112
8192 0.113 0.211 0.172 0.268 0.077 0.115 0.071 0.157 0.069 0.097 0.059 0.131 0.049 0.058 0.027 0.110 0.081
16384 0.105 0.203 0.164 0.260 0.070 0.109 0.066 0.151 0.063 0.092 0.054 0.127 0.047 0.053 0.024 0.104 0.076
32768 0.091 0.130 0.135 0.178 0.063 0.060 0.052 0.090 0.056 0.052 0.043 0.074 0.039 0.028 0.018 0.072 0.039
65536 0.090 0.127 0.132 0.174 0.061 0.058 0.051 0.087 0.055 0.050 0.042 0.070 0.039 0.027 0.017 0.070 0.038
131072 0.088 0.123 0.127 0.168 0.059 0.056 0.049 0.083 0.053 0.047 0.041 0.068 0.038 0.025 0.016 0.067 0.035
262144 0.082 0.114 0.116 0.156 0.055 0.053 0.043 0.076 0.049 0.043 0.036 0.064 0.034 0.022 0.013 0.062 0.033
524288 0.079 0.105 0.112 0.145 0.053 0.046 0.040 0.070 0.047 0.039 0.035 0.059 0.032 0.019 0.013 0.057 0.028
688740 0.072 0.090 0.095 0.126 0.050 0.037 0.033 0.058 0.044 0.030 0.029 0.050 0.029 0.015 0.010 0.049 0.024

ExRet Pctl. 90% 3.683 2.936 2.197 2.101 3.458 2.839 1.891 1.790 3.468 2.835 1.896 1.794 3.300 2.774 1.701 1.578 2.630
ExRet Pctl. 95% 4.375 3.463 2.576 2.454 4.163 3.383 2.234 2.122 4.179 3.402 2.234 2.132 3.997 3.410 2.042 1.909 3.247
ExRet Pctl. 99% 5.898 4.752 3.298 3.147 5.653 4.913 2.987 2.844 5.722 4.797 3.009 2.846 5.514 4.884 2.814 2.672 4.772

Notes: This table reports the size of multiple testing procedures when evaluating lucky trading rules on randomly generated data samples. Type
I error rates are estimated at a 5% significance level when varying the methodological choices as follows: considering trading fees–fee; considering
liquidity costs–liq; restricting short trades/only considering long trades–long; or standardizing the test statistic–std. Each cell value in the main
body of the table represents the average error rate over 6,000 test results, corresponding to the number of distinct samples that are defined and used;
except for the values in the final (’Both’) column, which are aggregated from all 96,000 results. The bottom three rows report critical values for the
empirical excess return distribution, i.e. the Qth percentile of the distribution, where Q is 90%, 95%, or 99%, estimated via bootstrap simulation
with 1,000 replications.
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Table 3: Contribution of different methodological choices to data snooping bias-all samples

Average absolute contribution Average relative contribution
TTRs No Fee No Liq. No Short Std. TTRs No Fee No Liq. No Short Std.

1 0.188 0.142 0.026 0.204 1 33.2% 26.2% 2.3% 35.7%
2 0.181 0.137 0.030 0.223 2 35.4% 28.1% 2.9% 41.8%
4 0.171 0.131 0.029 0.234 4 37.6% 30.3% 2.7% 48.0%
8 0.162 0.124 0.022 0.234 8 38.6% 31.0% -0.1% 51.1%
16 0.160 0.121 0.019 0.231 16 39.5% 31.6% -2.8% 52.1%
32 0.159 0.120 0.021 0.228 32 39.9% 31.8% -1.7% 52.3%
64 0.153 0.117 0.042 0.251 64 41.3% 33.5% 8.3% 60.3%
128 0.153 0.117 0.042 0.251 128 41.3% 33.5% 8.3% 60.3%
256 0.148 0.112 0.042 0.217 256 42.2% 33.8% 8.5% 56.8%
512 0.109 0.085 0.038 0.124 512 44.7% 36.2% 10.4% 50.3%
1024 0.096 0.075 0.032 0.112 1024 48.0% 39.8% 6.4% 54.3%
2048 0.096 0.075 0.033 0.113 2048 48.1% 39.8% 7.2% 54.7%
4096 0.092 0.072 0.032 0.106 4096 48.1% 39.8% 7.9% 53.9%
8192 0.073 0.057 0.026 0.064 8192 48.5% 39.6% 6.1% 43.1%
16384 0.071 0.056 0.026 0.063 16384 49.0% 40.3% 5.5% 44.3%
32768 0.052 0.042 0.018 0.023 32768 50.2% 41.6% 2.0% 20.2%
65536 0.051 0.041 0.017 0.022 65536 50.4% 41.6% 0.3% 18.8%
131072 0.050 0.040 0.016 0.021 131072 50.8% 42.1% -0.4% 17.4%
262144 0.047 0.038 0.014 0.020 262144 51.9% 43.4% -5.2% 18.5%
524288 0.044 0.036 0.014 0.016 524288 52.0% 44.3% -2.6% 13.0%
688740 0.038 0.032 0.010 0.012 688740 52.8% 45.0% -11.9% 4.3%

Min 0.038 0.032 0.010 0.012 Min 33.2% 26.2% -11.9% 4.3%
Max 0.188 0.142 0.042 0.251 Max 52.8% 45.0% 10.4% 60.3%

Average 0.109 0.084 0.026 0.132 Average 44.9% 36.8% 2.6% 40.5%
StDev 0.052 0.039 0.010 0.094 StDev 6.0% 5.6% 5.5% 17.6%

Notes: This table reports the average absolute and relative contribution of four methodological choices
to the total data snooping bias. No Fee represents tests where no fixed trading fees are deducted from
excess returns. No Liq. represents tests where no liquidity/price impact costs are deducted from excess
returns. No Short represents tests where short trades are restricted/only long trades are possible. Std.
represents tests where the test statistic is standardized. The absolute contribution of a methodological
choice to the total bias is estimated as Ē∗ − Ē, where Ē∗ is the average null rejection (error) rate in tests
when the choice is true, and Ē is the average null rejection (error) rate in tests when the choice is false.

The relative contribution of a methodological choice to the total bias is Ē∗−Ē
Ē∗ .
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Table 4: Methodological choices, data sample properties, and false discoveries

Panel A. Proportion of false discoveries in samples with a positive average return

fee No No No No No No No No Yes Yes Yes Yes Yes Yes Yes Yes Both
liq No No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes Both

long No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes Both
std No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes Both

N
u

m
b

er
o
f

tr
a
d

in
g

ru
le

s

1 0.163 0.531 0.255 0.584 0.056 0.272 0.052 0.306 0.043 0.220 0.033 0.263 0.015 0.091 0.006 0.188 0.118
2 0.093 0.464 0.163 0.519 0.029 0.225 0.028 0.258 0.025 0.181 0.018 0.215 0.008 0.068 0.004 0.149 0.086
4 0.051 0.396 0.086 0.444 0.014 0.175 0.010 0.210 0.011 0.142 0.008 0.170 0.003 0.054 0.001 0.115 0.065
8 0.031 0.350 0.024 0.398 0.007 0.148 0.003 0.173 0.006 0.116 0.002 0.140 0.002 0.041 0.000 0.093 0.054
16 0.023 0.330 0.012 0.377 0.005 0.137 0.000 0.160 0.005 0.103 0.001 0.128 0.001 0.035 0.000 0.085 0.048
32 0.020 0.321 0.011 0.369 0.004 0.133 0.000 0.156 0.004 0.099 0.001 0.123 0.001 0.033 0.000 0.083 0.045
64 0.000 0.300 0.006 0.357 0.000 0.118 0.000 0.148 0.000 0.086 0.000 0.115 0.000 0.028 0.000 0.075 0.042
128 0.000 0.300 0.006 0.357 0.000 0.118 0.000 0.148 0.000 0.086 0.000 0.115 0.000 0.028 0.000 0.075 0.042
256 0.000 0.260 0.005 0.309 0.000 0.099 0.000 0.126 0.000 0.068 0.000 0.095 0.000 0.022 0.000 0.064 0.035
512 0.000 0.115 0.001 0.146 0.000 0.035 0.000 0.051 0.000 0.027 0.000 0.036 0.000 0.006 0.000 0.027 0.009
1024 0.000 0.071 0.000 0.103 0.000 0.021 0.000 0.035 0.000 0.015 0.000 0.025 0.000 0.003 0.000 0.017 0.004
2048 0.000 0.070 0.000 0.103 0.000 0.021 0.000 0.035 0.000 0.015 0.000 0.024 0.000 0.003 0.000 0.017 0.004
4096 0.000 0.064 0.000 0.094 0.000 0.018 0.000 0.030 0.000 0.012 0.000 0.022 0.000 0.002 0.000 0.015 0.004
8192 0.000 0.032 0.000 0.053 0.000 0.008 0.000 0.014 0.000 0.005 0.000 0.009 0.000 0.001 0.000 0.008 0.002
16384 0.000 0.028 0.000 0.049 0.000 0.006 0.000 0.012 0.000 0.004 0.000 0.008 0.000 0.000 0.000 0.007 0.002
32768 0.000 0.009 0.000 0.014 0.000 0.001 0.000 0.003 0.000 0.001 0.000 0.003 0.000 0.000 0.000 0.002 0.000
65536 0.000 0.008 0.000 0.014 0.000 0.001 0.000 0.003 0.000 0.001 0.000 0.002 0.000 0.000 0.000 0.002 0.000
131072 0.000 0.007 0.000 0.012 0.000 0.001 0.000 0.003 0.000 0.001 0.000 0.002 0.000 0.000 0.000 0.002 0.000
262144 0.000 0.006 0.000 0.010 0.000 0.001 0.000 0.002 0.000 0.001 0.000 0.002 0.000 0.000 0.000 0.001 0.000
524288 0.000 0.004 0.000 0.009 0.000 0.001 0.000 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.000
688740 0.000 0.003 0.000 0.007 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000

ExRet Pctl. 90% 2.346 1.889 1.457 1.393 2.083 1.660 1.159 1.095 2.094 1.645 1.168 1.106 1.883 1.490 0.975 0.895 1.596
ExRet Pctl. 95% 2.695 2.256 1.641 1.598 2.424 2.035 1.346 1.276 2.429 2.044 1.366 1.318 2.214 1.859 1.158 1.075 1.967
ExRet Pctl. 99% 3.284 3.072 2.064 1.994 3.029 2.796 1.742 1.658 3.061 2.859 1.776 1.718 2.880 2.541 1.508 1.429 2.740

Notes: This table reports the size of multiple testing procedures when evaluating lucky trading rules on randomly generated data samples. Type
I error rates are estimated at a 5% significance level when varying the methodological choices as follows: considering trading fees–fee; considering
liquidity costs–liq; restricting short trades/only considering long trades–long; or standardizing the test statistic–std. Each cell value in the main
body of the table represents the average error rate over 2,961 test results, corresponding to the number of samples on which average returns are
positive; except for the values in the final (Both) column, which are aggregated from all 47,376 results. The bottom three rows report critical values
for the empirical excess return distribution, i.e. the Qth percentile of the distribution, where Q is 90%, 95%, or 99%, estimated via bootstrap
simulation with 1,000 replications when average sample returns are positive.
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Panel B. Proportion of false discoveries in samples with a negative average return

fee No No No No No No No No Yes Yes Yes Yes Yes Yes Yes Yes Both
liq No No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes Both

long No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes Both
std No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes Both

N
u
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tr
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s

1 0.872 0.973 0.940 0.986 0.705 0.882 0.711 0.917 0.655 0.821 0.631 0.865 0.514 0.676 0.411 0.767 0.711
2 0.773 0.957 0.893 0.978 0.599 0.838 0.611 0.884 0.555 0.774 0.528 0.821 0.427 0.613 0.332 0.702 0.654
4 0.663 0.939 0.813 0.961 0.500 0.784 0.509 0.838 0.458 0.721 0.437 0.775 0.346 0.545 0.256 0.634 0.597
8 0.613 0.914 0.746 0.948 0.454 0.735 0.430 0.803 0.412 0.673 0.365 0.735 0.312 0.504 0.219 0.588 0.550
16 0.591 0.905 0.714 0.940 0.437 0.714 0.394 0.782 0.395 0.647 0.333 0.711 0.300 0.475 0.198 0.566 0.525
32 0.573 0.895 0.708 0.936 0.424 0.702 0.385 0.769 0.382 0.632 0.324 0.698 0.293 0.458 0.193 0.555 0.510
64 0.419 0.881 0.665 0.930 0.312 0.678 0.338 0.752 0.285 0.606 0.287 0.679 0.212 0.429 0.160 0.508 0.488
128 0.419 0.881 0.665 0.930 0.312 0.678 0.338 0.752 0.285 0.606 0.287 0.679 0.212 0.429 0.160 0.508 0.488
256 0.418 0.838 0.657 0.889 0.312 0.612 0.331 0.699 0.284 0.537 0.280 0.625 0.210 0.380 0.155 0.479 0.442
512 0.312 0.605 0.519 0.686 0.224 0.388 0.237 0.480 0.204 0.337 0.195 0.420 0.151 0.224 0.103 0.335 0.270
1024 0.259 0.538 0.408 0.619 0.172 0.323 0.172 0.415 0.159 0.275 0.139 0.356 0.113 0.171 0.065 0.276 0.224
2048 0.253 0.538 0.406 0.619 0.170 0.323 0.170 0.414 0.158 0.274 0.137 0.355 0.111 0.171 0.064 0.274 0.224
4096 0.241 0.519 0.396 0.600 0.164 0.306 0.165 0.397 0.152 0.261 0.134 0.338 0.107 0.162 0.063 0.264 0.216
8192 0.222 0.386 0.340 0.477 0.151 0.219 0.141 0.296 0.135 0.186 0.116 0.249 0.097 0.113 0.054 0.209 0.157
16384 0.208 0.372 0.323 0.466 0.138 0.208 0.130 0.286 0.124 0.177 0.107 0.242 0.092 0.104 0.047 0.198 0.148
32768 0.179 0.247 0.266 0.337 0.123 0.117 0.103 0.174 0.110 0.101 0.084 0.143 0.078 0.054 0.035 0.139 0.077
65536 0.177 0.243 0.260 0.331 0.121 0.114 0.101 0.169 0.109 0.097 0.083 0.136 0.077 0.052 0.034 0.136 0.075
131072 0.173 0.235 0.251 0.320 0.116 0.109 0.097 0.161 0.105 0.092 0.081 0.133 0.075 0.050 0.031 0.131 0.069
262144 0.162 0.219 0.229 0.298 0.108 0.103 0.084 0.148 0.096 0.084 0.072 0.125 0.067 0.044 0.026 0.121 0.064
524288 0.157 0.203 0.221 0.277 0.105 0.090 0.078 0.135 0.092 0.076 0.068 0.115 0.063 0.038 0.025 0.112 0.055
688740 0.143 0.173 0.188 0.242 0.099 0.073 0.065 0.113 0.086 0.060 0.056 0.098 0.056 0.030 0.020 0.097 0.047

ExRet Pctl. 90% 4.371 3.428 2.567 2.440 4.150 3.367 2.227 2.112 4.166 3.380 2.227 2.124 3.985 3.406 2.039 1.904 3.217
ExRet Pctl. 95% 5.108 3.944 2.946 2.790 4.890 3.962 2.603 2.447 4.912 3.947 2.608 2.470 4.714 4.040 2.415 2.253 3.851
ExRet Pctl. 99% 6.328 5.270 3.614 3.372 6.158 5.492 3.233 3.066 6.155 5.426 3.316 3.095 5.999 5.516 3.076 2.910 5.335

Notes: This table reports the size of multiple testing procedures when evaluating lucky trading rules on randomly generated data samples. Type
I error rates are estimated at a 5% significance level when varying the methodological choices as follows: considering trading fees–fee; considering
liquidity costs–liq; restricting short trades/only considering long trades–long; or standardizing the test statistic–std. Each cell value in the main
body of the table represents the average error rate over 3,039 test results, corresponding to the number of samples on which average returns are
negative; except for the values in the final (Both) column, which are aggregated from all 48,624 results. The bottom three rows report critical
values for the empirical excess return distribution, i.e. the Qth percentile of the distribution, where Q is 90%, 95%, or 99%, estimated via bootstrap
simulation with 1,000 replications when average sample returns are negative.
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Panel C. Contribution of samples with a negative average return to the total data snooping bias

fee No No No No No No No No Yes Yes Yes Yes Yes Yes Yes Yes Both
liq No No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes Both

long No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes Both
std No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes Both

N
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f

tr
a
d

in
g

ru
le

s

1 68.8 29.7 57.7 25.9 85.4 53.2 86.4 50.3 87.8 58.1 90.1 53.7 94.4 76.6 97.3 60.9 71.8
2 78.8 35.0 69.3 31.0 91.0 58.0 91.2 55.1 91.6 62.4 93.6 58.7 96.2 80.2 97.6 65.3 77.0
4 86.0 41.0 81.1 37.1 94.5 63.8 96.3 60.2 95.2 67.5 96.3 64.3 98.1 82.1 99.2 69.5 80.6
8 90.4 45.0 93.8 41.2 97.0 66.9 98.8 64.8 97.3 71.0 98.9 68.3 98.9 85.2 99.7 72.9 82.3
16 92.5 46.9 96.7 43.0 97.6 68.1 100.0 66.3 97.7 72.8 99.6 69.8 99.1 86.3 100.0 74.0 83.3
32 93.3 47.5 96.8 43.7 98.0 68.3 100.0 66.6 98.1 73.2 99.6 70.3 99.3 86.7 100.0 74.3 83.9
64 100.0 49.5 98.3 44.8 100.0 70.7 100.0 67.5 100.0 75.4 100.0 71.4 100.0 87.9 100.0 74.5 84.4
128 100.0 49.5 98.3 44.8 100.0 70.7 100.0 67.5 100.0 75.4 100.0 71.4 100.0 87.9 100.0 74.5 84.4
256 100.0 53.0 98.4 48.7 100.0 72.3 100.0 69.7 100.0 77.7 100.0 73.9 100.0 89.4 100.0 76.8 85.3
512 100.0 68.4 99.7 65.2 100.0 83.7 100.0 81.0 100.0 85.5 100.0 84.3 100.0 95.1 100.0 85.4 93.3
1024 100.0 76.9 100.0 71.7 100.0 88.0 100.0 84.5 100.0 89.6 100.0 87.2 100.0 96.2 100.0 88.3 96.2
2048 100.0 77.1 100.0 71.6 100.0 88.0 100.0 84.7 100.0 89.6 100.0 87.3 100.0 96.2 100.0 88.3 96.2
4096 100.0 78.2 100.0 73.1 100.0 89.1 100.0 85.9 100.0 91.0 100.0 88.1 100.0 97.6 100.0 89.1 96.4
8192 100.0 84.8 100.0 80.2 100.0 92.9 100.0 91.0 100.0 94.4 100.0 92.8 100.0 98.8 100.0 92.9 97.5
16384 100.0 86.0 100.0 81.3 100.0 94.1 100.0 91.7 100.0 95.2 100.0 93.3 100.0 99.4 100.0 93.3 97.3
32768 100.0 93.0 100.0 92.0 100.0 98.3 100.0 96.6 100.0 98.0 100.0 96.3 100.0 100.0 100.0 97.3 99.1
65536 100.0 93.9 100.0 92.1 100.0 98.3 100.0 96.9 100.0 98.0 100.0 96.6 100.0 100.0 100.0 97.4 99.1
131072 100.0 94.2 100.0 92.6 100.0 98.2 100.0 96.7 100.0 98.6 100.0 97.0 100.0 100.0 100.0 97.6 99.0
262144 100.0 94.9 100.0 93.5 100.0 98.7 100.0 96.9 100.0 98.4 100.0 97.4 100.0 100.0 100.0 97.8 99.0
524288 100.0 95.8 100.0 93.5 100.0 98.5 100.0 96.6 100.0 99.1 100.0 97.1 100.0 100.0 100.0 97.9 100.0
688740 100.0 96.2 100.0 94.4 100.0 99.1 100.0 97.1 100.0 100.0 100.0 97.3 100.0 100.0 100.0 98.3 100.0

Notes: This table reports the relative (%) contribution of bearish samples to the total data snooping bias, i.e. the number of false discoveries obtained
on samples with negative average returns divided by the number of false discoveries estimated on all samples. Type I error rates are estimated at
a 5% significance level when varying the methodological choices as follows: considering trading fees–fee; considering liquidity costs–liq; restricting
short trades/only considering long trades–long; or standardizing the test statistic–std.
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Table 5: False discovery rates by average return and standard deviation of returns deciles:
RC and SPA tests, 1-month samples

Panel A. All tests

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 0.955 0.920 0.863 0.844 0.821 0.737 0.680 0.650 0.693 0.566
2 0.718 0.675 0.572 0.520 0.484 0.410 0.369 0.321 0.273 0.297
3 0.477 0.383 0.355 0.307 0.309 0.262 0.261 0.263 0.236 0.232
4 0.255 0.198 0.232 0.200 0.197 0.206 0.204 0.182 0.214 0.174
5 0.144 0.150 0.145 0.126 0.143 0.156 0.144 0.147 0.176 0.138
6 0.083 0.097 0.100 0.102 0.102 0.112 0.124 0.118 0.125 0.095
7 0.029 0.051 0.061 0.066 0.089 0.071 0.078 0.065 0.075 0.110
8 0.012 0.014 0.038 0.032 0.047 0.044 0.039 0.070 0.058 0.079
9 0.008 0.008 0.009 0.011 0.017 0.027 0.028 0.036 0.055 0.060
10 0.006 0.000 0.001 0.002 0.004 0.006 0.008 0.014 0.017 0.025

Panel B. Only tests that control for all 688,740 TTRs

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 0.903 0.769 0.584 0.536 0.495 0.369 0.307 0.291 0.329 0.152
2 0.336 0.272 0.165 0.097 0.077 0.043 0.039 0.013 0.017 0.019
3 0.090 0.041 0.023 0.033 0.030 0.006 0.022 0.012 0.002 0.011
4 0.020 0.008 0.012 0.006 0.005 0.005 0.009 0.008 0.017 0.003
5 0.004 0.007 0.007 0.000 0.000 0.006 0.006 0.007 0.012 0.004
6 0.003 0.001 0.005 0.007 0.002 0.001 0.010 0.003 0.002 0.000
7 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.004
8 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.002 0.004
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: This table reports the proportion of false discoveries estimated for the RC and SPA tests in the
simulation exercise for a significance level of 5%, grouped by average returns and standard deviation of
returns deciles. The reported values are aggregated from the entire set of 6, 000 × 16 × 21 = 2, 016, 000
test results (Panel A) or from a set of 6, 000 × 16 = 96, 000 results that are obtained when only using
the full set of 688,740 TTRs (Panel B). The data is generated using a GBM with no drift (µ = 0) and
volatility σ ∈ {0.15, 0.20, 0.25, 0.30, 0.35, 0.40}. Sample length is 1 month (21 observations on average).
Average (annualized) return decile cutoff points are: -1.2348, -0.7626, -0.4758, -0.2405, -0.0200, 0.2070,
0.4640, 0.7679 and 1.2524. Standard deviation of returns decile cutoff points are: 0.1505, 0.1793, 0.2053,
0.2336, 0.2638, 0.2947, 0.3252, 0.3576 and 0.3994.
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Table 6: Drivers of false discoveries

Linear Model Logistic Model
Coefficient Single H0 Multiple H0 Coefficient Single H0 Multiple H0

α 0.0820*** 0.3578*** α 0.0309 -0.7030***
[49.95] [97.23] [0.48] [-4.52]

βfee 0.1096*** 0.3057*** βfee -1.9905*** -2.2644***
[74.62] [92.88] [-34.34] [-14.73]

βliq 0.0486*** 0.1251*** βliq -0.3865*** -0.7287***
[33.08] [38.01] [-6.71] [-5.08]

βlong 0.0069*** 0.0510*** βlong 0.1726*** -0.2684**
[4.74] [15.50] [3.01] [-1.99]

βstd -0.0704*** -0.0021 βstd 0.4458*** -0.3403**
[-47.95] [-0.65] [7.71] [-2.39]

γ 0.0635*** 0.2364*** γ -3.6208*** -7.0374***
[120.33] [199.86] [-77.59] [-46.85]

γfee 0.0258*** 0.0077*** γfee -0.1274*** -0.1408
[54.68] [7.31] [-3.49] [-1.45]

γliq 0.0210*** 0.0082*** γliq -0.1754*** -0.2155**
[44.47] [7.76] [-4.86] [-2.27]

γlong 0.0000 0.0006 γlong 0.2278*** 1.0572***
[0.16] [0.63] [6.58] [11.80]

γstd -0.0410*** -0.0343*** γstd 0.9490*** 3.4017***
[-86.92] [-32.50] [24.18] [26.32]

δ -0.0160*** 0.0109 δ 0.8615*** -37.1855***
[-2.79] [0.85] [3.58] [-34.98]

δfee -0.2185*** -0.5302*** δfee 0.8652*** -0.0394
[-42.65] [-46.21] [4.02] [-0.05]

δliq -0.0436*** -0.0079 δliq -3.9339*** -5.1633***
[-8.51] [-0.69] [-18.16] [-6.54]

δlong -0.0191*** -0.0985*** δlong 0.0227 7.9359***
[-3.74] [-8.59] [0.10] [10.98]

δstd 0.0458*** -0.0421*** δstd 5.5390*** 21.4303***
[8.95] [-3.67] [25.31] [22.75]

Adjusted R2 0.5685 0.7023 McFadden R2 0.5120 0.6273
F-statistic 9035.40*** 16181.15*** F-statistic 68075.23*** 23730.20***

Notes: This table reports the coefficients (β, γ and δ) es-
timated for the multivariate linear and logistic regressions:

X̂ = α+ γξ̂ + δσ̂ +
∑

(βDD + γDDξ̂ + δDDσ̂) + ε, and
1{X̂≤0.05} = 1

1+exp{−(X̂=α+γξ̂+δσ̂+
∑

(βDD+γDDξ̂+δDDσ̂)+ε)}
,

where X̂ is the p-value of the RC test (when the statistic is not standardized) or the p-value of the SPA
test (when the statistic is standardized); D is a vector of dummy explanatory variables representing
possible methodological choices (considering trading fees−fee; considering liquidity costs−liq; restricting
short trades/only considering long trades−long; or standardizing the test statistic−std) taking the value

of 1 if used and 0 otherwise; ξ̂ is the sample average return; σ̂ is the sample standard deviation of returns;
α is the intercept; and ε is the error term. Single H0 refers to single hypothesis tests that use only the
luckiest rule in each sample. Multiple H0 refers to full-scale multiple hypothesis tests that evaluate the
luckiest rule vs. the complete set of 688,740 alternatives. Each regression is estimated using 96,000
observations, which are obtained by running the simulation exercise described in Section (3.1) on 6,000
data samples with 16 possible methodological choices. T-statistics are reported in square parenthesis,
while ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 7: False discovery rates by average return and standard deviation of returns deciles:
RC test, 1-year samples

Panel A. All tests

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 0.891 0.705 0.723 0.645 0.606 0.547 0.449 0.465 0.408 0.462
2 0.452 0.393 0.278 0.273 0.244 0.194 0.176 0.174 0.156 0.183
3 0.229 0.161 0.153 0.154 0.124 0.116 0.114 0.108 0.086 0.072
4 0.090 0.073 0.082 0.070 0.071 0.068 0.083 0.065 0.065 0.073
5 0.038 0.028 0.053 0.054 0.040 0.058 0.056 0.051 0.055 0.084
6 0.032 0.025 0.022 0.042 0.028 0.036 0.025 0.025 0.040 0.056
7 0.014 0.017 0.015 0.019 0.024 0.034 0.027 0.035 0.043 0.030
8 0.006 0.012 0.009 0.016 0.012 0.022 0.017 0.028 0.034 0.031
9 0.003 0.004 0.008 0.008 0.012 0.013 0.012 0.021 0.018 0.018
10 0.024 0.000 0.006 0.010 0.009 0.009 0.008 0.007 0.011 0.009

Panel B. Only tests that control for all 688,740 TTRs

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 0.429 0.190 0.250 0.150 0.070 0.089 0.039 0.047 0.036 0.099
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: This table reports the proportion of false discoveries estimated for the RC test in the simulation
exercise for a significance level of 5%, grouped by average returns and standard deviation of returns deciles.
The reported values are aggregated from the entire set of 6, 000× 21 = 126, 000 test results (Panel A) or
from a set of 6, 000 results that are obtained when only using the full set of 688,740 TTRs (Panel B). The
data is generated using a GBM with no drift (µ = 0) and volatility σ ∈ {0.15, 0.20, 0.25, 0.30, 0.35, 0.40}.
Sample length is 1 year (261 observations on average). Average (annualized) return decile cutoff points
are: -0.359, -0.215, -0.130, -0.059, 0.007, 0.072, 0.142, 0.234 and 0.370. Standard deviation of returns
decile cutoff points are: 0.152, 0.193, 0.208, 0.247, 0.275, 0.303, 0.336, 0.361 and 0.396.
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Table 8: False discovery rates by average return and standard deviation of returns deciles:
RC test, 4-year samples

Panel A. All tests

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 0.815 0.726 0.716 0.597 0.583 0.491 0.475 0.476 0.456 0.465
2 0.491 0.376 0.333 0.277 0.261 0.259 0.188 0.180 0.190 0.158
3 0.222 0.207 0.174 0.119 0.144 0.106 0.138 0.079 0.127 0.099
4 0.106 0.101 0.098 0.090 0.075 0.081 0.070 0.106 0.071 0.057
5 0.054 0.059 0.045 0.057 0.058 0.053 0.065 0.064 0.079 0.082
6 0.026 0.027 0.036 0.037 0.038 0.046 0.040 0.052 0.044 0.050
7 0.019 0.015 0.026 0.028 0.027 0.030 0.034 0.039 0.055 0.036
8 0.012 0.012 0.014 0.017 0.022 0.024 0.021 0.026 0.039 0.034
9 0.011 0.020 0.012 0.009 0.013 0.023 0.017 0.027 0.022 0.026
10 0.000 0.006 0.004 0.007 0.011 0.012 0.013 0.012 0.014 0.014

Panel B. Only tests that control for all 688,740 TTRs

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 0.125 0.000 0.250 0.121 0.039 0.053 0.045 0.050 0.047 0.038
2 0.000 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: This table reports the proportion of false discoveries estimated for the RC test in the simulation
exercise for a significance level of 5%, grouped by average returns and standard deviation of returns deciles.
The reported values are aggregated from the entire set of 6, 000× 21 = 126, 000 test results (Panel A) or
from a set of 6, 000 results that are obtained when only using the full set of 688,740 TTRs (Panel B). The
data is generated using a GBM with no drift (µ = 0) and volatility σ ∈ {0.15, 0.20, 0.25, 0.30, 0.35, 0.40}.
Sample length is 4 years (1,044 observations on average). Average (annualized) return decile cutoff points
are: -0.178, -0.109, -0.064, -0.031, -0.002, 0.032, 0.068, 0.113 and 0.182. Standard deviation of returns
decile cutoff points are: 0.151, 0.197, 0.204, 0.249, 0.275, 0.302, 0.344, 0.356 and 0.398.
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Table 9: False discovery rates by average return and standard deviation of returns deciles:
RC test, 10-year bearish samples

Panel A. All tests

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.943 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.918 1.000 0.714
4 1.000 1.000 1.000 1.000 1.000 1.000 0.932 0.786 1.000 0.714
5 1.000 1.000 1.000 1.000 0.857 0.833 0.838 0.714 0.460 0.500
6 1.000 1.000 1.000 0.946 0.738 0.657 0.556 0.476 0.369 0.476
7 1.000 1.000 0.924 0.730 0.649 0.429 0.476 0.476 0.293 0.421
8 1.000 0.868 0.583 0.599 0.531 0.429 0.508 0.357 0.222 0.345
9 0.619 0.690 0.503 0.524 0.413 0.333 0.390 0.219 0.016 0.180
10 0.476 0.214 0.429 0.071 0.095 0.105 0.086 0.028 0.026 0.091

Panel B. Only tests that control for all 688,740 TTRs

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.800 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.714 1.000 0.000
4 1.000 1.000 1.000 1.000 1.000 1.000 0.714 0.400 1.000 0.333
5 1.000 1.000 1.000 1.000 0.500 0.500 0.500 0.250 0.000 0.000
6 1.000 1.000 1.000 0.714 0.250 0.100 0.000 0.000 0.000 0.000
7 1.000 1.000 0.600 0.167 0.125 0.000 0.000 0.000 0.000 0.000
8 1.000 0.667 0.000 0.143 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: This table reports the proportion of false discoveries estimated for the RC test in the simulation
exercise for a significance level of 5%, grouped by average returns and standard deviation of returns deciles.
The reported values are aggregated from a set of 600 × 21 = 12, 600 test results (Panel A) or from a set
of 600 results that are obtained when only using the full set of 688,740 TTRs (Panel B). The data is
generated using a GBM with drift µ = −0.20 and volatility σ ∈ {0.15, 0.20, 0.25, 0.30, 0.35, 0.40}. Sample
length is 10 years (2,610 observations on average). Average (annualized) return decile cutoff points are:
-0.327, -0.282, -0.246, -0.219, -0.197, -0.179, -0.154, -0.129 and -0.091. Standard deviation of returns decile
cutoff points are: 0.150, 0.196, 0.201, 0.248, 0.275, 0.300, 0.346, 0.353 and 0.397.
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Table 10: Proportion of inconsistent tests by average return and standard deviation of
returns deciles: pFDR test, 1-year samples

Panel A. All tests

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 1.000 0.925 0.946 0.420 0.289 0.343 0.467 0.697 0.591 0.655
2 0.816 0.708 0.474 0.323 0.263 0.281 0.332 0.388 0.367 0.374
3 0.415 0.394 0.343 0.331 0.275 0.294 0.369 0.374 0.359 0.342
4 0.369 0.353 0.359 0.299 0.355 0.343 0.384 0.348 0.362 0.349
5 0.272 0.284 0.328 0.298 0.308 0.235 0.340 0.324 0.332 0.338
6 0.241 0.222 0.219 0.287 0.303 0.310 0.316 0.284 0.297 0.320
7 0.122 0.169 0.186 0.225 0.329 0.300 0.287 0.257 0.278 0.237
8 0.062 0.077 0.125 0.224 0.257 0.395 0.276 0.199 0.222 0.253
9 0.018 0.019 0.080 0.246 0.304 0.274 0.347 0.190 0.171 0.166
10 0.000 0.000 0.022 0.257 0.283 0.330 0.157 0.089 0.084 0.074

Panel B. Only tests that control for all 688,740 TTRs

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 1.000 0.905 0.938 0.300 0.023 0.101 0.289 0.565 0.420 0.504
2 0.833 0.617 0.310 0.129 0.071 0.053 0.048 0.077 0.017 0.078
3 0.120 0.067 0.022 0.130 0.113 0.024 0.103 0.020 0.000 0.000
4 0.009 0.023 0.028 0.055 0.094 0.102 0.086 0.000 0.031 0.048
5 0.000 0.000 0.015 0.067 0.095 0.024 0.043 0.019 0.000 0.000
6 0.000 0.000 0.000 0.073 0.088 0.150 0.094 0.000 0.000 0.020
7 0.000 0.000 0.016 0.066 0.061 0.064 0.066 0.000 0.022 0.000
8 0.000 0.000 0.026 0.043 0.068 0.178 0.017 0.017 0.000 0.022
9 0.000 0.000 0.017 0.088 0.091 0.051 0.117 0.000 0.000 0.000
10 0.000 0.000 0.000 0.071 0.060 0.117 0.015 0.000 0.000 0.000

Notes: This table reports the proportion of inconsistent pFDR tests estimated in the simulation exercise
for a significance level of 5%, grouped by average returns and standard deviation of returns deciles. Incon-
sistent pFDR tests represent tests in which the proportion of false discoveries exceed the acceptable 5% pre-
defined limit. The reported values are aggregated from a set of 60, 00×21 = 126, 000 test results (Panel A)
or from a set of 6, 000 results that are obtained when only using the full set of 688,740 TTRs (Panel B). The
data is generated using a GBM with no drift (µ = 0) and volatility σ ∈ {0.15, 0.20, 0.25, 0.30, 0.35, 0.40}.
Sample length is 1 year (261 observations on average). Average (annualized) return decile cutoff points
are: -0.359, -0.215, -0.130, -0.059, 0.007, 0.072, 0.142, 0.234 and 0.370. Standard deviation of returns
decile cutoff points are: 0.152, 0.193, 0.208, 0.247, 0.275, 0.303, 0.336, 0.396 and 0.396.
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Table 11: Null rejection rates by average return and standard deviation of returns deciles:
cryptocurrency market, RC and SPA tests, 1-month samples

Panel A. All tests

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 0.798 0.595 0.496 0.405 0.307 0.241 0.200 0.143 0.100 0.067
2 0.530 0.333 0.239 0.203 0.129 0.105 0.076 0.062 0.050 0.032
3 0.266 0.144 0.111 0.093 0.072 0.069 0.050 0.050 0.024 0.025
4 0.116 0.074 0.060 0.057 0.048 0.039 0.039 0.036 0.037 0.028
5 0.061 0.039 0.042 0.040 0.035 0.034 0.029 0.027 0.025 0.027
6 0.156 0.026 0.025 0.021 0.028 0.020 0.020 0.028 0.029 0.015
7 0.016 0.014 0.018 0.017 0.014 0.022 0.016 0.034 0.030 0.034
8 0.007 0.003 0.007 0.007 0.010 0.015 0.016 0.012 0.025 0.012
9 0.005 0.000 0.001 0.004 0.005 0.007 0.011 0.013 0.018 0.017
10 0.000 0.000 0.006 0.001 0.003 0.001 0.004 0.004 0.012 0.015

Panel B. Only tests that control for all 688,740 TTRs

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 0.333 0.143 0.049 0.024 0.016 0.019 0.011 0.013 0.007 0.011
2 0.037 0.008 0.005 0.008 0.005 0.006 0.009 0.003 0.004 0.002
3 0.011 0.003 0.001 0.005 0.003 0.008 0.000 0.003 0.004 0.000
4 0.009 0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.006
5 0.011 0.002 0.000 0.000 0.003 0.002 0.000 0.000 0.005 0.000
6 0.139 0.005 0.000 0.003 0.002 0.002 0.000 0.005 0.003 0.000
7 0.008 0.003 0.001 0.000 0.004 0.003 0.000 0.004 0.007 0.007
8 0.005 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.002 0.000
9 0.004 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.003 0.001
10 0.000 0.000 0.006 0.000 0.002 0.000 0.001 0.000 0.000 0.001

Notes: This table reports the proportion of RC and SPA test null rejections obtained in the empirical
exercise conducted on the cryptocurrency market for a significance level of 5%. The results are grouped
by average returns and standard deviation of returns deciles. The reported values are aggregated from a
set of 32, 014 × 2 × 21 = 1, 344, 588 test results (Panel A) or from a set of 32, 014 × 2 = 64, 028 results
that are obtained when only using the full set of 688,740 TTRs (Panel B). Sample length is 1 month
(minimum 22 observations; 30 observations on average). Average (annualized) return decile cutoffs are:
-8.172, -5.453, -3.638, -2.288, -1.025, 0.079, 1.568, 3.584 and 7.335. Standard deviation of returns decile
cutoffs are: 0.893, 1.153, 1.388, 1.644, 1.960, 2.346, 2.884, 3.753 and 5.490.
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Table 12: Trading rule overperformance in the cryptocurrency market

Panel A. Simple statistic (RC test)

Cryptocurrency data Randomly generated data (benchmark)

TTRs ξ̂ ∈ R ξ̂ < 0 ξ̂ ≥ 0 Pr(ξ̂ < 0) TTRs ξ̂ ∈ R ξ̂ < 0 ξ̂ ≥ 0 Pr(ξ̂ < 0)
1 0.102 0.164 0.012 95.0% 1 0.386 0.711 0.052 86.4%
2 0.087 0.141 0.011 94.8% 2 0.323 0.611 0.028 91.2%
4 0.071 0.113 0.010 94.2% 4 0.263 0.509 0.010 96.3%
8 0.055 0.087 0.009 93.0% 8 0.219 0.430 0.003 98.8%
16 0.045 0.070 0.009 92.1% 16 0.199 0.394 0.000 100.0%
32 0.039 0.060 0.008 91.4% 32 0.195 0.385 0.000 100.0%
64 0.029 0.044 0.008 89.0% 64 0.171 0.338 0.000 100.0%
128 0.029 0.044 0.008 89.0% 128 0.171 0.338 0.000 100.0%
256 0.028 0.042 0.008 88.6% 256 0.168 0.331 0.000 100.0%
512 0.016 0.022 0.008 80.7% 512 0.120 0.237 0.000 100.0%
1024 0.008 0.009 0.008 62.5% 1024 0.087 0.172 0.000 100.0%
2048 0.008 0.008 0.008 61.4% 2048 0.086 0.170 0.000 100.0%
4096 0.008 0.008 0.008 59.3% 4096 0.083 0.165 0.000 100.0%
8192 0.006 0.004 0.007 44.6% 8192 0.071 0.141 0.000 100.0%
16384 0.005 0.003 0.007 36.2% 16384 0.066 0.130 0.000 100.0%
32768 0.004 0.002 0.007 23.0% 32768 0.052 0.103 0.000 100.0%
65536 0.004 0.001 0.007 20.5% 65536 0.051 0.101 0.000 100.0%
131072 0.004 0.001 0.007 19.8% 131072 0.049 0.097 0.000 100.0%
262144 0.004 0.001 0.007 15.7% 262144 0.043 0.084 0.000 100.0%
524288 0.004 0.001 0.007 14.9% 524288 0.040 0.078 0.000 100.0%
688740 0.003 0.001 0.007 11.8% 688740 0.033 0.065 0.000 100.0%

Panel B. Standardized statistic (SPA test)

Cryptocurrency data Randomly generated data (benchmark)

TTRs ξ̂ ∈ R ξ̂ < 0 ξ̂ ≥ 0 Pr(ξ̂ < 0) TTRs ξ̂ ∈ R ξ̂ < 0 ξ̂ ≥ 0 Pr(ξ̂ < 0)
1 0.303 0.452 0.090 87.7% 1 0.615 0.917 0.306 50.3%
2 0.283 0.424 0.082 88.1% 2 0.575 0.884 0.258 55.1%
4 0.256 0.383 0.073 88.1% 4 0.528 0.838 0.210 60.2%
8 0.226 0.340 0.064 88.4% 8 0.492 0.803 0.173 64.8%
16 0.196 0.297 0.052 89.1% 16 0.475 0.782 0.160 66.3%
32 0.170 0.259 0.043 89.5% 32 0.466 0.769 0.156 66.6%
64 0.148 0.226 0.036 90.0% 64 0.454 0.752 0.148 67.5%
128 0.148 0.226 0.036 90.0% 128 0.454 0.752 0.148 67.5%
256 0.130 0.199 0.031 90.3% 256 0.416 0.699 0.126 69.7%
512 0.068 0.103 0.017 89.5% 512 0.268 0.480 0.051 81.0%
1024 0.051 0.078 0.014 88.6% 1024 0.227 0.415 0.035 84.5%
2048 0.051 0.077 0.014 88.7% 2048 0.227 0.414 0.035 84.7%
4096 0.048 0.072 0.013 88.3% 4096 0.216 0.397 0.030 85.9%
8192 0.036 0.053 0.012 86.1% 8192 0.157 0.296 0.014 91.0%
16384 0.031 0.045 0.012 84.2% 16384 0.151 0.286 0.012 91.7%
32768 0.016 0.020 0.011 71.9% 32768 0.090 0.174 0.003 96.6%
65536 0.016 0.019 0.011 71.3% 65536 0.087 0.169 0.003 96.9%
131072 0.015 0.018 0.011 69.3% 131072 0.083 0.161 0.003 96.7%
262144 0.014 0.016 0.011 67.2% 262144 0.076 0.148 0.002 96.9%
524288 0.013 0.014 0.011 65.1% 524288 0.070 0.135 0.002 96.6%
688740 0.012 0.012 0.011 61.3% 688740 0.058 0.113 0.002 97.1%

Note: This table reports the proportion of positive discoveries regarding trading rule overperformance in
the cryptocurrency market, i.e. test null rejections at the 5% significance level divided by the total number
of tests performed. In total, 32,014 RC and 32,014 SPA tests are performed on data samples containing
between 22 and 31 observations, out of which 18,935 are bearish (ξ ≤ 0) and 13,079 are bullish (ξ > 0).

Pr(ξ̂ < 0) denotes the proportion of false discoveries obtained in downward trending samples, i.e. the ratio
between null rejections obtained on samples exhibiting negative average returns and the total number of
null rejections. The benchmark results are obtained from Table 2.64



Table 13: Null rejection rates by average return and standard deviation of returns deciles:
stock market, RC test

Panel A. 1-year subsamples (231 observations on average)

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 0.667 0.000 0.133 0.115 0.027 0.025 0.013 0.015 0.036 0.023
2 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel B. Full samples (3310 observations on average)

Standard deviation of returns decile
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

re
tu

rn
d

ec
il

e

1 0.000 0.000 0.000 0.000 0.000 0.077 0.000 0.079 0.000 0.017
2 0.000 0.000 0.000 0.000 0.050 0.000 0.034 0.000 0.036 0.000
3 0.000 0.069 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.025 0.000 0.000 0.000 0.077 0.000 0.000 0.000
5 0.000 0.056 0.000 0.065 0.056 0.040 0.063 0.000 0.000 0.000
6 0.000 0.057 0.000 0.074 0.037 0.000 0.000 0.000 0.000 0.000
7 0.000 0.036 0.000 0.067 0.000 0.056 0.000 0.000 0.000 0.111
8 0.125 0.000 0.000 0.000 0.056 0.033 0.027 0.000 0.059 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.031 0.071
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.000

Notes: This table reports the proportion of RC test null rejections obtained in the empirical exercise
conducted on the stock market for a significance level of 5%. The results are grouped by average returns
and standard deviation of returns deciles. The values reported in Panel A are aggregated from a set
of 34,887 results obtained when testing the full set of 688,740 TTRs on 1-year subsamples (minimum
65 observations; 232 observations on average). In this case, average (annualized) return decile cutoffs
for are: -0.536, -0.241, -0.094, 0.013, 0.105, 0.202, 0.309, 0.455 and 0.708; while standard deviation of
returns decile cutoffs are: 0.187, 0.226, 0.260, 0.294, 0.330, 0.371, 0.425, 0.502 and 0.638. The values
reported in Panel B are aggregated from a set of 2,406 results obtained when testing the full set of 688,740
TTRs on full samples (minimum 65 observations; 3,338 observations on average). In this case, average
(annualized) return decile cutoffs for are: -0.131, -0.021, 0.032, 0.064, 0.090, 0.117, 0.150, 0.208 and 0.323;
while standard deviation of returns decile cutoffs are: 0.263, 0.305, 0.338, 0.368, 0.404, 0.452, 0.524, 0.654
and 1.038.
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Table 14: Trading rule overperformance in the foreign exchange market

Simple statistic (RC test) Standardized statistic (SPA test)

TTRs ξ̂ ∈ R ξ̂ < 0 ξ̂ ≥ 0 Pr(ξ̂ < 0) TTRs ξ̂ ∈ R ξ̂ < 0 ξ̂ ≥ 0 Pr(ξ̂ < 0)
1 0.476 0.771 0.260 68.4% 1 0.554 0.814 0.365 62.0%
2 0.289 0.600 0.063 87.5% 2 0.398 0.686 0.188 72.7%
4 0.217 0.514 0.000 100.0% 4 0.325 0.629 0.104 81.5%
8 0.193 0.457 0.000 100.0% 8 0.289 0.600 0.063 87.5%
16 0.145 0.343 0.000 100.0% 16 0.277 0.600 0.042 91.3%
32 0.145 0.343 0.000 100.0% 32 0.265 0.571 0.042 90.9%
64 0.145 0.343 0.000 100.0% 64 0.241 0.514 0.042 90.0%
128 0.145 0.343 0.000 100.0% 128 0.241 0.514 0.042 90.0%
256 0.145 0.343 0.000 100.0% 256 0.205 0.429 0.042 88.2%
512 0.120 0.286 0.000 100.0% 512 0.084 0.200 0.000 100.0%
1024 0.084 0.200 0.000 100.0% 1024 0.084 0.200 0.000 100.0%
2048 0.084 0.200 0.000 100.0% 2048 0.084 0.200 0.000 100.0%
4096 0.060 0.143 0.000 100.0% 4096 0.084 0.200 0.000 100.0%
8192 0.060 0.143 0.000 100.0% 8192 0.060 0.143 0.000 100.0%
16384 0.048 0.114 0.000 100.0% 16384 0.048 0.114 0.000 100.0%
32768 0.048 0.114 0.000 100.0% 32768 0.012 0.029 0.000 100.0%
65536 0.048 0.114 0.000 100.0% 65536 0.012 0.029 0.000 100.0%
131072 0.048 0.114 0.000 100.0% 131072 0.012 0.029 0.000 100.0%
262144 0.036 0.086 0.000 100.0% 262144 0.012 0.029 0.000 100.0%
524288 0.036 0.086 0.000 100.0% 524288 0.000 0.000 0.000
688740 0.024 0.057 0.000 100.0% 688740 0.000 0.000 0.000

Note: This table reports the proportion of positive discoveries regarding trading rule overperformance in
the FX market, i.e. test null rejections at the 5% significance level divided by the total number of tests
performed. In total, 21 RC and 21 SPA tests are performed on 83 data samples averaging 973 observations,
out of which 35 are bearish (ξ ≤ 0) and 48 are bullish (ξ > 0). Pr(ξ̂ < 0) denotes the proportion of false
discoveries obtained in downward trending samples, i.e. the ratio between null rejections obtained on
samples exhibiting negative average returns and the total number of null rejections.
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Appendix A. Methodological choices, data sample properties, and

the characteristics of lucky trading rules−detailed

results

Figure A.1: Data sample properties and the characteristics of lucky trading rules−Grouped
by Trading Fee Choice.

Notes: This figure reports how the choice of considering trading fees alters the interaction between lucky
trading rule characteristics (either bullish tendency-MkParticip; predictive accuracy-CorrelWithMkt ;
trading frequency-TrdFreq; or (annualized) average excess return-ExRet) and sample properties (average
return-Return; standard deviation of returns-Volatility; Skewness; and Excess Kurtosis). The dots on
the scatter plot are black when the choice is true and red when the choice is false. Each colored group
is plotted from 48,000 data points, obtained from running tests on 6,000 data samples with 8 different
other combinations of methodological choices.

Main takeaway: The characteristics of lucky trading rules depend on data sample properties.
Most notably, the bullish tendency (average excess return) is significantly positively (negatively)
influenced by the sample average return. In general, adding trading fees to the loss function reduces the
trading frequency of lucky trading rules and slightly decreases their excess return.
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Figure A.2: Data sample properties and the characteristics of lucky trading rules−Grouped
by Liquidity Cost Choice.

Notes: This figure reports how the choice of considering liquidity/price impact costs alters the
interaction between lucky trading rule characteristics (either bullish tendency-MkParticip; predictive
accuracy-CorrelWithMkt ; trading frequency-TrdFreq; or (annualized) average excess return-ExRet) and
sample properties (average return-Return; standard deviation of returns-Volatility; Skewness; and Excess
Kurtosis). The dots on the scatter plot are black when the choice is true and red when the choice is
false. Each colored group is plotted from 48,000 data points, obtained from running tests on 6,000 data
samples with 8 different other combinations of methodological choices.

Main takeaway: The characteristics of lucky trading rules depend on data sample properties.
Most notably, the bullish tendency (average excess return) is significantly positively (negatively)
influenced by the sample average return. In general, adding liquidity costs to the loss function reduces
the trading frequency of lucky trading rules and slightly decreases their excess return.

68



Figure A.3: Data sample properties and the characteristics of lucky trading rules−Grouped
by Short Selling/Long Only Choice.

Notes: This figure reports how the choice of restricting short trades (only considering long trades) alters
the interaction between lucky trading rule characteristics (either bullish tendency-MkParticip; predictive
accuracy-CorrelWithMkt ; trading frequency-TrdFreq; or (annualized) average excess return-ExRet) and
sample properties (average return-Return; standard deviation of returns-Volatility; Skewness; and Excess
Kurtosis). The dots on the scatter plot are black when the choice is true and red when the choice is
false. Each colored group is plotted from 48,000 data points, obtained from running tests on 6,000 data
samples with 8 different other combinations of methodological choices.

Main takeaway: The characteristics of lucky trading rules depend on data sample properties.
Most notably, the bullish tendency (average excess return) is significantly positively (negatively)
influenced by the sample average return. In general, restricting short trades greatly reduces the excess
return of lucky trading rules. In particular, it decreases the slope of the relationship between market
average returns and trading rule excess returns.
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Figure A.4: Data sample properties and the characteristics of lucky trading rules−Grouped
by Choice of Test Statistic.

Notes: This figure reports how the choice of standardizing the test statistic alters the interaction
between lucky trading rule characteristics (either bullish tendency-MkParticip; predictive accuracy-
CorrelWithMkt ; trading frequency-TrdFreq; or (annualized) average excess return-ExRet) and sample
properties (average return-Return; standard deviation of returns-Volatility; Skewness; and Excess
Kurtosis). The dots on the scatter plot are black when the choice is true and red when the choice is
false. Each colored group is plotted from 48,000 data points, obtained from running tests on 6,000 data
samples with 8 different other combinations of methodological choices.

Main takeaway: The characteristics of lucky trading rules depend on data sample properties.
Most notably, the bullish tendency (average excess return) is significantly positively (negatively)
influenced by the sample average return. In general, standardizing the test statistic slightly increases
the predictive accuracy of lucky trading rules, but slightly decreases their trading frequency and excess
return.
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